1
|
Dalton CM, Schlegel C, Hunter CJ. Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation. BIOLOGY 2023; 12:1402. [PMID: 37998001 PMCID: PMC10669080 DOI: 10.3390/biology12111402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Caveolin-1 (Cav1) is a vital protein for many cellular processes and is involved in both the positive and negative regulation of these processes. Cav1 exists in multiple cellular compartments depending on its role. Of particular interest is its contribution to the formation of plasma membrane invaginations called caveolae and its involvement in cytoskeletal interactions, endocytosis, and cholesterol trafficking. Cav1 participates in stem cell differentiation as well as proliferation and cell death pathways, which is implicated in tumor growth and metastasis. Additionally, Cav1 has tissue-specific functions that are adapted to the requirements of the cells within those tissues. Its role has been described in adipose, lung, pancreatic, and vascular tissue and in epithelial barrier maintenance. In both the intestinal and the blood brain barriers, Cav1 has significant interactions with junctional complexes that manage barrier integrity. Tight junctions have a close relationship with Cav1 and this relationship affects both their level of expression and their location within the cell. The ubiquitous nature of Cav1 both within the cell and within specific tissues is what makes the protein important for ongoing research as it can assist in further understanding pathophysiologic processes and can potentially be a target for therapies.
Collapse
Affiliation(s)
- Cody M. Dalton
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Camille Schlegel
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Han Q, Qiu S, Hu H, Li W, Li X. Role of Caveolae family-related proteins in the development of breast cancer. Front Mol Biosci 2023; 10:1242426. [PMID: 37828916 PMCID: PMC10565104 DOI: 10.3389/fmolb.2023.1242426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Breast cancer has become the most significant malignant tumor threatening women's lives. Caveolae are concave pits formed by invagination of the plasma membrane that participate in many biological functions of the cell membrane, such as endocytosis, cell membrane assembly, and signal transduction. In recent years, Caveolae family-related proteins have been found to be closely related to the occurrence and development of breast cancer. The proteins associated with the Caveolae family-related include Caveolin (Cav) and Cavins. The Cav proteins include Cav-1, Cav-2 and Cav-3, among which Cav-1 has attracted the most attention as a tumor suppressor and promoting factor affecting the proliferation, apoptosis, migration, invasion and metastasis of breast cancer cells. Cav-2 also has dual functions of inhibiting and promoting cancer and can be expressed in combination with Cav-1 or play a regulatory role alone. Cav-3 has been less studied in breast cancer, and the loss of its expression can form an antitumor microenvironment. Cavins include Cavin-1, Cavin-2, Cavin-3 and Cavin-4. Cavin-1 inhibits Cav-1-induced cell membrane tubule formation, and its specific role in breast cancer remains controversial. Cavin-2 acts as a breast cancer suppressor, inhibiting breast cancer progression by blocking the transforming growth factor (TGF-β) signaling pathway. Cavin-3 plays an anticancer role in breast cancer, but its specific mechanism of action is still unclear. The relationship between Cavin-4 and breast cancer is unclear. In this paper, the role of Caveolae family-related proteins in the occurrence and development of breast cancer and their related mechanisms are discussed in detail to provide evidence supporting the further study of Caveolae family-related proteins as potential targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Shi Qiu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Huiwen Hu
- Department of the First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| |
Collapse
|
3
|
Hagag S, Kodous A, Shaaban HA. Molecular and Immunohistochemical Alterations in Breast Cancer Patients in Upper Egypt. Rep Biochem Mol Biol 2023; 11:532-546. [PMID: 37131903 PMCID: PMC10149126 DOI: 10.52547/rbmb.11.4.532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/30/2022] [Indexed: 05/04/2023]
Abstract
Background Breast cancer (BC) plays a major public health in Egyptian woman. In Upper Egypt, there is an increase in incidence of BC compared to other Egyptian areas. Triple-negative BC, estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-neu-negative, is a high-risk BC that lacks the benefit of specific therapy that targets these proteins. Accurate determination of Caveolin-1(Cav-1), Caveolin-2 (Cav-2) and HER-2/neu status have become of major clinical significance in BC by focusing about its role as a tumor marker for response to different therapies. Methods The present study was performed on 73 female BC patients in the South Egypt Cancer Institute. Blood samples were used for Cav-1, Cav-2, and HER-2/neu genes amplification and expression. In addition, immunohistological analysis of mammaglobin, GATA3, ER, PR, and HER-2/neu was done. Results There was a statistically significant association between Cav-1, 2 and HER-2/neu genes expression and the age of patients (P< 0.001). There are increase in the level of Cav-1, 2 and increase in HER-2/neu mRNA expression in groups treated with chemotherapy and group treated with both chemotherapy and radiotherapy compared to each group baseline level of genes mRNA expression before treatment. On the contrary, the group treated with chemotherapy, radiotherapy and hormonal therapy revealed increase on the level of Cav-1, 2 and HER-2/neu mRNA expression when compared with their baseline for the same patients before treatment. Conclusions Noninvasive molecular biomarkers such as Cav-1 and Cav-2 have been proposed for use in the diagnosis and prognosis for women with BC.
Collapse
Affiliation(s)
- Sanaa Hagag
- Radiation Biology department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Nasr City, 8029, Cairo, Egypt.
| | - Ahmad Kodous
- Radiation Biology department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Nasr City, 8029, Cairo, Egypt.
- Corresponding author: Ahmad Kodous; Tel: +20 1144496363; E-mail:
| | - Hebat Aallh Shaaban
- Pathology department, National Cancer Institute, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis. Sci Rep 2022; 12:11086. [PMID: 35773303 PMCID: PMC9246916 DOI: 10.1038/s41598-022-14832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of interstitial lung disease. IPF is characterized by irreversible scarring of the lungs leading to lung function decline. Although the etiology remains poorly understood, dysregulated autophagy in alveolar-epithelial cells (AECs) together with interplay between apoptotic-AECs and proliferative-myofibroblasts have been strongly implicated in IPF pathogenesis. Recent studies have revealed that a caveolin-1-derived 7-mer peptide, CSP7, mitigates established PF at least in part by improving AEC viability. In the present study, we aimed to determine whether and how CSP7 regulates autophagy in fibrotic-lung AECs. We found that p53 and autophagic proteins were markedly upregulated in AECs from mice with single/multi-doses of bleomycin—or silica-induced PF. This was abolished following treatment of PF-mice with CSP7. Further, CSP7 abrogated silica- or bleomycin-induced p53 and autophagy proteins in AECs. Immunoprecipitation further revealed that CSP7 abolishes the interaction of caveolin-1 with LC3BII and p62 in AECs. AEC-specific p53-knockout mice resisted silica- or bleomycin-induced changes in autophagy proteins, or CSP7 treatment. Our findings provide a novel mechanism by which CSP7 inhibits dysregulated autophagy in injured AECs and mitigates existing PF. These results affirm the potential of CSP7 for treating established PF, including IPF and silicosis.
Collapse
|
5
|
Pathania S, Khan MI, Bandyopadhyay S, Singh SS, Rani K, Parashar TR, Jayaram J, Mishra PR, Srivastava A, Mathur S, Hari S, Vanamail P, Hariprasad G. iTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins to flag metastasis in early breast cancer. Sci Rep 2022; 12:8625. [PMID: 35599267 PMCID: PMC9124668 DOI: 10.1038/s41598-022-12352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with early breast cancer are affected by metastasis to axillary lymph nodes. Metastasis to these nodes is crucial for staging and quality of surgery. Sentinel Lymph Node Biopsy that is currently used to assess lymph node metastasis is not effective. This necessitates identification of biomarkers that can flag metastasis. Early stage breast cancer patients were recruited. Surgical resection of breast was followed by identification of sentinel lymph nodes. Fresh frozen section biopsy was used to assign metastatic and non-metastatic sentinel lymph nodes. Discovery phase included iTRAQ proteomics coupled with mass spectrometric analysis to identify differentially expressed proteins. Data is available via ProteomeXchange with identifier PXD027668. Validation was done by bioinformatic analysis and ELISA. There were 2398 unique protein groups and 109 differentially expressed proteins comparing metastatic and non-metastatic lymph nodes. Forty nine proteins were up-regulated, and sixty proteins that were down regulated in metastatic group. Bioinformatic analysis showed ECM-receptor interaction pathways to be implicated in lymph node metastasis. ELISA confirmed up-regulation of ECM proteins in metastatic lymph nodes. ECM proteins have requisite parameters to be developed as a diagnostic tool to assess status of sentinel lymph nodes to guide surgical intervention in early breast cancer.
Collapse
|
6
|
Caveolin-1 Regulation and Function in Mouse Uterus during Early Pregnancy and under Human In Vitro Decidualization. Int J Mol Sci 2022; 23:ijms23073699. [PMID: 35409055 PMCID: PMC8998724 DOI: 10.3390/ijms23073699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
Decidualization is essential to rodent and primate pregnancy. Senescence is increased during decidualization. Failure of senescence clearance during decidualization will cause pregnancy abnormality. Caveolin-1 is located in plasmalemmal caveolae and involved in senescence. However, whether caveolin-1 is involved in decidualization remains undefined. In this study, we examined the expression, regulation and function of Caveolin-1 during mouse early pregnancy and under mouse and human in vitro decidualization. From days 1 to 8 of pregnancy, Caveolin-1 signals are mainly located in endothelium and myometrium. Estrogen stimulates Caveolin-1 expression in endothelium. Deficiency of estrogen receptor α significantly promotes Caveolin-1 level in uterine stromal cells. Progesterone upregulates Caveolin-1 expression in luminal epithelium. During mouse in vitro decidualization, Caveolin-1 is significantly increased. However, Caveolin-1 is obviously decreased during human in vitro decidualization. Caveolin-1 overexpression and siRNA suppress and upregulate IGFBP1 expression under in vitro decidualization, respectively. Blastocysts-derived tumor necrosis factor α (TNFα) and human Chorionic Gonadotropin (hCG) regulate Caveolin-1 in mouse and human decidual cells, respectively. Caveolin-1 levels are also regulated by high glucose and insulin. In conclusion, a low level of Caveolin-1 should be beneficial for human decidualization.
Collapse
|
7
|
Sex Bias in Differentiated Thyroid Cancer. Int J Mol Sci 2021; 22:ijms222312992. [PMID: 34884794 PMCID: PMC8657786 DOI: 10.3390/ijms222312992] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Differentiated thyroid cancers are more frequent in women than in men. These different frequencies may depend on differences in patient's behavior and in thyroid investigations. However, an impact on sexual hormones is likely, although this has been insufficiently elucidated. Estrogens may increase the production of mutagenic molecules in the thyroid cell and favor the proliferation and invasion of tumoral cells by regulating both the thyrocyte enzymatic machinery and the inflammatory process associated with tumor growth. On the other hand, the worse prognosis of thyroid cancer associated with the male gender is poorly explained.
Collapse
|
8
|
Duan Y, Qi D, Liu Y, Song Y, Wang X, Jiao S, Li H, Gonzalez FJ, Qi Y, Xu Q, Du J, Qu A. Deficiency of peroxisome proliferator-activated receptor α attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochem Biophys Rep 2021; 27:101091. [PMID: 34381883 PMCID: PMC8339143 DOI: 10.1016/j.bbrep.2021.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.
Collapse
Key Words
- Ang II, angiotensin II
- Angiotensin II
- EC, endothelial cell
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinase
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- PCR, polymerase chain reaction
- PPAR, peroxisome proliferator-activated receptor
- PPARα
- SM22α, smooth muscle 22α
- TGF, tumor growth factor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VSMC, vascular smooth muscle cell
- Vascular remodeling
- Vascular smooth muscle cell
Collapse
Affiliation(s)
- Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Huihua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- School of Cardiovascular Medicine and Sciences, King' s College of London, London, UK
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China.,Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| |
Collapse
|
9
|
Han M, Nwosu ZC, Piorońska W, Ebert MP, Dooley S, Meyer C. Caveolin-1 Impacts on TGF-β Regulation of Metabolic Gene Signatures in Hepatocytes. Front Physiol 2020; 10:1606. [PMID: 32082178 PMCID: PMC7005071 DOI: 10.3389/fphys.2019.01606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Caveolin-1 (CAV1) is a membrane protein associated with metabolism in various cell types. The transforming growth factor beta (TGF-β) is a pro-fibrogenic cytokine in the liver, but its metabolic gene signatures remain unclear to date. We have previously shown that CAV1 alters TGF-β signaling and blocks its pro-apoptotic function. Here, we defined TGF-β-induced metabolic gene signatures in hepatocytes and assessed whether CAV1 abundance affects TGF-β control of those metabolic genes. Microarray analyses of primary hepatocytes after TGF-β stimulation (48 h) showed differential expression of 4224 genes, of which 721 are metabolic genes (adjusted p < 0.001). Functional annotation analysis revealed that TGF-β mainly suppresses metabolic gene network, including genes involved in glutathione, cholesterol, fatty acid, and amino acid metabolism. TGF-β also upregulated several genes related to glycan metabolism and ion transport. In contrast to TGF-β effects, CAV1 knockdown triggered the upregulation of metabolic genes. Immortalized mouse hepatocytes (AML12 cells) were used to validate the gene changes induced by TGF-β stimulation and CAV1 knockdown. Noteworthy, of the TGF-β metabolic target genes, CAV1 modulated the expression of 228 (27%). In conclusion, we present several novel metabolic gene signatures of TGF-β in hepatocytes and show that CAV1 abundance alters almost a third of these genes. These findings could enable a better understanding of TGF-β function in normal and diseased liver especially where differential CAV1 level is implicated.
Collapse
Affiliation(s)
- Mei Han
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Internal Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zeribe Chike Nwosu
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Weronika Piorońska
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Meyer
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Wang X, Lu B, Dai C, Fu Y, Hao K, Zhao B, Chen Z, Fu L. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol 2020; 10:46. [PMID: 32117718 PMCID: PMC7008851 DOI: 10.3389/fonc.2020.00046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge for chemotherapy in treating human gastric cancer (GC), as the underlying molecular mechanism of chemoresistance in GC remains unknown. Caveolin-1 (Cav-1) is a scaffold protein of plasma membrane caveolae that acts as a tumor modulator by interacting with several cell signals. In this research, we showed that the survival rate of GC cells to cisplatin (CDDP) increased in the presence of Cav-1. Moreover, Cav-1 overexpression inhibited cisplatin-induced apoptosis and improved the survival rate of GC cells. Cav-1 overexpression and knock-down experiments indicated that Cav-1 expression stimulated wingless-type MMTV integration site (WNTs) pathway through the phosphorylation of LRP6 and dephosphorylation of β-catenin. Cav-1 was positively associated with the increase of WNT downstream target gene Met, which led to the activation of HER2 signaling. Moreover, our results demonstrated that the expression of Cav-1 and Met were positively associated with the resistance of GC cells to cisplatin. Collectively, Cav-1 enhances the cisplatin-resistance of GC cells by activating the WNT signaling pathway and Met-HER2 crosstalk. Understanding the role of Cav-1 in the chemoresistance of GC would help to develop novel therapies for a better treatment outcome of GC patients.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bing Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
11
|
Caveolin-1 alleviates lipid accumulation in NAFLD associated with promoting autophagy by inhibiting the Akt/mTOR pathway. Eur J Pharmacol 2020; 871:172910. [PMID: 31926991 DOI: 10.1016/j.ejphar.2020.172910] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most burgeoning chronic liver disease worldwide whose pathogenesis is complex and controversial. Here, we investigated the impact of caveolin-1 (CAV1), a scaffolding protein of caveolae for lipid homeostasis and endocytosis, on the pathogenesis of NAFLD. CAV1 and caveolae play crucial roles in the regulation of autophagy and hepatic energy metabolism. However, it remains unclear whether CAV1 could affect hepatic lipid metabolism by regulating autophagy. In this study, results showed that the expressions of CAV1 and autophagy-related proteins (Beclin1 and LC3-II/Ⅰ) were decreased, while the level of p62 was increased in HFD (high-fat diet) fed mice liver and in A/O (alcohol and oleic acid mixture) treated L02 cells, compared to the corresponding controls. In vivo study, upregulation of CAV1 with CAV1 scaffolding domain peptides (CSD, amino acids 82-101 of caveolin-1) could alleviate lipid accumulation and promote autophagy in NAFLD mice. In vitro study, CAV1 overexpression plasmid and its small interfering RNA were cultured with A/O treated L02 cells respectively. The results also demonstrated that CAV1 reduced lipid accumulation and promoted autophagy in L02 cells. Treatment with chloroquine, an inhibitor of autophagic degradation, abrogated CAV1 plasmid-mediated alleviation of lipid accumulation. Mechanistically, the inhibition of Akt/mTOR pathway was involved in the protective role of CAV1 in autophagy induction and lipid metabolism in NAFLD. Together, these results provided novel perception into the function of CAV1 in liver through autophagy and emphasized its positive role in NAFLD.
Collapse
|
12
|
Gong Y, Yang Y, Tian S, Chen H. Different Role of Caveolin-1 Gene in the Progression of Gynecological Tumors. Asian Pac J Cancer Prev 2019; 20:3259-3268. [PMID: 31759347 PMCID: PMC7062999 DOI: 10.31557/apjcp.2019.20.11.3259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
Caveolin-1 (Cav-1), an integral membrane protein, is a principal component of caveolae and has been reported to play a promoting or inhibiting role in cancer progression. Gynecologic tumor is a group of tumors that affect the tissue and organs of the female reproductive system, especially cervical cancer. Cervical cancer, as one of the most common cancers, severely affects female health in developing countries in particular because of its high morbidity and mortality. This review summarizes some mechanisms of Cav-1 in the development and progression of gynecological tumors. The role of Cav-1 in tumorigenesis, including dysregulation of cell cycle, apoptosis and autophagy, adhesion, invasion, and metastasis, such as the formation of invadopodia and matrix metalloproteinase degradation are presented in detail. In addition, Cav-1 modulates autophagy and the formation of invadopodia and target regulated by miRNAs to affect tumor progress. Taken together, we find that, no matter Cav-1 expression in the tumor or stromal cells , Cav-1 has paradoxical role in different types of gynecological tumors in vivo or in vitro and even in the same tumor from the same organ.
Collapse
Affiliation(s)
- Yan Gong
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Yuhan Yang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, P. R. China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
13
|
Wei Y, Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol 2019; 191:105380. [PMID: 31078693 DOI: 10.1016/j.jsbmb.2019.105380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Studies have shown that morbidity of several diseases varies between males and females. This difference likely arises due to sex-related hormones. Estrogen, a primary female sex steroid hormone, plays a critical role in mediating many of the physiological functions like growth, differentiation, metabolism, and cell death. Recently, it has been demonstrated that estrogen mediates autophagy through its receptors (ERs) namely ERα, ERβ, and G-protein coupled estrogen receptor (GPER). However, the specific role of estrogen and its receptors mediated-autophagy in cell fate and human diseases such as cancers, cardiovascular disease and nervous system disease remains unclear. In this review, we comprehensively summarize the complex role of estrogen and its receptors-mediated autophagy in different cell lines and human diseases. In addition, we further discuss the key signaling molecules governing the role of ERs in autophagy. This review will serve as the basis for a proposed model of autophagy constituting a new frontier in estrogen-related human diseases. Here, we discuss the dual role of ERα in classical and non-classical autophagy through B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). Next, we review the role of ERβ in pro-survival pathways through the promotion of autophagy under stress conditions. We further discuss activation of GPER via estrogen often mediates autophagy or mitophagy suppression, respectively. In summary, we believe that understanding the relationship between estrogen and its receptors mediated-autophagy on cell fate and human diseases will provide insightful knowledge for future therapeutic implications.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
15
|
Abstract
Autophagy is an important process of cellular degradation and has been proven to contribute to tumorigenesis. High-mobility group box 1 (HMGB1) is an abundant nonhistone protein that has been widely reported to play a central role in the induction of autophagy. In nucleus, HMGB1 upregulates the expression of HSP27 to induce autophagy. In cytoplasm, the Beclin-1/PI3K-III complex can be activated by HMGB1 to promote autophagy. Extracellular HMGB1 binds to the receptor for advanced glycation end products to induce autophagy. Recent studies have shown that HMGB1-induced autophagy exerts multiple functions in various cancers like proliferation. Moreover, inhibition of HMGB1-induced autophagy can reverse chemoresistance, which is regulated by noncoding RNAs such as microRNAs and lncRNAs. Here, we provide a brief introduction to HMGB1 and HMGB1-induced autophagy in cancer. We also discuss the challenges associated with performing further investigations on this issue. HMGB1-induced autophagy exerts significant functions in cancer and has potential utility for new strategy to reverse drug resistance.
Collapse
Affiliation(s)
- Tianwei Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Lihua Jiang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
16
|
Lu Q, Luo X, Mao C, Zheng T, Liu B, Dong X, Zhou Y, Xu C, Mou X, Wu F, Bu L, Yuan G. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto's thyroiditis disease. Endocr J 2018; 65:893-901. [PMID: 29877208 DOI: 10.1507/endocrj.ej18-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is considered a T helper-type 1 (Th1) cytokine-dominant autoimmune thyroid disease. Caveolin-1 (Cav-1), a part of the thyroxisome multiprotein complex, is localized at the apical pole of thyrocytes and is indispensable for synthesis of thyroid hormones and modulation of oxidative stress in order to avoid cell damage and apoptosis. Reduced autophagy induces thyroid follicular cells (TFC) apoptosis by activating reactive oxygen species (ROS) in HT patients. Nevertheless, whether Cav-1 has roles in the regulation of autophagy remains largely unclear. In this study, we examined Th1 cytokines and Cav-1 expression in HT thyroid tissues, determined the effects of interleukin-1beta (IL-1β) and interferon-gamma (IFN-γ) on Cav-1 and autophagy activity in TFC, and investigated the association between Cav-1 and autophagy activity in vitro. Our results indicate that higher levels of IL-1β and IFN-γ and lower levels of Cav-1 were expressed in thyroid tissues of HT patients than in those of normal controls. Cav-1 mRNA and protein levels were significantly decreased in TFC exposed to IL-1β and IFN-γ, accompanied by decreased expression of autophagy-related protein LC3B-II. Interestingly, small interfering RNA (siRNA)-mediated Cav-1 knockdown in TFC reduced LC3B-II protein expression. Taken together, these results suggest that lack of Cav-1 expression inhibited autophagy activity in TFC exposed to Th1 cytokines (IL-1β and IFN-γ), which might be a novel pathogenetic mechanism of HT.
Collapse
Affiliation(s)
- Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Baocui Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xin Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuepeng Zhou
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ling Bu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Guoyue Yuan
- Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
17
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Vegliante R, Ciriolo MR. Autophagy and Autophagic Cell Death: Uncovering New Mechanisms Whereby Dehydroepiandrosterone Promotes Beneficial Effects on Human Health. VITAMINS AND HORMONES 2018; 108:273-307. [PMID: 30029730 DOI: 10.1016/bs.vh.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in human serum and a precursor of sexual hormones. Its levels, which are maximum between the age of 20 and 30, dramatically decline with aging thus raising the question that many pathological conditions typical of the elderly might be associated with the decrement of circulating DHEA. Moreover, since its very early discovery, DHEA and its metabolites have been shown to be active in many pathophysiological contexts, including cardiovascular disease, brain disorders, and cancer. Indeed, treatment with DHEA has beneficial effects for the cure of these and many other pathologies in vitro, in vivo, and in patient studies. However, the molecular mechanisms underlying DHEA effects have been only partially elucidated. Autophagy is a self-digestive process, by which cell homeostasis is maintained, damaged organelles removed, and cell survival assured upon stress stimuli. However, high rate of autophagy is detrimental and leads to a form of programmed cell death known as autophagic cell death (ACD). In this chapter, we describe the process of autophagy and the morphological and biochemical features of ACD. Moreover, we analyze the beneficial effects of DHEA in several pathologies and the molecular mechanisms with particular emphasis on its regulation of cell death processes. Finally, we review data indicating DHEA and structurally related steroid hormones as modulators of both autophagy and ACD, a research field that opens new avenues in the therapeutic use of these compounds.
Collapse
Affiliation(s)
- Rolando Vegliante
- MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hopital Civil-Institut d'Hématologie et Immunologie, Strasbourg, France
| | - Maria R Ciriolo
- University of Rome 'Tor Vergata', Rome, Italy; IRCCS San Raffaele 'La Pisana', Rome, Italy.
| |
Collapse
|
19
|
Liu M, Wu Y, Liu Y, Chen Z, He S, Zhang H, Wu L, Tu F, Zhao Y, Liu C, Chen X. Basic Fibroblast Growth Factor Protects Astrocytes Against Ischemia/Reperfusion Injury by Upregulating the Caveolin-1/VEGF Signaling Pathway. J Mol Neurosci 2018; 64:211-223. [PMID: 29299743 DOI: 10.1007/s12031-017-1023-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A previous in vivo study demonstrated that intracerebroventricular injection of basic fibroblast growth factor (bFGF) in middle cerebral artery occlusion rats increased the expression of caveolin-1 (cav-1) and vascular endothelial growth factor (VEGF) in cerebral ischemia penumbra. Because astrocytes are the largest population in the brain, the aim of this in vitro study was to investigate the influence of bFGF on cav-1 and VEGF expression in rat astrocytes following oxygen glucose deprivation/reoxygenation (OGD/R). For this, an ischemic model in vitro of oxygen glucose deprivation lasting for 6 h, followed by 24 h of reoxygenation was used. Primary astrocytes from newborn rats were pre-treated with siRNA targeting bFGF before OGD/R. Cell viability was measured by a CCK-8 assay. The protein and mRNA expressions of bFGF, cav-1, and VEGF were evaluated by western blotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. The results showed that OGD/R reduced cell viability, which was decreased further following bFGF knockdown; however, restoring bFGF improved cell survival. A cav-1 inhibitor abrogated the effect of bFGF on cell viability. The expression levels of bFGF mRNA, bFGF protein, cav-1 mRNA, cav-1 protein, and VEGF protein were higher in OGD/R astrocytes. bFGF knockdown markedly decreased the expression levels of cav-1 mRNA, cav-1 protein, and VEGF protein, which were effectively reversed by exogenous bFGF treatment. Moreover, exogenous bFGF treatment significantly increased the expression levels of cav-1 mRNA, cav-1 protein, and VEGF protein in OGD/R astrocytes; however, a cav-1 inhibitor abolished the effect of bFGF on VEGF protein expression. These results suggested that bFGF may protect astrocytes against ischemia/reperfusion injury by upregulating caveolin-1/VEGF signaling pathway.
Collapse
Affiliation(s)
- Meixia Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yudan Wu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yidian Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhen Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Shujuan He
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Huimei Zhang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Liang Wu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Fengxia Tu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yun Zhao
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
20
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Low YS, Daugherty AC, Schroeder EA, Chen W, Seto T, Weber S, Lim M, Hastie T, Mathur M, Desai M, Farrington C, Radin AA, Sirota M, Kenkare P, Thompson CA, Yu PP, Gomez SL, Sledge GW, Kurian AW, Shah NH. Synergistic drug combinations from electronic health records and gene expression. J Am Med Inform Assoc 2017; 24:565-576. [PMID: 27940607 PMCID: PMC6080645 DOI: 10.1093/jamia/ocw161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Using electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding. Method We applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis. Results From EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence. Conclusions This is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing.
Collapse
Affiliation(s)
- Yen S Low
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | | | | | - William Chen
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Tina Seto
- Clinical Informatics, Stanford University
| | | | - Michael Lim
- Department of Statistics, Stanford University
| | - Trevor Hastie
- Department of Statistics, Stanford University.,Department of Health Research and Policy, Stanford University
| | - Maya Mathur
- Quantitative Sciences Unit, Stanford University
| | | | | | | | | | - Pragati Kenkare
- Palo Alto Medical Foundation Research Institute, Palo Alto, CA, USA
| | | | - Peter P Yu
- Palo Alto Medical Foundation Research Institute, Palo Alto, CA, USA
| | - Scarlett L Gomez
- Department of Health Research and Policy, Stanford University.,Cancer Prevention Institute of California, Fremont, CA, USA
| | - George W Sledge
- Division of Oncology, Department of Medicine, Stanford University
| | - Allison W Kurian
- Department of Health Research and Policy, Stanford University.,Division of Oncology, Department of Medicine, Stanford University
| | - Nigam H Shah
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Cheng H, Pan Y, Yao Y, Zhu Z, Chen J, Sun X, Qiu Y, Ding Y. Expression and significance of caveolin-1 in hepatitis B virus-associated hepatocellular carcinoma. Exp Ther Med 2017; 14:4356-4362. [PMID: 29067114 DOI: 10.3892/etm.2017.5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2017] [Indexed: 12/21/2022] Open
Abstract
Caveolin-1 (Cav-1) is a major component of caveolae and has been recently identified as a tumor suppressor. As little is known about Cav-1 in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), the aim of the present study was to investigate the expression and significance of Cav-1 in HBV-associated HCC. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect the mRNA expression level of Cav-1 in 40 cases of HBV-associated HCC, the corresponding 11 non-tumor cases of HBV-associated chronic hepatitis, 29 non-tumor cases of HBV-associated cirrhosis and 6 cases of normal liver tissues. Immunohistochemical analysis indicated the expression of Cav-1, cluster of differentiation 34 and vascular endothelial growth factor (VEGF) in HBV-associated HCC tissue samples. In addition, the association of Cav-1 expression with angiogenesis and clinicopathological characteristics of HBV-associated HCC was also analyzed. RT-PCR results demonstrated that the expression rate of Cav-1 mRNA in HBV-associated HCC, non-tumor HBV-associated chronic hepatitis and cirrhosis liver tissues and control normal liver tissues from patients with metastatic carcinoma was 92.5, 85.0 and 16.7%, respectively. mRNA expression level of Cav-1 was significantly increased in chronic hepatitis, cirrhosis and HBV-associated HCC livers compared with normal control livers (P<0.05 and P<0.01, respectively). Cav-1 protein was detected by immunohistochemistry in 80% of the samples of HBV-associated HCC. Furthermore, Cav-1 and VEGF protein expression levels were correlated with microvessel density (MVD; γs<0.46, P=0.01 and γs<0.31, P=0.05, respectively). In addition, Cav-1 expression and MVD were significantly associated with metastasis (P=0.031 and P=0.046, respectively). In conclusion, Cav-1 may have an important role in the carcinogenesis and progression of HBV-associated HCC and angiogenesis may be affected by Cav-1 during this process.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yiming Pan
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yongzhong Yao
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhanghua Zhu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xitai Sun
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yudong Qiu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yitao Ding
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
Nah J, Yoo SM, Jung S, Jeong EI, Park M, Kaang BK, Jung YK. Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. Cell Death Dis 2017; 8:e2822. [PMID: 28542134 PMCID: PMC5520747 DOI: 10.1038/cddis.2017.71] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
CAV1/Caveolin1, an integral membrane protein, is involved in caveolae function and cellular signaling pathways. Here, we report that CAV1 is a positive regulator of autophagy under oxidative stress and cerebral ischemic injury. Treatment with hydrogen peroxide enhanced autophagy flux and caused the localization of BECN1 to the mitochondria, whereas these changes were impaired in the absence of CAV1. Among many autophagy signals, only LC3 foci formation in response to hydrogen peroxide was abolished by CAV1 deficiency. Under oxidative stress, CAV1 interacted with a complex of BECN1/VPS34 through its scaffolding domain, and this interaction facilitated autophagosome formation. Interestingly, the phosphorylation of CAV1 at tyrosine-14 was essential for the interaction with BECN1 and their localization to the mitochondria, and the activation of autophagy in response to hydrogen peroxide. In addition, the expression of a phosphatase PTPN1 reduced the phosphorylation of CAV1 and inhibited autophagy. Further, compared to that in wild-type mice, autophagy was impaired and cerebral infarct damage was aggravated in the brain of Cav1 knockout mice. These results suggest that the phosphorylated CAV1 functions to activate autophagy through binding to the BECN1/VPS34 complex under oxidative stress and to protect against ischemic damage.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Seung-Min Yoo
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Sunmin Jung
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Eun Il Jeong
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Moonju Park
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| | - Yong-Keun Jung
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Gwanak-gu 151-747, Korea
| |
Collapse
|
24
|
Zhang T, Hu Y, Wang T, Cai P. Dihydroartemisinin inhibits the viability of cervical cancer cells by upregulating caveolin 1 and mitochondrial carrier homolog 2: Involvement of p53 activation and NAD(P)H:quinone oxidoreductase 1 downregulation. Int J Mol Med 2017; 40:21-30. [PMID: 28498397 PMCID: PMC5466377 DOI: 10.3892/ijmm.2017.2980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Dihydroartemisinin (DHA) has been shown to inhibit the viability of various cancer cells. Previous studies have revealed that the mechanisms involved in the inhibitory effects of DHA are based on theactivation of p53 and the mitochondrial-related cell death pathway. However, the exact association between upstream signaling and the activation of cell death pathway remains unclear. In this study, we found that DHA treatment induced the upregulation of caveolin 1 (Cav1) and mitochondrial carrier homolog 2 (MTCH2) in HeLa cells, and this was associated with the DHA-induced inhibition of cell viability and DHA-induced apoptosis. Additionally, the overexpression of Cav1 and MTCH2 in HeLa cells enhanced the inhibitory effects of DHA on cell viability. Moreover, we also found that the upregulation of Cav1 contributed to the DHA-mediated p53 activation and the downregulation of the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), which have been reported to contribute to the activation of the cell death pathway. Of note, we also found that DHA induced the nuclear translocation and accumulation of both Cav1 and p53, indicating a novel potential mechanism, namely the regulation of p53 activation by Cav1. On the whole, our study identified Cav1 and MTCH2 as the molecular targets of DHA and revealed a new link between the upstream Cav1/MTCH2 upregulation and the downstream activation of the cell death pathway involved in the DHA-mediated inhibition of cell viability.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Medical Cell Biology and Genetics, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuan Hu
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Ting Wang
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Peiling Cai
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|
25
|
Caveolin-1: An Oxidative Stress-Related Target for Cancer Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7454031. [PMID: 28546853 PMCID: PMC5436035 DOI: 10.1155/2017/7454031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Aberrant oxidative metabolism is one of the hallmarks of cancer. Reactive species overproduction could promote carcinogenesis via inducing genetic mutations and activating oncogenic pathways, and thus, antioxidant therapy was considered as an important strategy for cancer prevention and treatment. Caveolin-1 (Cav-1), a constituent protein of caveolae, has been shown to mediate tumorigenesis and progression through oxidative stress modulation recently. Reactive species could modulate the expression, degradation, posttranslational modifications, and membrane trafficking of Cav-1, while Cav-1-targeted treatments could scavenge the reactive species. More importantly, emerging evidences have indicated that multiple antioxidants could exert antitumor activities in cancer cells and protective activities in normal cells by modulating the Cav-1 pathway. Altogether, these findings indicate that Cav-1 may be a promising oxidative stress-related target for cancer antioxidant prevention. Elucidating the underlying interaction mechanisms between oxidative stress and Cav-1 is helpful for enhancing the preventive effects of antioxidants on cancer, for improving clinical outcomes of antioxidant-related therapeutics in cancer patients, and for developing Cav-1 targeted drugs. Herein, we summarize the available evidence of the roles of Cav-1 and oxidative stress in tumorigenesis and development and shed novel light on designing strategies for cancer prevention or treatment by utilizing the interaction mode between Cav-1 and oxidative stress.
Collapse
|
26
|
Chang W, Bai J, Tian S, Ma M, Li W, Yin Y, Deng R, Cui J, Li J, Wang G, Zhang P, Tao K. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway. Exp Biol Med (Maywood) 2017; 242:1025-1033. [PMID: 28056554 DOI: 10.1177/1535370216686221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in gastric mucosal epithelial cells. This study brings new and important insights into the mechanism of alcoholic gastric mucosal injury and may provide an avenue for future therapeutic strategies.
Collapse
Affiliation(s)
- Weilong Chang
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,2 Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Jie Bai
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shaobo Tian
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Muyuan Ma
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Wei Li
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yuping Yin
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Deng
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jinyuan Cui
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jinjin Li
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Guobin Wang
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Peng Zhang
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kaixiong Tao
- 1 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
27
|
Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 2016; 15:71. [PMID: 27852311 PMCID: PMC5112640 DOI: 10.1186/s12943-016-0558-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
Caveolin-1 (CAV1) is an oncogenic membrane protein associated with endocytosis, extracellular matrix organisation, cholesterol distribution, cell migration and signaling. Recent studies reveal that CAV1 is involved in metabolic alterations – a critical strategy adopted by cancer cells to their survival advantage. Consequently, research findings suggest that CAV1, which is altered in several cancer types, influences tumour development or progression by controlling metabolism. Understanding the molecular interplay between CAV1 and metabolism could help uncover druggable metabolic targets or pathways of clinical relevance in cancer therapy. Here we review from a cancer perspective, the findings that CAV1 modulates cell metabolism with a focus on glycolysis, mitochondrial bioenergetics, glutaminolysis, fatty acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany. .,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
28
|
Kassan A, Pham U, Nguyen Q, Reichelt ME, Cho E, Patel PM, Roth DM, Head BP, Patel HH. Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 311:C854-C865. [PMID: 27707689 PMCID: PMC5206298 DOI: 10.1152/ajpcell.00147.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
Autophagy is a dynamic recycling process responsible for the breakdown of misfolded proteins and damaged organelles, providing nutrients and energy for cellular renovation and homeostasis. Loss of autophagy is associated with cardiovascular diseases. Caveolin-3 (Cav-3), a muscle-specific isoform, is a structural protein within caveolae and is critical to stress adaptation in the heart. Whether Cav-3 plays a role in regulating autophagy to modulate cardiac stress responses remains unknown. In the present study, we used HL-1 cells, a cardiac muscle cell line, with stable Cav-3 knockdown (Cav-3 KD) and Cav-3 overexpression (Cav-3 OE) to study the impact of Cav-3 in regulation of autophagy. We show that traditional stimulators of autophagy (i.e., rapamycin and starvation) result in upregulation of the process in Cav-3 OE cells while Cav-3 KD cells have a blunted response. Cav-3 coimmunoprecipitated with beclin-1 and Atg12, showing an interaction of caveolin with autophagy-related proteins. In the heart, autophagy may be a major regulator of protection from ischemic stress. We found that Cav-3 KD cells have a decreased expression of autophagy markers [beclin-1, light chain (LC3-II)] after simulated ischemia and ischemia-reperfusion (I/R) compared with WT, whereas OE cells showed increased expression. Moreover, Cav-3 KD cells showed increased cell death and higher level of apoptotic proteins (cleaved caspase-3 and cytochrome c) with suppressed mitochondrial function in response to simulated ischemia and I/R, whereas Cav-3 OE cells were protected and had preserved mitochondrial function. Taken together, these results indicate that autophagy regulates adaptation to cardiac stress in a Cav-3-dependent manner.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, School of Medicine, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Uyen Pham
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Quynhmy Nguyen
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Eunbyul Cho
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Piyush M Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - David M Roth
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Brian P Head
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California; .,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
29
|
Zou W, Ma X, Hua W, Chen B, Cai G. Caveolin-1 mediates chemoresistance in cisplatin-resistant ovarian cancer cells by targeting apoptosis through the Notch-1/Akt/NF-κB pathway. Oncol Rep 2016; 34:3256-63. [PMID: 26503358 DOI: 10.3892/or.2015.4320] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 (Cav-1), a family of ubiquitously expressed oligomeric structural proteins in many mammalian cells, has been shown to be an effective regulator of tumorigenesis. Recent studies have indicated that Cav-1 can promote resistance to chemotherapy in a variety of tumors. However, the regulation of Cav-1 on chemoresistance in ovarian cancer is still unknown. In the present study, the mRNA and protein expression level was investigated by RT-PCR and western blot analysis, respectively, and the 50% inhibitory concentration (IC50) value was measured by MTT assay. The protein expression level of P-glycoprotein (P-gp), Notch-1, p-Akt and p-NF-κB p65 were detected using western blot analysis and the apoptotic ratio was determined using the Annexin V-FITC/PI detection kit. The results showed that the mRNA and protein expression levels of Cav-1 were significantly higher in SKOV3/DDP and A2780/DDP than in SKOV3 and A2780, respectively. Knockdown of Cav-1 significantly decreased the IC50 value in cisplatin-resistant cells. The protein expression level of P-gp in SKOV3/DDP and A2780/DDP was significant higher than SKOV3 and A2780, respectively, and had no correlation with the Cav-1 siRNA transfection. The apoptotic ratio induced by cisplatin in normal ovarian cancer cells was higher than cisplatin-resistant ovarian cancer cells, and knockdown of Cav-1 could significantly enhance cisplatin induced cell apoptosis. Furthermore, knockdown of Cav-1 was also able to significantly downregulate the protein expression level of Notch-1, p-Akt and p-NF-κB p65 in cisplatin-resistant ovarian cancer cells. Overexpression of Cav-1 upregulated the IC50 value, but under the effect of Notch-1 siRNA or LY294002 or PDTC, the IC50 value was markedly decreased. Our results suggested that Cav-1 can promote the chemoresistance of ovarian cancer by targeting apoptosis through the Notch-1/Akt/NF-κB pathway.
Collapse
|
30
|
Sohun M, Shen H. The implication and potential applications of high-mobility group box 1 protein in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:217. [PMID: 27386491 PMCID: PMC4916368 DOI: 10.21037/atm.2016.05.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
High-mobility group box 1 protein (HMGB1) is a highly conserved, non-histone and ubiquitous chromosomal protein found enriched in active chromatin forming part of the high mobility group family of proteins and is encoded by the HMGB1 gene (13q12) in human beings. It has various intranuclear and extracellular functions. It plays an important role in the pathogenesis of many diseases including cancer. In 2012, there was approximately 1.67 million new breast cancer cases diagnosed which makes it the second most frequent cancer in the world after lung cancer (25% of all cancers) and the commonest cancer among women. Both pre-clinical and clinical studies have suggested that HMGB1 might be a useful target in the management of breast cancer. This review summarises the structure and functions of HMGB1 and its dual role in carcinogenesis both as a pro-tumorigenic and anti-tumorigenic factor. It also sums up evidence from in vitro and in vivo studies using breast cancer cell lines and samples which demonstrate its influence in radiotherapy, chemotherapy and hormonal therapy in breast cancer. It may have particular importance in HER2 positive and metastatic breast cancer. It might pave the way for new breast cancer treatments through development of novel drugs, use of microRNAs (miRNAs), targeting breast cancer stem cells (CSCs) and breast cancer immunotherapy. It may also play a role in determining breast cancer prognosis. Thus HMGB1 may open up novel avenues in breast cancer management.
Collapse
Affiliation(s)
- Moonindranath Sohun
- Department of Oncology, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Huiling Shen
- Department of Oncology, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
31
|
Yen CY, Huang HW, Shu CW, Hou MF, Yuan SSF, Wang HR, Chang YT, Farooqi AA, Tang JY, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373:185-92. [DOI: 10.1016/j.canlet.2016.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 02/09/2023]
|