1
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
2
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
3
|
Huang J, Liu H, Wang M, Bai X, Cao J, Zhang Z, Wang Q. Mannosylated gelatin nanoparticles enhanced inactivated PRRSV targeting dendritic cells and increased T cell immunity. Vet Immunol Immunopathol 2021; 235:110237. [PMID: 33838542 DOI: 10.1016/j.vetimm.2021.110237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
The objective of the present work was to evaluate the efficacy of a novel antigen carrier using mannosylated gelatin nanoparticles with entrapped inactivated porcine reproductive and respiratory syndrome virus (PRRSV) in inducing T cell mediated immunity in vitro. Gelatin nanoparticles (GNP) were modified with mannose to form mannosylated gelatin nanoparticles (MnGNP), which can efficiently and specifically target monocyte derived dendritic cells (MoDCs). The inactivated PRRSV was encapsulated in the MnGNP and GNP, referred to as MnGNP-PRRSV and GNP-PRRSV, respectively. All these prepared nanometer particles were characterized for size, surface charge, drug encapsulation efficiency, and drug release. The efficacy of MnGNP in targeting MoDCs was investigated, as well as the subsequent MoDCs maturation and T cell mediated cytotoxicity. The developed MnGNP-PRRSV particle was characterized with a nanometric size of 302.67 ± 3.2 nm, surface charge of 23.81 ± 1.26 mV, and PRRSV encapsulation efficiency of 63.2 ± 1.85 %. The maximum uptake of MnGNP in MoDCs in vitro was 15.5 times higher than GNP with a shorter reaction time that peaked 4 h earlier. The uptake of MnGNP-PRRSV induced maturation of MoDCs and significantly enhanced expression of SWC-3a, CD80, CD1, SLA I, SLA II on MoDCs, compared to PRRSV (p < 0.001). The cytokine secretion of IL-1β, IL-6, IL-10, and IL-12 was also increased in MoDCs when treated with MnGNP-PRRSV, compared to PRRSV (p < 0.05). The matured MoDCs triggered T lymphocytes in autologous peripheral blood mononuclear cells (PBMCs) activation, proliferation, and differentiation into effector cytotoxic T lymphocyte, suggesting increased amount of activated T cells after MnGNP-PRRSV treatment. Additionally, the function of T cells to kill PRRSV infected cells was 83.98 ± 2.62 % when triggered by MnGNP-PRRSV, compared to 60 ± 4.7 % in PRRSV group (p < 0.001). These results indicate that MnGNP with entrapped inactivated PRRSV can effectively and specifically target dendritic cells for maturation and activation, and subsequently improve T cell activation, proliferation and function to kill PRRSV infected cells.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China
| | - Huan Liu
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China
| | - Meichen Wang
- Department of Veterinary Integrative Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Xianchang Bai
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China
| | - Junxiong Cao
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China
| | - Zhengtao Zhang
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China
| | - Qinfu Wang
- College of Life Science and Technology, Dalian University, Dalian, 116622, PR China; Institute of Immunology, Dalian University, Dalian, 116622, PR China.
| |
Collapse
|
4
|
Jiang BC, Liu X, Liu XH, Li ZSN, Zhu GZ. Notch Signaling Regulates Circulating T Helper 22 Cells in Patients with Chronic Hepatitis C. Viral Immunol 2017; 30:522-532. [PMID: 28410452 DOI: 10.1089/vim.2017.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling enhanced the response of interleukin (IL)-22-producing CD4+ T cells that were defined as T helper 22 (Th22) cells, and Notch-aryl hydrocarbon receptor (AhR)-IL-22 axis fine-tuned inflammatory response. Previous studies have demonstrated that both Notch signaling and Th22 cells took part in the pathogenesis of chronic hepatitis C virus (HCV) infection. Thus, in this study, we aimed at examining the regulatory role of Notch signaling in Th22 cells in HCV infection. A total of 59 patients with chronic hepatitis C and 22 normal controls (NCs) were enrolled in this study. The percentage of Th22 cells and mRNA expression of related transcriptional factors and cytokines were analyzed in response to γ-secretase inhibitor. Th22 cell frequency was significantly elevated in chronic hepatitis C in comparison with that in NCs. Inhibition of Notch signaling downregulated HCV-specific Th22 cells and IL-22 production, which was accompanied by the reduction of AhR and modulatory cytokines (IL-6 and tumor necrosis factor-α). Moreover, the suppression of Notch signaling also decreased the IL-22-mediated antimicrobial response in both normal and HCV-infected HepG2 cells/Huh7.5 cells. This process was also accompanied by the depression of signal transducers and activators of transcription 3 signaling. In conclusion, the current results suggested that Notch signaling acted as a critical pathway in determining the response to IL-22 in chronic hepatitis C. Thus, Notch-Th22 axis might be considered a new therapeutic target for HCV-infected patients.
Collapse
Affiliation(s)
- Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xin Liu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xiao-Hong Liu
- 2 The Geriatric Department, The First Bethune Hospital of Jilin University , Changchun, China
| | | | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
5
|
Xue J, Zhu H, Chen Z. Therapeutic vaccines against hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2014; 22:120-9. [PMID: 24462908 DOI: 10.1016/j.meegid.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen which has chronically infected about 130-210 million people worldwide. Current standard-of-care (SoC) therapy is an inadequate and expensive treatment with more side effects. Two direct-acting antiviral agents (DAAs) (telaprevir and boceprevir) in combination with SoC therapy have been used in patients infected with HCV genotype 1. Although these drugs result in a shortening of therapy, they also have additional side effects and are expensive. In their stead, several second-generation DAAs are being investigated. What important is that all-oral, interferon (IFN)- and ribavirin-free regimens for the treatment of HCV-infected patients are now being investigated, and will be applied in the next year. Preventive measures against HCV, including vaccine development, are also now in progress. However, no therapeutic vaccine against HCV has been produced to date. An effective vaccine should induce robust and broadly cross-reactive CD4(+), CD8(+)T-cell and neutralising antibody (NAb) responses. Current data indicate that vaccines can usually not completely prevent HCV infection but rather prevent the progression of HCV infection to chronic and persistent infection, which may be a realistic goal. This review discusses the important roles of NAbs and CD8(+)T-cells in the development of therapeutic vaccines, and summarizes some important epitopes of HCV recognized by CD8(+)T-cells and some prospective therapeutic vaccine approaches.
Collapse
Affiliation(s)
- Jihua Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|