1
|
Guo QR, Cao YJ. Applications of genetic code expansion technology in eukaryotes. Protein Cell 2024; 15:331-363. [PMID: 37847216 PMCID: PMC11074999 DOI: 10.1093/procel/pwad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.
Collapse
Affiliation(s)
- Qiao-ru Guo
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Crespo-Hernández CE. Special issue on nucleic acid photophysics. Photochem Photobiol 2024; 100:257-261. [PMID: 38501585 DOI: 10.1111/php.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024]
|
3
|
Palmieri M, Pozzer D, Landsberger N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front Neurosci 2023; 17:1172805. [PMID: 37304036 PMCID: PMC10248472 DOI: 10.3389/fnins.2023.1172805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.
Collapse
Affiliation(s)
- Michela Palmieri
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Diego Pozzer
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Nicoletta Landsberger
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Adachi H, Pan Y, He X, Chen JL, Klein B, Platenburg G, Morais P, Boutz P, Yu YT. Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes. Mol Cell 2023; 83:637-651.e9. [PMID: 36764303 PMCID: PMC9975048 DOI: 10.1016/j.molcel.2023.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi Pan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xueyang He
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bart Klein
- ProQR Therapeutics, Leiden, the Netherlands
| | | | | | - Paul Boutz
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA; Center for Biomedical Informatics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Marchetti C, Ataseven B, Cassani C, Sassu CM, Congedo L, D'Indinosante M, Cappuccio S, Rhiem K, Hahnen E, Lucci Cordisco E, Arbustini E, Harter P, Minucci A, Scambia G, Fagotti A. Ovarian cancer onset across different BRCA mutation types: a view to a more tailored approach for BRCA mutated patients. Int J Gynecol Cancer 2023; 33:257-262. [PMID: 36581488 DOI: 10.1136/ijgc-2022-003893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To evaluate the role of different specific types of germline breast cancer susceptibility BRCA mutations on the age of onset of high grade serous ovarian cancer. METHODS This was a multicenter, international, retrospective cohort of 474 patients diagnosed with recurrent or newly diagnosed high grade serous ovarian cancer, with known germline mutations in BRCA1/2 genes, treated between January 2011 and December 2020 in three academic centers in Europe. Patients were classified into four groups related to the type of BRCA1/2 genes mutation: frameshift, missense, nonsense, and splicing. Data from patients with splicing mutations were removed from the analysis because of the small numbers. The other three groups were compared. RESULTS Excluding the 29 patients with a splicing mutation, 474 patients were enrolled: 309 (65.2%) with frameshift mutations, 102 (21.5%) with nonsense mutations, and 63 (13.3%) with missense mutations. The BRCA1 gene was affected in 324 (68.4%) cases, while BRCA2 was involved in 150 (31.6%) women (p=0.06). We found a difference of more than 5 years in the age of onset of high grade serous ovarian cancer between BRCA1 and BRCA2 patients (mean 53.3 years vs 58.4 years; p=0.001), with a mean age of 55.1 years. Patients with nonsense germline mutations had the youngest age of onset, while women with frameshift mutations had the oldest age of onset of high grade serous ovarian cancer (mean 52.2 years vs mean 55.9 years), both in the BRCA1 and BRCA2 subgroups. There was no statistically significant difference in age of onset between early and advanced groups (mean 55.8 years vs 55.0 years; p=0.55). CONCLUSION Different types of germline BRCA mutations could determine different ages for onset of high grade serous ovarian cancer. If confirmed in larger series, this finding might have a clinical impact, potentially leading to a more tailored approach for risk reducing surgery for the prevention of high grade serous ovarian cancer.
Collapse
Affiliation(s)
- Claudia Marchetti
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte, Evangelische Huyssens-Stiftung Essen-Huttrop, Essen, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Germany
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Unit of Obstetrics and Gynecology, IRCCS, Fondazione Policlinico San Matteo, Pavia, Italy
| | - Carolina Maria Sassu
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Luigi Congedo
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco D'Indinosante
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Serena Cappuccio
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Kerstin Rhiem
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Koln, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Koln, Germany
| | - Emanuela Lucci Cordisco
- UOC Genetica Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Universita Cattolica del Sacro Cuore, Roma, Italy
| | - Eloisa Arbustini
- Center for Inherited Cardiovascular Disease, IRCCS, Fondazione Policlinico San Matteo, Pavia, Italy
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte, Evangelische Huyssens-Stiftung Essen-Huttrop, Essen, Germany
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Fagotti
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
6
|
Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, Liu Y, Wang X, Xie L, Ying W, Wang H, Zuo E, Shi L, Wang N, Chen W, Xu C, Yang H. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J Clin Invest 2023; 133:162809. [PMID: 36512423 PMCID: PMC9888377 DOI: 10.1172/jci162809] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Approximately 10% of monogenic diseases are caused by nonsense point mutations that generate premature termination codons (PTCs), resulting in a truncated protein and nonsense-mediated decay of the mutant mRNAs. Here, we demonstrate a mini-dCas13X-mediated RNA adenine base editing (mxABE) strategy to treat nonsense mutation-related monogenic diseases via A-to-G editing in a genetically humanized mouse model of Duchenne muscular dystrophy (DMD). Initially, we identified a nonsense point mutation (c.4174C>T, p.Gln1392*) in the DMD gene of a patient and validated its pathogenicity in humanized mice. In this model, mxABE packaged in a single adeno-associated virus (AAV) reached A-to-G editing rates up to 84% in vivo, at least 20-fold greater than rates reported in previous studies using other RNA editing modalities. Furthermore, mxABE restored robust expression of dystrophin protein to over 50% of WT levels by enabling PTC read-through in multiple muscle tissues. Importantly, systemic delivery of mxABE by AAV also rescued dystrophin expression to averages of 37%, 6%, and 54% of WT levels in the diaphragm, tibialis anterior, and heart muscle, respectively, as well as rescued muscle function. Our data strongly suggest that mxABE-based strategies may be a viable new treatment modality for DMD and other monogenic diseases.
Collapse
Affiliation(s)
- Guoling Li
- HuiGene Therapeutics, Shanghai, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Jin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | | | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Yang
- HuiGene Therapeutics, Shanghai, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xing Wang
- HuiGene Therapeutics, Shanghai, China
| | - Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Linyu Shi
- HuiGene Therapeutics, Shanghai, China
| | - Ning Wang
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Hui Yang
- HuiGene Therapeutics, Shanghai, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
7
|
Zheng Z, Xia Q. Noncanonical Amino Acid Incorporation in Mice. Methods Mol Biol 2023; 2676:265-284. [PMID: 37277639 DOI: 10.1007/978-1-0716-3251-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetic code expansion enables in cellulo biosynthesis of curative proteins with enhanced specificity, improved stability, and even novel functions, due to the incorporation of artificial, designed, noncanonical amino acids (ncAAs). In addition, this orthogonal system also holds great potential for in vivo suppressing nonsense mutations during protein translation, providing an alternative strategy for alleviating inherited diseases caused by premature termination codons (PTCs). Here we describe the approach to explore the therapeutic efficacy and long-term safety of this strategy in transgenic mdx mice with stably expanded genetic codes. Theoretically, this method is applicable to about 11% of monogenic diseases involving nonsense mutations.
Collapse
Affiliation(s)
- Zhetao Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Corrao F, Zizzo MG, Tutone M, Melfi R, Fiduccia I, Carollo PS, Leonardo AD, Caldara G, Perriera R, Pace A, Belmonte B, Sammataro S, Pibiri I, Lentini L. Nonsense codons suppression. An acute toxicity study of three optimized TRIDs in murine model, safety and tolerability evaluation. Biomed Pharmacother 2022; 156:113886. [DOI: 10.1016/j.biopha.2022.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022] Open
|
9
|
Krul SE, Costa GJ, Hoehn SJ, Valverde D, Oliveira LMF, Borin AC, Crespo-Hernández CE. Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji 5-Aza-7-Deazaguanine Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet. Photochem Photobiol 2022; 99:693-705. [PMID: 35938218 DOI: 10.1111/php.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art Extended Multi-State Complete Active Space Second-Order Perturbation Theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10 to 30-fold slower relaxation (depending on solvent) compared to guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared to guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemical active to adjacent nucleobases than guanine or other nucleobases within DNA.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Gustavo J Costa
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Danillo Valverde
- Unité de Chimie Physique Theorique et Structurale, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| |
Collapse
|
10
|
Cheng X, Zhou T, Yang Z, Zhou J, Gao M, Huang Y, Su Z. Premature termination codon: a tunable protein translation approach. Biotechniques 2022; 73:80-89. [PMID: 35796100 DOI: 10.2144/btn-2022-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cellular protein-protein interactions are largely dependent on the activities of signaling proteins. Here, we present a technique to tune gene expression at translation level based on G418-inducible readthrough premature termination codon (PTC-on). To demonstrate how this PTC-on can control the expression level of a cellular signaling protein to regulate signal transduction, we settled a p53 PTC-on system in p53-null H1299 cells. After treating with G418, the cells expressed full-length p53 protein in a dose-dependent manner. We further demonstrated to use this PTC-on approach to dissect p53-dependent and p53-independent apoptosis in response to the DNA double strand breaks in H1299 cells. In principle, the PTC-on can be used as a general approach for exploring the functions of any other signaling proteins.
Collapse
Affiliation(s)
- Xiyao Cheng
- School of Light Industry and Food Engineering, Guanxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning, Guangxi, 530004, China.,Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Ting Zhou
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Zixin Yang
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Jingjing Zhou
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Meng Gao
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Yongqi Huang
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Zhengding Su
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| |
Collapse
|
11
|
Nir R, Hoernes TP, Muramatsu H, Faserl K, Karikó K, Erlacher MD, Sas-Chen A, Schwartz S. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res 2022; 50:4900-4916. [PMID: 35536311 PMCID: PMC9122591 DOI: 10.1093/nar/gkac347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
RNA can be extensively modified post-transcriptionally with >170 covalent modifications, expanding its functional and structural repertoire. Pseudouridine (Ψ), the most abundant modified nucleoside in rRNA and tRNA, has recently been found within mRNA molecules. It remains unclear whether pseudouridylation of mRNA can be snoRNA-guided, bearing important implications for understanding the physiological target spectrum of snoRNAs and for their potential therapeutic exploitation in genetic diseases. Here, using a massively parallel reporter based strategy we simultaneously interrogate Ψ levels across hundreds of synthetic constructs with predesigned complementarity against endogenous snoRNAs. Our results demonstrate that snoRNA-mediated pseudouridylation can occur on mRNA targets. However, this is typically achieved at relatively low efficiencies, and is constrained by mRNA localization, snoRNA expression levels and the length of the snoRNA:mRNA complementarity stretches. We exploited these insights for the design of snoRNAs targeting pseudouridylation at premature termination codons, which was previously shown to suppress translational termination. However, in this and follow-up experiments in human cells we observe no evidence for significant levels of readthrough of pseudouridylated stop codons. Our study enhances our understanding of the scope, 'design rules', constraints and consequences of snoRNA-mediated pseudouridylation.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Philipp Hoernes
- Institute of Genomics and RNomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus Faserl
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,BioNTech RNA Pharmaceuticals, Mainz, Germany
| | | | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Shi N, Yang Q, Zhang H, Lu J, Lin H, Yang X, Abulimiti A, Cheng J, Wang Y, Tong L, Wang T, Zhang X, Chen H, Xia Q. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Eng 2022; 6:195-206. [PMID: 34341535 DOI: 10.1038/s41551-021-00774-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 11% of monogenic diseases involve nonsense mutations that are caused by premature termination codons. These codons can in principle be read-through via the site-specific incorporation of unnatural amino acids to generate full-length proteins with minimal loss of function. Here we report that aminoacyl-tRNA-synthase-tRNA pairs specific for the desired unnatural amino acids can be used to read through a nonsense mutation in the dystrophin gene. We show partial restoration of dystrophin expression in differentiated primary myoblasts (from a mdx mouse model and a patient with Duchenne muscular dystrophy), and restoration of muscle function in two mouse models: mdx mice, via viral delivery of the engineered tRNA-synthase-tRNA pair intraperitoneally or intramuscularly and of the associated unnatural amino acid intraperitoneally; and mice produced by crossing mdx mice and transgenic mice with a chromosomally integrated pair, via intraperitoneal delivery of the unnatural amino acid. The incorporation of unnatural amino acids to restore endogenous protein expression could be explored for therapeutic use.
Collapse
Affiliation(s)
- Ningning Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haishuang Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Aikedan Abulimiti
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Le Tong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianchang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaodong Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongmin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals (Basel) 2021; 14:ph14080785. [PMID: 34451881 PMCID: PMC8398184 DOI: 10.3390/ph14080785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Around 12% of hereditary disease-causing mutations are in-frame nonsense mutations. The expression of genes containing nonsense mutations potentially leads to the production of truncated proteins with residual or virtually no function. However, the translation of transcripts containing premature stop codons resulting in full-length protein expression can be achieved using readthrough agents. Among them, only ataluren was approved in several countries to treat nonsense mutation Duchenne muscular dystrophy (DMD) patients. This review summarizes ataluren’s journey from its identification, via first in vitro activity experiments, to clinical trials in DMD, cystic fibrosis, and aniridia. Additionally, data on its pharmacokinetics and mechanism of action are presented. The range of diseases with underlying nonsense mutations is described for which ataluren therapy seems to be promising. What is more, experiments in which ataluren did not show its readthrough activity are also included, and reasons for their failures are discussed.
Collapse
|
14
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
15
|
Kuang L, Hashimoto K, Huang EJ, Gentry MS, Zhu H. Frontotemporal dementia non-sense mutation of progranulin rescued by aminoglycosides. Hum Mol Genet 2021; 29:624-634. [PMID: 31913476 DOI: 10.1093/hmg/ddz280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its functions under physiological and pathological conditions remains to be defined. Many FTD-causing non-sense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy. Aminoglycosides are a class of antibiotics that possess a less-known function to induce eukaryotic ribosomal readthrough of PTCs to produce a full-length protein. The aminoglycoside-induced readthrough strategy has been utilized to treat multiple human diseases caused by PTCs. In this study, we tested the only clinically approved readthrough small molecule PTC124 and 11 aminoglycosides in a cell culture system on four PTCs responsible for FTD or a related neurodegenerative disease amyotrophic lateral sclerosis. We found that the aminoglycosides G418 and gentamicin rescued the expression of the progranulin R493X mutation. G418 was more effective than gentamicin (~50% rescue versus <10%), and the effect was dose- and time-dependent. The progranulin readthrough protein displayed similar subcellular localization as the wild-type progranulin protein. These data provide an exciting proof-of-concept that aminoglycosides or other readthrough-promoting compounds are a therapeutic avenue for familial FTD caused by progranulin PTC mutations.
Collapse
Affiliation(s)
- Lisha Kuang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kei Hashimoto
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.,Lexington VA Medical Center, Research & Development, Lexington, KY 40502, USA
| |
Collapse
|
16
|
Torices L, de las Heras J, Arango-Lasprilla JC, Cortés JM, Nunes-Xavier CE, Pulido R. MMADHC premature termination codons in the pathogenesis of cobalamin D disorder: Potential of translational readthrough reconstitution. Mol Genet Metab Rep 2021; 26:100710. [PMID: 33552904 PMCID: PMC7847965 DOI: 10.1016/j.ymgmr.2021.100710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Mutations in the MMADHC gene cause cobalamin D disorder (cblD), an autosomal recessive inborn disease with defects in intracellular cobalamin (cbl, vitamin B12) metabolism. CblD patients present methylmalonic aciduria (MMA), homocystinuria (HC), or combined MMA/HC, and usually suffer developmental delay and cognitive deficits. The most frequent MMADHC genetic alterations associated with disease generate MMADHC truncated proteins, in many cases due to mutations that create premature termination codons (PTC). In this study, we have performed a comprehensive and global characterization of MMADHC protein variants generated by all annotated MMADHC PTC mutations in cblD patients, and analyzed the potential of inducible translational PTC readthrough to reconstitute MMADHC biosynthesis. MMADHC protein truncation caused by disease-associated PTC differentially affected the alternative usage of translation initiation sites, protein abundance, and subcellular localization of MMADHC. Aminoglycoside compounds induced translational PTC readthrough of MMADHC truncated variants, allowing the biosynthesis of full-length MMADHC in a PTC-specific manner. Our results suggest that translational PTC readthrough-based interventions could complement current therapies for cblD patients carrying specific MMADHC PTC mutations.
Collapse
Affiliation(s)
- Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier de las Heras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Division of Pediatric Metabolism (CIBER-ER), Cruces University Hospital, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Carlos Arango-Lasprilla
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesús M. Cortés
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| | - Caroline E. Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0424 Oslo, Norway
| | - Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
17
|
Adachi H, Yu YT. Pseudouridine-mediated stop codon readthrough in S. cerevisiae is sequence context-independent. RNA (NEW YORK, N.Y.) 2020; 26:1247-1256. [PMID: 32434780 PMCID: PMC7430670 DOI: 10.1261/rna.076042.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 05/26/2023]
Abstract
We have previously shown that when the uridine of a stop codon (UAA, UAG, or UGA) is pseudouridylated, the ribosome reads through the modified stop codon. However, it is not clear as to whether or not the pseudouridine (Ψ)-mediated readthrough is dependent on the sequence context of mRNA. Here, we use several different approaches and the yeast system to address this question. We show that when a stop codon (premature termination codon, PTC) is introduced into the coding region of a reporter mRNA at several different positions (with different sequence contexts) and pseudouridylated, we detect similar levels of readthrough. Using mutational and selection/screen analyses, we also show that the upstream sequence (relative to PTC) as well as the nucleotides surrounding the PTC (upstream and downstream) play a minimal role (if at all) in Ψ-mediated ribosome readthrough. Interestingly, we detect no suppression of NMD (nonsense-mediated mRNA decay) by targeted PTC pseudouridylation in the yeast system. Our results indicate that Ψ-mediated nonsense suppression occurs at the translational level, and that the suppression is sequence context-independent, unlike some previously characterized rare stop codon readthrough events.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
18
|
Morais P, Adachi H, Yu YT. Suppression of Nonsense Mutations by New Emerging Technologies. Int J Mol Sci 2020; 21:ijms21124394. [PMID: 32575694 PMCID: PMC7352488 DOI: 10.3390/ijms21124394] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.
Collapse
Affiliation(s)
- Pedro Morais
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, The Netherlands;
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
- Correspondence: ; Tel.: +1-(585)-275-1271; Fax: +1-(585)-275-6007
| |
Collapse
|
19
|
Ju G, Yuan C, Wang D, Zhang J, Zhao Y. A Direct Approach to Decoration of Bioactive Compounds via C-H Amination Reaction. Org Lett 2019; 21:9852-9855. [PMID: 31774293 DOI: 10.1021/acs.orglett.9b03717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of new methods to achieve the direct synthesis of bioactive organic molecules is always an important topic in organic synthesis. We hereby demonstrate that N-methoxyamide is an excellent amino source in the iridium-catalyzed intermolecular C-H amination reaction. The linkage of two bioactive organic molecules can be well achieved with this new protocol. More than 20 examples of decorated bioactive compounds were reported, which can facilitate the discovery of new bioactive molecules.
Collapse
Affiliation(s)
- Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry , Chemical Engineering and Materials Science Soochow University , Suzhou 215123 , P. R. China
| | - Chunchen Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry , Chemical Engineering and Materials Science Soochow University , Suzhou 215123 , P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry , Chemical Engineering and Materials Science Soochow University , Suzhou 215123 , P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations , Soochow University , Suzhou 215006 , P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry , Chemical Engineering and Materials Science Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
20
|
Campofelice A, Lentini L, Di Leonardo A, Melfi R, Tutone M, Pace A, Pibiri I. Strategies against Nonsense: Oxadiazoles as Translational Readthrough-Inducing Drugs (TRIDs). Int J Mol Sci 2019; 20:ijms20133329. [PMID: 31284579 PMCID: PMC6651739 DOI: 10.3390/ijms20133329] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison to aminoglycosides. Additionally, recent results on the efficiency of new candidate TRIDs in restoring the production of the cystic fibrosis transmembrane regulator (CFTR) protein will be presented. Finally, a prospectus on complementary strategies to enhance the effect of TRIDs will be illustrated together with a conclusive paragraph about perspectives, opportunities, and caveats in developing small molecules as TRIDs.
Collapse
Affiliation(s)
- Ambra Campofelice
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy.
| |
Collapse
|
21
|
|
22
|
Leubitz A, Frydman-Marom A, Sharpe N, van Duzer J, Campbell KCM, Vanhoutte F. Safety, Tolerability, and Pharmacokinetics of Single Ascending Doses of ELX-02, a Potential Treatment for Genetic Disorders Caused by Nonsense Mutations, in Healthy Volunteers. Clin Pharmacol Drug Dev 2019; 8:984-994. [PMID: 30650260 DOI: 10.1002/cpdd.647] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
ELX-02 is an investigational synthetic eukaryotic ribosome-selective glycoside optimized as a translational read-through molecule that induces read through of nonsense mutations, resulting in normally localized full-length functional proteins. ELX-02 is being developed as a therapy for genetic diseases caused by nonsense mutations. Two phase 1a, randomized, double-blind placebo-controlled, single-ascending-dose studies were conducted in healthy human subjects to evaluate the safety and pharmacokinetics of ELX-02. Single subcutaneously injected doses of ELX-02 between 0.3 mg/kg and 7.5 mg/kg showed an acceptable safety profile without severe or serious drug-related adverse events, including a lack of renal and ototoxicity events. Injection of ELX-02 resulted in a rapid time to peak concentration and elimination phase, with complete elimination from the vascular compartment within 10 hours. ELX-02 area under the concentration-time curve to infinity showed dose-exposure linearity (24-fold increase for a 25-fold dose increase), and the maximum concentration showed dose proportionality (17-fold increase for a 25-fold increase). The mean apparent volume of distribution was dose dependent, suggesting an increased distribution and tissue uptake of ELX-02 at higher doses. The primary route of excretion was in the urine, with the majority of the compound excreted unchanged. These results support the evaluation of the safety, pharmacokinetics, and efficacy of repeat dosing in future studies.
Collapse
|
23
|
Zhou J, Qiu C, Pi N, Li S, Cheng X, Zhang L, Chen Y, Huang Y, Sun Y, Su Z. A Protein Biosynthesis Machinery Strategy for Identifying P53 PTC
-Rescuing Compounds as Synergic Anti-Tumor Drugs. ChemistrySelect 2018. [DOI: 10.1002/slct.201802635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Zhou
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Chengbin Qiu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Ni Pi
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Xiyao Cheng
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Lei Zhang
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yao Chen
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yongqi Huang
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Zhengding Su
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| |
Collapse
|
24
|
Abstract
Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.
Collapse
|
25
|
Nellen RGL, Steijlen PM, van Steensel MAM, Vreeburg M, Frank J, van Geel M. Mendelian Disorders of Cornification Caused by Defects in Intracellular Calcium Pumps: Mutation Update and Database for Variants in ATP2A2 and ATP2C1 Associated with Darier Disease and Hailey-Hailey Disease. Hum Mutat 2017; 38:343-356. [PMID: 28035777 DOI: 10.1002/humu.23164] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 10/30/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022]
Abstract
The two disorders of cornification associated with mutations in genes coding for intracellular calcium pumps are Darier disease (DD) and Hailey-Hailey disease (HHD). DD is caused by mutations in the ATP2A2 gene, whereas the ATP2C1 gene is associated with HHD. Both are inherited as autosomal-dominant traits. DD is mainly defined by warty papules in seborrheic and flexural areas, whereas the major symptoms of HHD are vesicles and erosions in flexural skin. Both phenotypes are highly variable. In 12%-40% of DD patients and 12%-55% of HHD patients, no mutations in ATP2A2 or ATP2C1 are found. We provide a comprehensive review of clinical variability in DD and HHD and a review of all reported mutations in ATP2A2 and ATP2C1. Having the entire spectrum of ATP2A2 and ATP2C1 variants allows us to address the question of a genotype-phenotype correlation, which has not been settled unequivocally in DD and HHD. We created a database for all mutations in ATP2A2 and ATP2C1 using the Leiden Open Variation Database (LOVD v3.0), for variants reported in the literature and future inclusions. This data may be of use as a reference tool in further research on treatment of DD and HHD.
Collapse
Affiliation(s)
- Ruud G L Nellen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter M Steijlen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maaike Vreeburg
- Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | -
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michel van Geel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
26
|
Oxford AE, Jorcyk CL, Oxford JT. Neuropathies of Stüve-Wiedemann Syndrome due to mutations in leukemia inhibitory factor receptor (LIFR) gene. ACTA ACUST UNITED AC 2016; 1:37-44. [PMID: 28058407 DOI: 10.29245/2572.942x/2016/7.1068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare disease that results in dysfunction of the autonomic nervous system, which controls involuntary processes such as breathing rate and body temperature. In infants, this can result in respiratory distress, feeding and swallowing difficulties, and hyperthermic episodes. Individuals may sweat excessively when body temperature is not elevated. Additionally, individuals have reduced ability to feel pain and may lose reflexes such as the corneal reflex that normally causes one to blink, and the patellar reflex resulting in the knee-jerk. STWS usually results in infant mortality, yet some STWS patients survive into early adulthood. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomal-recessive pattern. Most LIFR mutations resulting in STWS cause instability of the mRNA due to frameshift mutations leading to premature stop codons, which prevent the formation of LIFR protein. STWS is managed on a symptomatic basis as no treatment is currently available.
Collapse
Affiliation(s)
- Alexandra E Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| | - Cheryl L Jorcyk
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| | - Julia Thom Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| |
Collapse
|
27
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families.
Collapse
Affiliation(s)
- Jean K Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Pibiri I, Lentini L, Tutone M, Melfi R, Pace A, Di Leonardo A. Exploring the readthrough of nonsense mutations by non-acidic Ataluren analogues selected by ligand-based virtual screening. Eur J Med Chem 2016; 122:429-435. [PMID: 27404557 DOI: 10.1016/j.ejmech.2016.06.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Ataluren, also known as PTC124, is a 5-(fluorophenyl)-1,2,4-oxadiazolyl-benzoic acid suggested to suppress nonsense mutations by readthrough of premature stop codons in the mRNA. Potential interaction of PTC124 with mRNA has been recently studied by molecular dynamics simulations highlighting the importance of H-bonding and stacking π-π interactions. A series of non-acidic analogues of PTC124 were selected from a large database via a ligand-based virtual screening approach. Eight of them were synthesized and tested for their readthrough activity using the Fluc reporter harboring the UGA premature stop codon. The most active compound was further tested for suppression of the UGA nonsense mutation in the bronchial epithelial IB3.1 cell line carrying the W1282X mutation in the CFTR gene.
Collapse
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy.
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; Istituto EuroMediterraneo di Scienza e Tecnologia (IEMEST), Via Emerico Amari 123, 90139 Palermo, Italy.
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; Centro di OncoBiologia Sperimentale (COBS), via San Lorenzo Colli, 90145 Palermo, Italy
| |
Collapse
|
29
|
Hoernes TP, Erlacher MD. Translating the epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27345446 PMCID: PMC5215311 DOI: 10.1002/wrna.1375] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
RNA modifications are indispensable for the translation machinery to provide accurate and efficient protein synthesis. Whereas the importance of transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications has been well described and is unquestioned for decades, the significance of internal messenger RNA (mRNA) modifications has only recently been revealed. Novel experimental methods have enabled the identification of thousands of modified sites within the untranslated and translated regions of mRNAs. Thus far, N6‐methyladenosine (m6A), pseudouridine (Ψ), 5‐methylcytosine (m5C) and N1‐methyladenosine (m1A) were identified in eukaryal, and to some extent in prokaryal mRNAs. Several of the functions of these mRNA modifications have previously been reported, but many aspects remain elusive. Modifications can be important factors for the direct regulation of protein synthesis. The potential diversification of genomic information and regulation of RNA expression through editing and modifying mRNAs is versatile and many questions need to be addressed to completely elucidate the role of mRNA modifications. Herein, we summarize and highlight some recent findings on various co‐ and post‐transcriptional modifications, describing the impact of these processes on gene expression, with emphasis on protein synthesis. WIREs RNA 2017, 8:e1375. doi: 10.1002/wrna.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
John AM, Schwartz RA. Muir-Torre syndrome (MTS): An update and approach to diagnosis and management. J Am Acad Dermatol 2016; 74:558-66. [PMID: 26892655 DOI: 10.1016/j.jaad.2015.09.074] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Muir-Torre syndrome (MTS) is a rare genetic condition that predisposes individuals to skin tumors and visceral malignancies. Because of the potentially aggressive nature of internal malignancies and sebaceous carcinoma, and the tendency to have multiple low-grade visceral cancers, close cancer surveillance is required in individuals and their families with this usually autosomal dominant disorder. Although the majority of MTS is caused by mutations in DNA mismatch repair genes resulting in microsatellite instability, a newly described subtype of MTS does not demonstrate microsatellite instability and may be inherited in an autosomal recessive pattern. In addition, MTS may be unmasked in transplant recipients taking specific immunosuppressant drugs or other immunosuppressed patients. Neoplasms may be subject to immunohistochemistry or both immunohistochemistry and genetic testing to confirm the diagnosis of MTS. Here, we offer an update and an approach to the diagnosis and management of MTS with a particular emphasis on the role of immunohistochemistry and genetic testing.
Collapse
Affiliation(s)
- Ann M John
- Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Robert A Schwartz
- Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey; Rutgers University School of Public Affairs and Administration, Newark, New Jersey.
| |
Collapse
|
31
|
Katz MJ, Gándara L, De Lella Ezcurra AL, Wappner P. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cell Mol Life Sci 2016; 73:1881-93. [PMID: 26874685 PMCID: PMC11108485 DOI: 10.1007/s00018-016-2160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.
Collapse
Affiliation(s)
- M J Katz
- Instituto Leloir, Buenos Aires, Argentina
| | - L Gándara
- Instituto Leloir, Buenos Aires, Argentina
| | | | - P Wappner
- Instituto Leloir, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Beaudet AL, Meng L. Gene-targeting pharmaceuticals for single-gene disorders. Hum Mol Genet 2015; 25:R18-26. [PMID: 26628634 DOI: 10.1093/hmg/ddv476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
The concept of orphan drugs for treatment of orphan genetic diseases is perceived enthusiastically at present, and this is leading to research investment on the part of governments, disease-specific foundations and industry. This review attempts to survey the potential to use traditional pharmaceuticals as opposed to biopharmaceuticals to treat single-gene disorders. The available strategies include the use of antisense oligonucleotides (ASOs) to alter splicing or knock-down expression of a transcript, siRNAs to knock-down gene expression and drugs for nonsense mutation read-through. There is an approved drug for biallelic knock-down of the APOB gene as treatment for familial hypercholesterolemia. Both ASOs and siRNAs are being explored to knock-down the transthyretin gene to prevent the related form of amyloidosis. The use of ASOs to alter gene-splicing to treat spinal muscular atrophy is in phase 3 clinical trials. Work is progressing on the use of ASOs to activate the normally silent paternal copy of the imprinted UBE3A gene in neurons as a treatment for Angelman syndrome. A gene-activation or gene-specific ramp-up strategy would be generally helpful if such could be developed. There is exciting theoretical potential for converting biopharmaceutical strategies such gene correction and CRISPR-Cas9 editing to a synthetic pharmaceutical approach.
Collapse
Affiliation(s)
- Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Houston, TX 77030, USA
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Houston, TX 77030, USA
| |
Collapse
|
33
|
Velho RV, Sperb-Ludwig F, Schwartz IVD. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals. AN ACAD BRAS CIENC 2015; 87:1375-88. [PMID: 26247150 DOI: 10.1590/0001-3765201520140711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.
Collapse
Affiliation(s)
- Renata V Velho
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, BR
| | | | | |
Collapse
|
34
|
Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives. Eur J Med Chem 2015; 101:236-44. [PMID: 26142488 DOI: 10.1016/j.ejmech.2015.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
Abstract
Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA.
Collapse
|