1
|
Lee HS, Han JE, Bae EK, Jie EY, Kim SW, Kwon HJ, Lee HS, Yeon SH, Murthy HN, Park SY. Response surface methodology mediated optimization of phytosulfokine and plant growth regulators for enhanced protoplast division, callus induction, and somatic embryogenesis in Angelica Gigas Nakai. BMC PLANT BIOLOGY 2024; 24:527. [PMID: 38858674 PMCID: PMC11165744 DOI: 10.1186/s12870-024-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Han-Sol Lee
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Eun Han
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, 39 Onjeong-ro, Suwon, 16631, Republic of Korea
| | - Eun Yee Jie
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| | - Hyuk Joon Kwon
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Soo-Ho Yeon
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Hosakatte Niranjana Murthy
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Department of Botany, Karnatak University, Dharwad, 580003, India
- Department of Biotechnology, KLE Technological University, Hubballi, 580039, India
| | - So-Young Park
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Park SM, Jung CJ, Lee DG, Yu YE, Ku TH, Hong MS, Lim TK, Paeng KI, Cho HK, Cho IJ, Ku SK. Elaeagnus umbellata Fruit Extract Protects Skin from Ultraviolet-Mediated Photoaging in Hairless Mice. Antioxidants (Basel) 2024; 13:195. [PMID: 38397793 PMCID: PMC10885948 DOI: 10.3390/antiox13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.
Collapse
Affiliation(s)
- Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Cheol-Jong Jung
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Yeong-Eun Yu
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Tae-Hun Ku
- Okchundang Korean Medicine Clinic, Ulsan 44900, Republic of Korea;
| | - Mu-Seok Hong
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Tae-Kyung Lim
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Kwong-Il Paeng
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Hyun-Ki Cho
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
| |
Collapse
|
3
|
Vijayan N, Perumal MK. A critical review on anti-fibrotic phytochemicals targeting activated hepatic stellate cells. J Food Biochem 2022; 46:e14438. [PMID: 36209494 DOI: 10.1111/jfbc.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is a major health concern occurring worldwide. It arises due to prolonged wound healing response of various insults like viral, autoimmune, cholestatic, drug-induced, and metabolic diseases. Currently, there is no clinically approved drug for liver fibrosis treatment. Hepatic stellate cells are the principal liver cells that are activated during liver fibrosis, and targeting these activated cells is an ideal therapeutic strategy. Numerous phytochemicals have been demonstrated in vitro and in vivo treating experimental liver fibrosis; however, none of them have been clinically approved for therapeutic use. This review mainly focuses on such hepatoprotective phytochemicals reported inhibiting major signaling pathways that are dysregulated in activated hepatic stellate cells. PRACTICAL APPLICATIONS: Liver fibrosis is a global health concern and there is no FDA approved drug to treat liver fibrosis. Although notable pharmacological agents like pentoxifylline, gliotoxin, imatinibmesylate, Gleevec, and so on are reported to exhibit anti-fibrotic effect, the major concern is their side effect. Hence, phytochemicals are promising candidates that could be employed against liver fibrosis. In this review, the anti-fibrotic potential of phytochemicals targeting activated HSCs are summarized. Understanding these phytochemicals will further help in the development of agents that are more effective against liver fibrosis.
Collapse
Affiliation(s)
- Nivya Vijayan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Kim KS, Choi YJ, Jang DS, Lee S. 2- O- β-d-Glucopyranosyl-4,6-dihydroxybenzaldehyde Isolated from Morus alba (Mulberry) Fruits Suppresses Damage by Regulating Oxidative and Inflammatory Responses in TNF-α-Induced Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms232314802. [PMID: 36499128 PMCID: PMC9735759 DOI: 10.3390/ijms232314802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Human skin is composed of three layers, of which the dermis is composed of an extracellular matrix (ECM) comprising collagen, elastin, and other proteins. These proteins are reduced due to skin aging caused by intrinsic and extrinsic factors. Among various internal and external factors related to aging, ultraviolet (UV) radiation is the main cause of photoaging of the skin. UV radiation stimulates DNA damage, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine production such as tumor necrosis factor-alpha (TNF-α), and promotes ECM degradation. Stimulation with ROS and TNF-α upregulates mitogen-activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB), and activator protein 1 (AP-1) transcription factors that induce the expression of the collagenase matrix metalloproteinase-1 (MMP-1). Moreover, TNF-α induces intracellular ROS production and several molecular pathways. Skin aging progresses through various processes and can be prevented through ROS generation and TNF-α inhibition. In our previous study, 2-O-β-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (GDHBA) was isolated from the Morus alba (mulberry) fruits and its inhibitory effect on MMP-1 secretion was revealed. In this study, we focused on the effect of GDHBA on TNF-α-induced human dermal fibroblasts (HDFs). GDHBA (50 μM) inhibited ROS generation (18.8%) and decreased NO (58.4%) and PGE2 levels (53.8%), significantly. Moreover, it decreased MMP-1 secretion (55.3%) and increased pro-collagen type I secretion (207.7%). GDHBA (50 μM) decreased the expression of different MAPKs as per western blotting; p-38: 35.9%; ERK: 47.9%; JNK: 49.5%; c-Jun: 32.1%; NF-κB: 55.9%; and cyclooxygenase-2 (COX-2): 31%. This study elucidated a novel role of GDHBA in protecting against skin inflammation and damage through external stimuli, such as UV radiation.
Collapse
Affiliation(s)
- Kang Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (S.L.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (D.S.J.); (S.L.)
| |
Collapse
|
5
|
Shen LH, Fan L, Zhang Y, Shen Y, Su ZT, Peng GN, Deng JL, Zhong ZJ, Wu XF, Yu SM, Cao SZ, Zong XL. Antioxidant Capacity and Protective Effect of Cow Placenta Extract on D-Galactose-Induced Skin Aging in Mice. Nutrients 2022; 14:4659. [PMID: 36364921 PMCID: PMC9654611 DOI: 10.3390/nu14214659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2023] Open
Abstract
Placental extract has been used for skin care and delaying skin aging. Cow placenta is an abundant resource with a large mass, which has not been harnessed effectively. Cow placenta extract (CPE) has the functions of antioxidation, anti-inflammatory, promoting growth and development, and promoting hair growth. However, little is known about the effect of oral administration of cow placenta extract on skin conditions. Therefore, the present study aimed to investigate the antioxidant capacity of CPE in vitro and in vivo and its protective effect on d-galactose (D-gal) induced skin aging in mice. The results showed that CPE had strong free radical scavenging, reducing and metal chelating activities. CPE can increase the activity of catalase (CAT), glutathione peroxidase (GSH-Px), peroxidase (POD), superoxide dismutase (SOD), and the content of glutathione (GSH), decrease the content of malondialdehyde (MDA). Moreover, CPE can decrease the gene and protein expression of matrix metalloproteinase 1a (MMP-1a) and matrix metalloproteinase 3 (MMP-3) and increase the expression of transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinase 1 (TIMP-1) of mouse skin. Histopathological analysis showed CPE reduced the collagen damage caused by D-gal, increased collagen synthesis and reduced its degradation to delay skin aging.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe-Tong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Liang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Jun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Feng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Min Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Lu Z, Xia Q, Cheng Y, Lu Q, Li Y, Zeng N, Luan X, Li Y, Fan L, Luo D. Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. J Cosmet Dermatol 2022; 21:6261-6269. [PMID: 35816390 DOI: 10.1111/jocd.15230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ultraviolet A (UVA) radiation causes skin damage. Recently, natural compounds have become an interest to protect skin from UV-induced photodamages. METHODS In this study, we investigated the protective effects of hesperetin, a citrus flavonoid, on UVA-induced oxidative stress, inflammation, apoptosis, and photoaging. RESULTS Our results showed that hesperetin increased the cell viability, suppressed the intracellular ROS levels, and decreased the expression of MMPs including MMP-1 and MMP-3, pro-inflammatory cytokines including IL-6 and COX-2 in UVA-irradiated HDFs. Besides, hesperetin exerted an anti-apoptotic effect by increasing expression of anti-apoptotic protein Bcl-2 and decreasing expression of pro-apoptotic protein Bax. Moreover, these anti-photodamage effects were mediated by inhibition of ERK, p38/AP-1, and NF-κb/p65 phosphorylation. CONCLUSION Therefore, hesperetin may be useful in the prevention of UVA-induced skin damage.
Collapse
Affiliation(s)
- Zhiyu Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qingyue Xia
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Cheng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yueyue Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Xingbao Luan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Lipan Fan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Oddioside A, a New Phenolic Glycoside Isolated from the Fruits of Morus alba (Mulberry), Protects TNF-α-Induced Human Dermal Fibroblast Damage. Antioxidants (Basel) 2022; 11:antiox11101894. [DOI: 10.3390/antiox11101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
In our preliminary study, a hot water extract from the fruits of Morus alba (mulberry) inhibited the secretion of metalloproteinase-1 (MMP-1) against tumor necrosis factor-α (TNF-α)-stimulated human dermal fibroblasts (HDFs), and therefore we researched its active compounds. In the present study, a new phenolic glycoside (oddioside A, 1) and 21 known compounds (2−22) were isolated from the hot water extract from the fruits of M. alba by repeated chromatography. The chemical structure of the new compound 1 was elucidated by its spectroscopic data (1D− and 2D−NMR and HRMS) measurement and by acidic hydrolysis. The presence of sargentodoside E (2), eugenyl glucoside (6), 2-O-β-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (7), 7S,8R-erythro-7,9,9’-trihydroxy-3,3’-dimethoxy-8-O-4’-neolignan-4-O-β-d-glucopyranoside (11), pinoresinol-4-O-β-d-glucopyranoside (12), taxifolin-7-O-β-d-glucopyranoside (20), and pinellic acid (21) were reported from M. alba for the first time in this study. The new compound oddioside A (1) suppressed the secretion of MMP-1 and increased collagen in TNF-α-stimulated HDFs. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) was inhibited by oddioside A. In conclusion, the extract from fruits of M. alba and its constituent oddioside A may be a potential agent to prevent inflammation-related skin aging and other skin disorders.
Collapse
|
8
|
Zhang Q, Qiao S, Yang C, Jiang G. Nuclear factor-kappa B and effector molecules in photoaging. Cutan Ocul Toxicol 2022; 41:187-193. [PMID: 35658705 DOI: 10.1080/15569527.2022.2081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-kappa B (NF-κB) has important but complex functions in the photoaging of the human skin. This protein complex is activated upon UV irradiation and plays a key role in the signalling pathway of the inflammatory cascade. NF-κB induces the expression of various proinflammatory cytokines, such as tumour necrosis factor (TNF) and interleukin-1 (IL-1). These proinflammatory cytokines can in turn stimulate the activation of NF-κB, forming a vicious cycle. These processes cause chronic inflammation and contribute to skin ageing. In addition, the activation of NF-κB upregulates the expression of matrix metalloproteinases (MMPs) and leads to the degradation of structural proteins in the dermis. NF-κB disrupts the barrier function of the skin under prolonged and repeated UV stimulations in these ways. Such activity causes chronic skin damage, followed by the formation of wrinkles, dryness, roughness, laxity, and other photoaging manifestations. This study on the NF-κB signalling pathway and effector molecules provides a new perspective to understand and prevent photoaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Shiyun Qiao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics 2022; 14:pharmaceutics14050968. [PMID: 35631555 PMCID: PMC9143416 DOI: 10.3390/pharmaceutics14050968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Collapse
Affiliation(s)
- Ga-Hee Hur
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Yong-Wan Kim
- Dongsung Bio Pharmaceutical Co., Ltd., Seoul 01340, Korea;
| | - Mi-Young Lee
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
10
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
11
|
Park SJ, Kim DW, Lim SR, Sung J, Kim TH, Min IS, Choi CH, Lee SJ. Kaempferol Blocks the Skin Fibroblastic Interleukin 1β Expression and Cytotoxicity Induced by 12-O-tetradecanoylphorbol-13-acetate by Suppressing c-Jun N-terminal Kinase. Nutrients 2021; 13:nu13093079. [PMID: 34578957 PMCID: PMC8466288 DOI: 10.3390/nu13093079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Kaempferol, a bioflavonoid present in fruits and vegetables, has a variety of antioxidant and anti-inflammatory capacities, but the functional role of kaempferol in oxidative skin dermal damage has yet to be well studied. In this study, we examine the role of kaempferol during the inflammation and cell death caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) in normal human dermal fibroblasts (NHDF). TPA (5 μM) significantly induced cytotoxicity of NHDF, where a robust increase in the interleukin (IL)-1β mRNA among the various pro-inflammatory cytokines. The skin fibroblastic cytotoxicity and IL-1β expression induced by TPA were significantly ameliorated by a treatment with 100 nM of kaempferol. Kaempferol blocked the production of the intracellular reactive oxygen species (ROS) responsible for the phosphorylation of c-Jun N-terminal kinase (JNK) induced by TPA. Interestingly, we found that kaempferol inhibited the phosphorylation of nuclear factor-kappa B (NF-κB) and the inhibitor NF-κB (IκBα), which are necessary for the expression of cleaved caspase-3 and the IL-1β secretion in TPA-treated NHDF. These results suggest that kaempferol is a functional agent that blocks the signaling cascade of the skin fibroblastic inflammatory response and cytotoxicity triggered by TPA.
Collapse
Affiliation(s)
- Su-Ji Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-J.P.); (D.-W.K.); (S.-R.L.)
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-J.P.); (D.-W.K.); (S.-R.L.)
| | - Seong-Ryeong Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-J.P.); (D.-W.K.); (S.-R.L.)
| | - Junghee Sung
- Research Center, Reanzen Co., Ltd., Anyang 14056, Korea;
| | - Tae Hoon Kim
- FoodyWorm Inc., Yancheongsongdae-gil 10, Ochang-eup, Cheongwon-gu, Choenju-si 28118, Korea;
| | - In Sun Min
- Fragrance of the Moon, 23 Taepyeong-ro, Jung-gu, Daegu 41900, Korea;
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-J.P.); (D.-W.K.); (S.-R.L.)
- Correspondence: ; Tel.: +82-54-819-1806
| |
Collapse
|
12
|
Fernando IPS, Heo SJ, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Sanjeewa KKA, Lee K, Ahn G. (-)-Loliolide Isolated from Sargassum horneri Abate UVB-Induced Oxidative Damage in Human Dermal Fibroblasts and Subside ECM Degradation. Mar Drugs 2021; 19:435. [PMID: 34436274 PMCID: PMC8399698 DOI: 10.3390/md19080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.
Collapse
Affiliation(s)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea;
| | | | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Kalu Kapuge Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Jayewardenepura 10206, Sri Lanka;
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| |
Collapse
|
13
|
Pedić L, Pondeljak N, Šitum M. Recent information on photoaging mechanisms and the preventive role of topical sunscreen products. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2020. [DOI: 10.15570/actaapa.2020.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
14
|
Zhang Z, Zhu H, Zheng Y, Zhang L, Wang X, Luo Z, Tang J, Lin L, Du Z, Dong C. The effects and mechanism of collagen peptide and elastin peptide on skin aging induced by D-galactose combined with ultraviolet radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111964. [PMID: 32717457 DOI: 10.1016/j.jphotobiol.2020.111964] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/04/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND The content of collagen and elastin occupies a large proportion of skin evaluation, and collagen peptide (CP) and elastin peptide (EP) are widely used drugs, which have anti-inflammatory effects. In addition, CP and EP can also be used as therapeutic agents for skin repair. However, previous studies have never thoroughly verified the effects of oral administration of CP and EP on skin repair. AIM To study the effects and mechanism of oral administration of CP and EP on skin aging induced by combinatorial treatment with D-galactose and ultraviolet radiation. RESULTS In animal experiments, the combined oral administration of CP and EP increased the contents of collagen and elastin in animal skin, accompanying with significantly upregulated expression of hyaluronic acid and hydroxyproline, as well as significantly reduced expression of MMP-3 and IL-1α. In addition, the combined therapy also significantly increased the expression of seven collagen and elastin synthesis-related factors including IGF-1, LOX, SMAD2, JNK, SP1, TβRII and TGF-β. CONCLUSION Oral administration of CP and EP can repair skin aging induced by the combined treatment with D-galactose and ultraviolet radiation and the effects of CP and EP appeared synergistic.
Collapse
Affiliation(s)
- Zejun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Huawei Zhu
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Yating Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | | | - Zhen Luo
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Jian Tang
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Li Lin
- Foshan Allen Conney Biological Technology Co. Ltd, Foshan, China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | | |
Collapse
|
15
|
Protocatechuic Aldehyde Attenuates UVA-Induced Photoaging in Human Dermal Fibroblast Cells by Suppressing MAPKs/AP-1 and NF-κB Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134619. [PMID: 32610570 PMCID: PMC7370206 DOI: 10.3390/ijms21134619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraviolet radiation (UV) is a major causative factor of DNA damage, inflammatory responses, reactive oxygen species (ROS) generation and a turnover of various cutaneous lesions resulting in skin photoaging. The purpose of this study is to investigate the protective effect of protocatechuic aldehyde (PA), which is a nature-derived compound, against UVA-induced photoaging by using human dermal fibroblast (HDF) cells. In this study, our results indicated that PA significantly reduced the levels of intracellular ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2) in UVA-irradiated HDF cells. It also inhibited the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Besides, PA significantly suppressed the expression of matrix metalloproteinases-1 (MMP-1) and pro-inflammatory cytokines and promoted collagen synthesis in the UVA-irradiated HDF cells. These events occurred through the regulation of activator protein 1 (AP-1), nuclear factor-κB (NF-κB), and p38 signaling pathways in UVA-irradiated HDF cells. Our findings suggest that PA enhances the protective effect of UVA-irradiated photoaging, which is associated with ROS scavenging, anti-wrinkle, and anti-inflammatory activities. Therefore, PA can be a potential candidate for the provision of a protective effect against UVA-stimulated photoaging in the pharmaceutical and cosmeceutical industries.
Collapse
|
16
|
Zhang X, He H, Hou T. Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B. Food Funct 2020; 11:3563-3573. [PMID: 32270801 DOI: 10.1039/c9fo02560j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Selenium-biofortified crops are a quality functional food resource because of their anti-tumor and anti-cancer properties. In the present study, the conjugates of selenium-biofortified soybean protein and polyphenols were prepared and evaluated by alkali-induced synthesis and in vitro antioxidant tests. Moreover, the antioxidant mechanisms of protecting mice skin damaged by UV-B were studied. The results showed that the antioxidant activity of the conjugate between 7S globulin from selenium-enriched soybean (Se-7S) and EGCG (Se-7S-EGCG) was significantly higher (P < 0.05) than that of Se-7S-GA. Structural characterizations implied that the polymerization of polyphenols with amino acid residues occurred. Se-7S-EGCG inhibited the apoptosis of epidermal cells induced by UV-B. The overexpression of phosphorylated proteins in the MAPK signaling pathway, the activation of related inflammatory factors, and the boost in the MMPs were reversed by Se-7S-EGCG. Overall, this research provides a theoretical and experimental basis for the application of protein and polyphenol conjugates in food and medicine fields.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | |
Collapse
|
17
|
Zerumbone Exhibits Antiphotoaging and Dermatoprotective Properties in Ultraviolet A-Irradiated Human Skin Fibroblast Cells via the Activation of Nrf2/ARE Defensive Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4098674. [PMID: 31814875 PMCID: PMC6878809 DOI: 10.1155/2019/4098674] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/22/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Ultraviolet A (UVA) irradiation (320-400 nm range) triggers deleterious consequences in skin cell microenvironment leading to skin damage, photoaging (premature skin aging), and cancer. The accumulation of intracellular reactive oxygen species (ROS) plays a key role in this effect. With rapid progress in cosmetic health and quality of life, use of safe and highly effective phytochemicals has become a need of the hour. Zerumbone (ZER), a natural sesquiterpene, from Zingiber zerumbet rhizomes is well-known for its beneficial effects. We investigated the antiphotoaging and dermatoprotective efficacies of ZER (2-8 μM) against UVA irradiation (3 J/cm2) and elucidated the underlying molecular mechanisms in human skin fibroblast (HSF) cells. ZER treatment prior to low dose of UVA exposure increased cell viability. UVA-induced ROS generation was remarkably suppressed by ZER with parallel inhibition of MMP-1 activation and collagen III degradation. This was due to the inhibition of AP-1 (c-Fos and c-Jun) translocation. Furthermore, ZER alleviated UVA-induced SA-β-galactosidase activity. Dose- or time-dependent increase of antioxidant genes, HO-1 and γ-GCLC by ZER, was associated with increased expression and nuclear accumulation of Nrf2 as well as decreased cytosolic Keap-1 expressions. Altered luciferase activity of ARE could explain the significance of Nrf2/ARE pathway underlying the dermatoprotective properties of ZER. Pharmacological inhibition of various signaling pathways suppressed nuclear Nrf2 activation in HSF cells confirming that Nrf2 translocation was mediated by ERK, JNK, PI3K/AKT, PKC, AMPK, casein kinase II, and ROS signaling pathways. Moreover, increased basal ROS levels and Nrf2 translocation seem crucial in ZER-mediated Nrf2/ARE signaling pathway. This was also evidenced from Nrf2 knocked-out studies in which ZER was not able to suppress the UVA-induced ROS generation in the absence of Nrf2. This study concluded that in the treatment of UVA-induced premature skin aging, ZER may consider as a desirable food supplement for skin protection and/or preparation of skin care products.
Collapse
|
18
|
Zhao P, Alam MB, Lee SH. Protection of UVB-Induced Photoaging by Fuzhuan-Brick Tea Aqueous Extract via MAPKs/ Nrf2-Mediated Down-Regulation of MMP-1. Nutrients 2018; 11:nu11010060. [PMID: 30597920 PMCID: PMC6357030 DOI: 10.3390/nu11010060] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B (UVB) irradiation is viewed as the principal inducer of skin photo-aging, associated with acceleration of collagen degradation and upregulation of matrix metalloproteinases (MMPs). The ethnic groups of southern/western China use Fuzhuan brick-tea (FBT) as a beverage and as a nutritional supplement. In this study, we scrutinized the antagonistic effects of aqueous extract of Fuzhuan-brick tea (FBTA) on skin photo-aging in UVB-exposed human keratinocyte (HaCaT) cells. FBTA exhibited strong antioxidant activity and quenched UVB-induced generation of cellular reactive oxygen species (ROS) without showing any toxicity. FBTA was capable of combating oxidative stress by augmenting messenger RNA (mRNA) and protein levels of both phase I and phase II detoxifying enzymes, especially heme oxygenase 1 (HO-1), by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway in HaCaT cells via the phosphorylation of p38 and extracellular signal-regulated kinase (ERK). FBTA also downregulated the expression of matrix metalloproteinase-1 (MMP-1) while upregulating type I procollagen by modulating Nrf2 signaling in UVB-irradiated HaCaT cells. Collectively, our results show that FBTA might be useful as a functional food while being a good candidate in the development of cosmetic products and medicines for the remedy of UVB-induced skin photo-aging.
Collapse
Affiliation(s)
- Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
19
|
Wang L, Lee W, Oh JY, Cui YR, Ryu B, Jeon YJ. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts. Mar Drugs 2018; 16:E239. [PMID: 30018254 PMCID: PMC6071090 DOI: 10.3390/md16070239] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022] Open
Abstract
Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of HFPS. Hence, in the present study, we investigated the protective effects of HFPS against ultraviolet (UV) B-induced skin damage in vitro in human dermal fibroblasts (HDF cells). The results indicate that HFPS significantly reduced intracellular reactive oxygen species (ROS) level and improved the viability of UVB-irradiated HDF cells in a dose-dependent manner. Furthermore, HFPS significantly inhibited intracellular collagenase and elastase activities, remarkably protected collagen synthesis, and reduced matrix metalloproteinases (MMPs) expression by regulating nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. These results suggest that HFPS possesses strong UV protective effect, and can be a potential ingredient in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea.
| | - Jae Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Yong Ri Cui
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - BoMi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
20
|
Seo SA, Park B, Hwang E, Park SY, Yi TH. Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice. Exp Gerontol 2018; 107:178-186. [DOI: 10.1016/j.exger.2018.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2017] [Revised: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
|
21
|
Kim EH, Kim W. An Insight into Ginsenoside Metabolite Compound K as a Potential Tool for Skin Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8075870. [PMID: 30046346 PMCID: PMC6036801 DOI: 10.1155/2018/8075870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
Ginsenosides are the major bioactive natural compounds derived from Panax ginseng. Several studies report the pharmaceutical benefits of several ginsenosides, including antidementia, antitumor, and anti-inflammatory activity. Biotransformations by gut microbiome contribute to the biological function of these ginsenosides. After ingestion ginsenosides are hydrolyzed to Rg2, Rg3, compound K, and others by human gut flora. Compound K is considered the representative active metabolite after oral administration of ginseng or ginsenosides. Various studies report the diverse biological functions of compound K, such as antitumor, antidiabetic, antiallergic, and anti-inflammatory activity. Recent clinical trial and in vitro studies demonstrate the antiaging activities of ginsenosides in human skin. Ginsenosides have been considered as an important natural dermatological agent. In this review, we will cover the modern tools and techniques to understand biotransformation and delivery of compound K. Also the biological function of compound K on skin disorder and its potential dermatological application will be discussed.
Collapse
Affiliation(s)
- En Hyung Kim
- Department of Dermatology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Wonnam Kim
- Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
| |
Collapse
|
22
|
Shanuja SK, Iswarya S, Rajasekaran S, Dinesh MG, Gnanamani A. Pre-treatment of extracellular water soluble pigmented secondary metabolites of marine imperfect fungus protects HDF cells from UVB induced oxidative stress. Photochem Photobiol Sci 2018; 17:1229-1238. [DOI: 10.1039/c8pp00221e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
The melanin precursor of fungal origin was found to be an excellent UVB inhibiting agent as experimented in HDF cells and in small animals.
Collapse
Affiliation(s)
| | - S. Iswarya
- Microbiology Division
- CSIR-CLRI
- Chennai 600020
- India
| | | | | | - A. Gnanamani
- Microbiology Division
- CSIR-CLRI
- Chennai 600020
- India
| |
Collapse
|
23
|
Kim MH, Lee H, Yang WM. Angelica gigas ameliorates the destruction of gingival tissues via inhibition of MMP-9 activity. RSC Adv 2018; 8:13089-13093. [PMID: 35542540 PMCID: PMC9079679 DOI: 10.1039/c7ra12531c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2017] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
Angelica gigas (AG) has been used for periodontal diseases in traditional Korean medicine.
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science
- College of Korean Medicine
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Haesu Lee
- Department of Convergence Korean Medical Science
- College of Korean Medicine
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science
- College of Korean Medicine
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| |
Collapse
|
24
|
Choi JH, Song YS, Lee HJ, Kim GC, Hong JW. The topical application of low-temperature argon plasma enhances the anti-inflammatory effect of Jaun-ointment on DNCB-induced NC/Nga mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:340. [PMID: 28655324 PMCID: PMC5488426 DOI: 10.1186/s12906-017-1850-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Jaun-ointment (JO), also known as Shiunko in Japan, is one of the most popular medicinal formulae used in Korean traditional medicine for the external treatment of skin wound and inflammatory skin conditions. Since JO is composed of crude mixture of two herbal extracts (radix of Lithospermum erythrorhizon Siebold & Zucc and Angelica gigas Nakai), those been proved its anti-inflammatory activities in-vitro and in-vivo, JO has been expected as a good alternative treatment option for atopic dermatitis (AD). However, due to the lack of strategies for the penetrating methods of JO's various anti-inflammatory elements into the skin, an effective and safe transdermal drug delivery system needs to be determined. Here, low-temperature argon plasma (LTAP) was adopted as an ancillary partner of topically applied JO in a mice model of AD and the effectiveness was examined. METHODS Dorsal skins of NC/Nga mice were challenged with DNCB (2,4-dinitrochlorobenzene) to induce AD. AD-like skin lesions were treated with JO alone, or in combination with LTAP. Inflammatory activity in the skin tissues was evaluated by histological analysis and several molecular biological tests. RESULTS LTAP enhanced the effect of JO on AD-like skin lesion. Topical application of JO partially inhibited the development of DNCB-induced AD, shown by the moderate reduction of eosinophil homing and pro-inflammatory cytokine level. Combined treatment of JO and LTAP dramatically inhibited AD phenotypes. Interestingly, treatment with JO alone did not affect the activity of nuclear factor (NF)κB/RelA in the skin, but combined treatment of LTAP-JO blocked DCNB-mediated NFκB/RelA activation. CONCLUSIONS LTAP markedly enhanced the anti-inflammatory activity of JO on AD-like skin lesions. The effect of LTAP may be attributed to enhancement of drug penetration and regulation of NFκB activity. Therefore, the combination treatment of JO and LTAP could be a potential strategy for the treatment of AD.
Collapse
Affiliation(s)
- Jeong-Hae Choi
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, 626-870 South Korea
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, 626-870 South Korea
| | - Yeon-Suk Song
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, 626-870 South Korea
| | - Hae-June Lee
- Department of Electrical Engineering, Pusan National University, Busan, South Korea
| | - Gyoo-Cheon Kim
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, 626-870 South Korea
| | - Jin-Woo Hong
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, 626-870 South Korea
- (Bio)medical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
25
|
Park MA, Sim MJ, Kim YC. Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts. Toxicol Res 2017; 33:125-134. [PMID: 28503261 PMCID: PMC5426508 DOI: 10.5487/tr.2017.33.2.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays.
Collapse
Affiliation(s)
- Min Ah Park
- In Vitro Evaluation Team, Ellead Sin & Bio Research, Osong,
Korea
| | - Mi Ja Sim
- Department of Health & Beauty Science, Gyeongbuk Provincial College, Yecheon,
Korea
| | - Young Chul Kim
- Department of Public Health, Graduate School, Keimyung University, Daegu,
Korea
| |
Collapse
|
26
|
Gao C, Chen H, Niu C, Hu J, Cao B. Protective effect of Schizandrin B against damage of UVB irradiated skin cells depend on inhibition of inflammatory pathways. Bioengineered 2016; 8:36-44. [PMID: 27689692 DOI: 10.1080/21655979.2016.1227572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.
Collapse
Affiliation(s)
- Chenguang Gao
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Hong Chen
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard , Tianjin , China
| | - Cong Niu
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Jie Hu
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Bo Cao
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| |
Collapse
|
27
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 639] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
28
|
Im AR, Kim HS, Hyun JW, Chae S. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products. Exp Ther Med 2016; 12:759-764. [PMID: 27446272 DOI: 10.3892/etm.2016.3406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that ultraviolet (UV) irradiation induces skin damage. In the present study, a UVB-induced hairless mouse model of skin photoaging was developed to determine whether tyndalized Lactobacillus acidophilus was able to significantly enhance the repair of photodamaged skin. To evaluate the effects of tyndalized L. acidophilus on UVB-induced skin-wrinkle formation in vivo, HR-1 hairless male mice were exposed to UVB radiation and orally administered tyndalized L. acidophilus. Compared with the control group, the UVB irradiation mice displayed a significant increase in transepidermal water loss and a reduction in skin hydration. In mice with UVB-induced photodamage, the effacement of the fine wrinkles by tyndalized L. acidophilus was correlated with dermal collagen synthesis, accompanied by histological changes. Furthermore, western blotting was performed to investigate the protein expression levels of matrix metalloproteinases (MMPs) and mitogen-activated protein kinase. Notably, orally administered tyndalized L. acidophilus reduced the expression levels of MMP-1 and MMP-9. Based upon the aforementioned results, it was determined that tyndalized L. acidophilus effectively inhibited the wrinkle formation induced by UVB irradiation, and that this may be attributed to the downregulation of MMPs. Therefore, tyndalized L. acidophilus may be considered a potential agent for preventing skin photoaging and wrinkle formation.
Collapse
Affiliation(s)
- A-Rang Im
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hui Seong Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Cheongju, Chungbuk 363-951, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju-si, Jeju-do 690-756, Republic of Korea
| | - Sungwook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| |
Collapse
|
29
|
Wang X, Zheng T, Kang JH, Li H, Cho H, Jeon R, Ryu JH, Yim M. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss. Eur J Pharmacol 2016; 774:34-42. [PMID: 26825541 DOI: 10.1016/j.ejphar.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Ting Zheng
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Hua Li
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Hyewon Cho
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.
| | - Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.
| |
Collapse
|
30
|
Min W, Liu X, Qian Q, Lin B, Wu D, Wang M, Ahmad I, Yusuf N, Luo D. Effects of baicalin against UVA-induced photoaging in skin fibroblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:709-27. [PMID: 24871661 DOI: 10.1142/s0192415x14500463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Ultraviolet A (UVA) radiation contributes to skin photoaging. Baicalin, a plant-derived flavonoid, effectively absorbs UV rays and has been shown to have anti-oxidant and anti-inflammatory properties that may delay the photoaging process. In the current study, cultured human skin fibroblasts were incubated with 50 μg/ml baicalin 24 hours prior to 10 J/cm(2) UVA irradiation. In order to examine the efficacy of baicalin treatment in delaying UVA-induced photoaging, we investigated aging-related markers, cell cycle changes, anti-oxidant activity, telomere length, and DNA damage markers. UVA radiation caused an increased proportion of β-Gal positive cells and reduced telomere length in human skin fibroblasts. In addition, UVA radiation inhibited TGF-β1 secretion, induced G1 phase arrest, reduced SOD and GSH-Px levels, increased MDA levels, enhanced the expression of MMP-1, TIMP-1, p66, p53, and p16 mRNA, reduced c-myc mRNA expression, elevated p53 and p16 protein expression, and reduced c-myc protein expression. Baicalin treatment effectively protected human fibroblasts from these UVA radiation-induced aging responses, suggesting that the underlying mechanism involves the inhibition of oxidative damage and regulation of the expression of senescence-related genes, including those encoding for p53, p66(Shc) and p16.
Collapse
Affiliation(s)
- Wei Min
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China , Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rapid identification of coumarins from Micromelum falcatum by UPLC-HRMS/MS and targeted isolation of three new derivatives. Molecules 2014; 19:15042-57. [PMID: 25244285 PMCID: PMC6271814 DOI: 10.3390/molecules190915042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022] Open
Abstract
Micromelum falcatum, a medicinal plant of the Rutaceae family, has been used in the Traditional Chinese Medicine (TCM) mainly against colds and rheumatoid arthritis. Despite its traditional use the association of its constituents with possible anti-inflammatory activity has not been explored. During this study, a rapid UPLC-ESI(+)-HRMS method was developed for the profiling of M. falcatum leave extracts and the targeted isolation of coumarin constituents. Based on chromatographic, spectroscopic and spectrometric features several 7-oxygenated coumarin derivatives were detected. After targeted isolation, eight coumarins, among them three new natural products, namely microfalcrin, microcoumaririn and micromelosidester, were purified using semi-preparative HPLC and unambiguously identified by 1 and 2D NMR. Furthermore, important spectrometric characteristics were revealed based on the HRMS and HRMS/MS spectra of the isolated 7-oxygenated coumarins facilitating their identification in complex mixtures. Finally, the anti-inflammatory properties of the extracts and representative compounds were evaluated by measuring the inhibition of the pro-inflammatory mediator NF-κB induction and nitric oxide (NO) production.
Collapse
|
32
|
Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro. Life Sci 2014; 108:94-103. [DOI: 10.1016/j.lfs.2014.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/27/2022]
|
33
|
Talhi O, Schnekenburger M, Panning J, Pinto DG, Fernandes JA, Almeida Paz FA, Jacob C, Diederich M, Silva AM. Bis(4-hydroxy-2H-chromen-2-one): Synthesis and effects on leukemic cell lines proliferation and NF-κB regulation. Bioorg Med Chem 2014; 22:3008-15. [DOI: 10.1016/j.bmc.2014.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/24/2023]
|
34
|
KIM JEONGMI, NOH EUNMI, KIM MISEONG, HWANG JINKI, HWANG HONGYEON, RYU DOGON, KIM HYEJUNG, YU HONGNU, YOU YONGOUK, KIM JONGSUK, YOUN HYUNJO, KWON KANGBEOM, JUNG SUNGHOO, LEE YOUNGRAE. Decursin prevents TPA-induced invasion through suppression of PKCα/p38/NF-κB-dependent MMP-9 expression in MCF-7 human breast carcinoma cells. Int J Oncol 2014; 44:1607-13. [DOI: 10.3892/ijo.2014.2327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
|