1
|
Chen CC, Chen CY, Yeh CT, Liu YT, Leu YL, Chuang WY, Shih YH, Chou LF, Shieh TM, Wang TH. Corylin Attenuates CCl 4-Induced Liver Fibrosis in Mice by Regulating the GAS6/AXL Signaling Pathway in Hepatic Stellate Cells. Int J Mol Sci 2023; 24:16936. [PMID: 38069259 PMCID: PMC10707553 DOI: 10.3390/ijms242316936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Chi-Yuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Yi-Tsen Liu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
| | - Yann-Lii Leu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| |
Collapse
|
2
|
Cheng Y, Yang X, Wang Y, Ding Q, Huang Y, Zhang C. The role of the Gas6/TAM signal pathway in the LPS-induced pulmonary epithelial cells injury. Mol Immunol 2023; 163:181-187. [PMID: 37820442 DOI: 10.1016/j.molimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. METHODS We cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6-2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. RESULTS Our study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6-2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. CONCLUSION Our research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Quan Ding
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Yu Huang
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China.
| |
Collapse
|
3
|
Dai JC, Yang JY, Chang RQ, Liang Y, Hu XY, Li H, You S, He F, Hu LN. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6544600. [PMID: 35258594 DOI: 10.1093/molehr/gaac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/20/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jing-Cong Dai
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Yan Yang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui-Qi Chang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
| | - Yan Liang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Yu Hu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang You
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan He
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China
| | - Li-Na Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Huang SH, Fang ST, Chen YC. Molecular Mechanism of Vitamin K2 Protection against Amyloid-β-Induced Cytotoxicity. Biomolecules 2021; 11:423. [PMID: 33805625 PMCID: PMC8000266 DOI: 10.3390/biom11030423] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The pathological role of vitamin K2 in Alzheimer's disease (AD) involves a definite link between impaired cognitive functions and decreased serum vitamin K levels. Vitamin K2 supplementation may have a protective effect on AD. However, the mechanism underlying vitamin K2 protection has not been elucidated. With the amyloid-β (Aβ) cascade hypothesis, we constructed a clone containing the C-terminal fragment of amyloid precursor protein (β-CTF/APP), transfected in astroglioma C6 cells and used this cell model (β-CTF/C6) to study the protective effect of vitamin K2 against Aβ cytotoxicity. Both cellular and biochemical assays, including cell viability and reactive oxygen species (ROS), assays assay, and Western blot and caspase activity analyses, were used to characterize and unveil the protective role and mechanism of vitamin K2 protecting against Aβ-induced cytotoxicity. Vitamin K2 treatment dose-dependently decreased the death of neural cells. The protective effect of vitamin K2 could be abolished by adding warfarin, a vitamin K2 antagonist. The addition of vitamin K2 reduced the ROS formation and inhibited the caspase-3 mediated apoptosis induced by Aβ peptides, indicating that the mechanism underlying the vitamin K2 protection is likely against Aβ-mediated apoptosis. Inhibitor assay and Western blot analyses revealed that the possible mechanism of vitamin K2 protection against Aβ-mediated apoptosis might be via regulating phosphatidylinositol 3-kinase (PI3K) associated-signaling pathway and inhibiting caspase-3-mediated apoptosis. Our study demonstrates that vitamin K2 can protect neural cells against Aβ toxicity.
Collapse
Affiliation(s)
| | | | - Yi-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (S.-H.H.); (S.-T.F.)
| |
Collapse
|
5
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
6
|
Ireland L, Luckett T, Schmid MC, Mielgo A. Blockade of Stromal Gas6 Alters Cancer Cell Plasticity, Activates NK Cells, and Inhibits Pancreatic Cancer Metastasis. Front Immunol 2020; 11:297. [PMID: 32174917 PMCID: PMC7056881 DOI: 10.3389/fimmu.2020.00297] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers due to its aggressive and metastatic nature. PDA is characterized by a rich tumor stroma with abundant macrophages, fibroblasts, and collagen deposition that can represent up to 90% of the tumor mass. Activation of the tyrosine kinase receptor AXL and expression of its ligand growth arrest-specific protein 6 (Gas6) correlate with a poor prognosis and increased metastasis in pancreatic cancer patients. Gas6 is a multifunctional protein that can be secreted by several cell types and regulates multiple processes, including cancer cell plasticity, angiogenesis, and immune cell functions. However, the role of Gas6 in pancreatic cancer metastasis has not been fully investigated. In these studies we find that, in pancreatic tumors, Gas6 is mainly produced by tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) and that pharmacological blockade of Gas6 signaling partially reverses epithelial-to-mesenchymal transition (EMT) of tumor cells and supports NK cell activation, thereby inhibiting pancreatic cancer metastasis. Our data suggest that Gas6 simultaneously acts on both the tumor cells and the NK cells to support pancreatic cancer metastasis. This study supports the rationale for targeting Gas6 in pancreatic cancer and use of NK cells as a potential biomarker for response to anti-Gas6 therapy.
Collapse
Affiliation(s)
| | | | | | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys 2018; 660:108-120. [PMID: 30365934 DOI: 10.1016/j.abb.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
Poor cell viability after transplantation has restricted the therapeutic capacity of mesenchymal stem cells (MSCs) for cardiac dysfunction after myocardial infarction (MI). Growth arrest-specific gene 6 (Gas6) encodes a secreted γ-carboxyglutamic acid (Gla)-containing protein that functions in cell growth, adhesion, chemotaxis, mitogenesis and cell survival. In this study, we genetically modified MSCs with Gas6 and evaluated cell survival, cardiac function, and infarct size in a rat model of MI via intramyocardial delivery. Functional studies demonstrated that Gas6 transfer significantly reduced MSC apoptosis, increased survival of MSCs in vitro and in vivo, and that Gas6-engineered MSCs (MSCGas6)-treated animals had smaller infarct size and showed remarkably functional recovery as compared with control MSCs (MSCNull)-treated animals. Mechanistically, Gas6 could enhance phosphatidylinositol 3-kinase (PI3K)/Akt signaling and improve hypoxia-inducible factor-1 alpha (HIF-1α)-driven secretion of four major growth factors (VEGF, bFGF, SDF and IGF-1) in MSCs under hypoxia in an Axl-dependent autocrine manner. The paracrine action of MSCGas6 was further validated by coculture neonatal rat cardiomyocytes with conditioned medium from hypoxia-treated MSCGas6, as well as by pretreatment cardiomyocytes with the specific receptor inhibitors of VEGF, bFGF, SDF and IGF-1. Collectively, our data suggest that Gas6 may advance the efficacy of MSC therapy for post-infarcted heart failure via enhanced Gas6/Axl autocrine prosurvival signaling and paracrine cytoprotective action.
Collapse
|
8
|
Li X, Chen M, Lei X, Huang M, Ye W, Zhang R, Zhang D. Luteolin inhibits angiogenesis by blocking Gas6/Axl signaling pathway. Int J Oncol 2017. [DOI: 10.3892/ijo.2017.4041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Reed KM, Mendoza KM, Abrahante JE, Barnes NE, Velleman SG, Strasburg GM. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics 2017; 18:352. [PMID: 28477619 PMCID: PMC5420122 DOI: 10.1186/s12864-017-3740-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. RESULTS Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. CONCLUSIONS This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN USA
| | - Natalie E. Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH USA
- Ohio Agricultural Research and Development Center, Wooster, OH USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI USA
| |
Collapse
|
10
|
Qiu C, Zheng H, Tao H, Yu W, Jiang X, Li A, Jin H, Lv A, Li H. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol Cell Biochem 2017; 433:149-159. [PMID: 28386842 DOI: 10.1007/s11010-017-3023-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/01/2017] [Indexed: 11/29/2022]
Abstract
Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC calcification and survival cell signaling mediated by growth arrest-specific gene 6 (Gas6) and its tyrosine kinase receptor Axl. Primary-cultured VSMCs were dose-dependently treated with VK2 in the presence of calcification medium for 8 days, or pre-treated for 1 h with/without the Axl inhibitor R428 (2 μmol/L) or the caspase inhibitor Z-VAD-fmk (20 μmol/L) followed by treatment with VK2 (10 μmol/L) or rmGas6 (200 nmol/L) in calcification medium for 8 days. Calcium deposition was determined by the o-cresolphthalein complexone assay and Alizarin Red S staining. Apoptosis was determined by TUNEL and flow cytometry using Annexin V-FITC and propidium iodide staining. Western blotting detected the expressions of Axl, Gas6, p-Akt, Akt, and Bcl2. VK2 significantly inhibited CaCl2- and β-sodium glycerophosphate (β-GP)-induced VSMC calcification and apoptosis, which was dependent on restored Gas6 expression and activated downstream signaling by Axl, p-Akt, and Bcl2. Z-VAD-fmk significantly inhibited CaCl2- and β-GP-induced VSMC calcification and apoptosis. Augmented recombinant mouse Gas6 protein (rmGas6) expression significantly reduced VSMC calcification and apoptosis. Furthermore, the Gas6/Axl interaction was inhibited by R428, which abolished the preventive effect of VK2 on CaCl2- and β-GP-induced apoptosis and calcification. These results suggest that Gas6 is critical in VK2-mediated functions that attenuate CaCl2- and β-GP-induced VSMC calcification by blocking apoptosis.
Collapse
Affiliation(s)
- Cuiting Qiu
- Department of Cardiology, Jiao Zuo People's Hospital, Henan, 454000, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haijun Zheng
- Department of Cardiology, Jiao Zuo People's Hospital, Henan, 454000, China
| | - Huiren Tao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenjun Yu
- Department of Cardiology, 306th Hospital of CPLA, Beijing, 100101, China
| | - Xiaoyu Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Aiqin Li
- Department of Cardiology, Jiao Zuo People's Hospital, Henan, 454000, China
| | - Hui Jin
- Department of Cardiology, Jiao Zuo People's Hospital, Henan, 454000, China
| | - Anlin Lv
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Tong S, Xia T, Fan K, Jiang K, Zhai W, Li JS, Wang SH, Wang JJ. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein. Oncotarget 2016; 7:64260-64273. [PMID: 27588399 PMCID: PMC5325440 DOI: 10.18632/oncotarget.11728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022] Open
Abstract
Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein.
Collapse
Affiliation(s)
- Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xia
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Fan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Jun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Liu YW, Zuo PY, Zha XN, Chen XL, Zhang R, He XX, Liu CY. Octacosanol Enhances the Proliferation and Migration of Human Umbilical Vein Endothelial Cells via Activation of the PI3K/Akt and MAPK/Erk Pathways. Lipids 2015; 50:241-51. [PMID: 25638063 DOI: 10.1007/s11745-015-3991-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Yu-Wei Liu
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Pei-Yuan Zuo
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xiang-Nan Zha
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xing-Lin Chen
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Rong Zhang
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xiao-Xiao He
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Cheng-Yun Liu
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| |
Collapse
|