1
|
Tang Y, Frisendahl C, Piltonen TT, Arffman RK, Lalitkumar PG, Gemzell-Danielsson K. Human Endometrial Pericytes: A Comprehensive Overview of Their Physiological Functions and Implications in Uterine Disorders. Cells 2024; 13:1510. [PMID: 39273080 PMCID: PMC11394273 DOI: 10.3390/cells13171510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Pericytes are versatile cells integral to the blood vessel walls of the microcirculation, where they exhibit specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, and maintaining homeostasis and are involved in the tissue repair process. The human endometrium is a unique and complex tissue that serves as a natural scar-free healing model with its cyclical repair and regeneration process every month. The regulation of pericytes has gained increasing attention due to their involvement in various physiological and pathological processes. However, endometrial pericytes are less well studied compared to the pericytes in other organs. This review aims to provide a comprehensive overview of endometrial pericytes, with a focus on elucidating their physiological function and potential implications in uterine disorders.
Collapse
Affiliation(s)
- Yiqun Tang
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Caroline Frisendahl
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Parameswaran Grace Lalitkumar
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden
| |
Collapse
|
2
|
Mahabharathi K, Sharma T, Mukherjee S, Joshi D, Kapoor N. Evaluation of the Vascular Endothelial Growth Factor and Smooth Muscle Actin Expression With Microvessel Density and Morphometric Analysis of Endometrial Vessels in Patients With Abnormal Uterine Bleeding. Cureus 2024; 16:e64125. [PMID: 39119382 PMCID: PMC11306986 DOI: 10.7759/cureus.64125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Abnormal uterine bleeding (AUB) that occurs in a structurally normal uterus with regular menstrual cycles and without other identifiable etiology is often caused by a primary endometrial disorder (AUB-E). Altered vascular morphological changes and expression of markers of angiogenesis have been implicated as an underlying cause in these cases. OBJECTIVES The study was conducted to investigate the expression of vascular endothelial growth factor (VEGF) and smooth muscle actin-alpha (SMA-α), and to perform microvessel density (MVD), and morphometric evaluation of endometrial vessels in patients with AUB-E. MATERIAL AND METHODS Endometrial biopsies and hysterectomy specimens of 40 patients clinically diagnosed with AUB-E were included in the study with 40 age-matched controls. Immunohistochemistry (IHC) with VEGF and SMA-α was performed, and the expression and staining pattern was recorded as the number of positive vessels per 10 high power fields and intensity scores. Morphometric analysis was performed on CD34 stained sections using Leica Application Suite, version 4.4.0 software (Leica Microsystems, Wetzlar, Germany). MVD was calculated by the vascular hotspot method. RESULTS A statistically significant increase in VEGF vessel count (p-value<0.001) and a decline in SMA-α expression (p-value=0.23) was seen in cases as compared to the control group. There was a statistically significant increase in microvessel caliber (p-value=0.01) and MVD (p-value <0.001) in cases as compared to controls. CONCLUSION These findings support aberrant vascular proliferation and impaired vessel maturation, contributing to the pathology of AUB-E. Alterations in angiogenesis in these patients reveal potential therapeutic targets for AUB.
Collapse
Affiliation(s)
- Kodavali Mahabharathi
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Tanya Sharma
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Soma Mukherjee
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Deepti Joshi
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Neelkamal Kapoor
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
3
|
Zhang C, Shi J, Dai Y, Li X, Leng J. Progress of the study of pericytes and their potential research value in adenomyosis. Sci Prog 2024; 107:368504241257126. [PMID: 38863331 PMCID: PMC11179483 DOI: 10.1177/00368504241257126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
4
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. Pericyte loss leads to microvessel remodeling and nasal polyp formation. Acta Otolaryngol 2023; 143:876-886. [PMID: 38148737 DOI: 10.1080/00016489.2023.2276345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) may be caused by increased vascular permeability and inflammatory cell leakage in the subepithelial tissue. AIMS/OBJECTIVES The aim of this study is to clarify the role of pericytes in tissue edema, microvessel dysfunction and vascular remodeling mechanisms in patients of CRS with nasal polyps (CRSwNP). MATERIAL AND METHODS A total of 63 tissue samples were collected, including 42 CRSwNP samples (22 eosinophilic CRSwNP (eCRSwNP) and 20 non-eosinophilic CRSwNP (non-eCRSwNP) samples) and 21 samples of CRS without nasal polyps (CRSsNP). The samples were stained by immunofluorescence to measure microvessel density (MVD) and microvessel pericyte coverage index (MPI). RESULTS We found that the albumin expression in the eCRSwNP group was significantly increased (p < .05). The MPI was significantly decreased (p <.05). There was a significant negative correlation between the MPI and the plasma albumin level (r=-0.82, p < .05). The MPI was negatively correlated with eosinophilic count (r=-0.77, p < .05). In the eCRSwNP group, the expressions of IL-4, Ang-1 and Ang-2 were increased compared with those in the control group. CONCLUSIONS AND SIGNIFICANCE Pericyte loss may induce microvessel dysfunction, affect the development of interstitial edema and eosinophilic exosmosis in eCRSwNP, and contribute to the formation and maintenance of nasal polyps.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Middelkoop MA, Don EE, Hehenkamp WJK, Polman NJ, Griffioen AW, Huirne JAF. Angiogenesis in abnormal uterine bleeding: a narrative review. Hum Reprod Update 2023; 29:457-485. [PMID: 36857162 PMCID: PMC10320491 DOI: 10.1093/humupd/dmad004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Abnormal uterine bleeding (AUB) has a significant socioeconomic impact since it considerably impacts quality of life. Therapeutic options are frequently based on trial and error and do not target disease aetiology. Pathophysiological insight in this disease is required for the development of novel treatment options. If no underlying cause is found for the AUB (e.g. fibroids, adenomyosis, polyps), endometrial-AUB (AUB-E) is usually caused by a primary endometrium disorder. When AUB is induced by prescribed (exogenous) hormones, it is classified as iatrogenic-AUB (AUB-I). Considering vascular modulation and function, AUB-E and AUB-I both could potentially result from abnormal vascularization in the endometrium due to alterations in the process of angiogenesis and vascular maturation. OBJECTIVE AND RATIONALE We aim to investigate the fundamental role of angiogenesis and vascular maturation in patients with AUB and hypothesize that aberrant endometrial angiogenesis has an important role in the aetiology of both AUB-E and AUB-I, possibly through different mechanisms. SEARCH METHODS A systematic literature search was performed until September 2021 in the Cochrane Library Databases, Embase, PubMed, and Web of Science, with search terms such as angiogenesis and abnormal uterine bleeding. Included studies reported on angiogenesis in the endometrium of premenopausal women with AUB-E or AUB-I. Case reports, letters, reviews, editorial articles, and studies on AUB with causes classified by the International Federation of Gynecology and Obstetrics as myometrial, oncological, or infectious, were excluded. Study quality was assessed by risk of bias, using the Cochrane tool and the Newcastle-Ottawa Scale. OUTCOMES Thirty-five out of 2158 articles were included. In patients with AUB-E, vascular endothelial growth factor A and its receptors (1 and 2), as well as the angiopoietin-1:angiopoietin-2 ratio and Tie-1, were significantly increased. Several studies reported on the differential expression of other pro- and antiangiogenic factors in patients with AUB-E, suggesting aberrant vascular maturation and impaired vessel integrity. Overall, endometrial microvessel density (MVD) was comparable in patients with AUB-E and controls. Interestingly, patients with AUB-I showed a higher MVD and higher expression of proangiogenic factors when compared to controls, in particular after short-term hormone exposure. This effect was gradually lost after longer-term exposure, while alterations in vessel maturation were observed after both short- and long-term exposures. WIDER IMPLICATIONS AUB-E and AUB-I are most likely associated with aberrant endometrial angiogenesis and impaired vessel maturation. This review supports existing evidence that increased proangiogenic and decreased antiangiogenic factors cause impaired vessel maturation, resulting in more fragile and permeable vessels. This matches our hypothesis and these mechanisms appear to play an important role in the pathophysiology of AUB-E and AUB-I. Exploring the alterations in angiogenesis in these patients could provide treatment targets for AUB.
Collapse
Affiliation(s)
- Mei-An Middelkoop
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Emma E Don
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Wouter J K Hehenkamp
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Nicole J Polman
- Department of Obstetrics and Gynaecology, Flevoziekenhuis, Almere, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Endometrial macrophages in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:183-208. [PMID: 35461658 DOI: 10.1016/bs.ircmb.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Macrophages are present in the endometrium throughout the menstrual cycle and are most abundant during menstruation. Endometrial macrophages contribute to tissue remodeling during establishment of pregnancy and are thought to play key roles in mediating tissue breakdown and repair during menstruation. Despite these important roles, the phenotype and function of endometrial macrophages remains poorly understood. In this review, we summarize approaches used to characterize endometrial macrophage phenotype, current understanding of the functional role of macrophages in normal endometrial physiology as well as the putative contribution of macrophage dysfunction to women's reproductive health disorders.
Collapse
|
7
|
Platelet derived growth factor (PDGF) BB is reduced in endometrial endothelial cells of women with abnormal uterine bleeding-endometrial disorder. Reprod Biomed Online 2022; 45:531-543. [DOI: 10.1016/j.rbmo.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
|
8
|
Kaygusuz I, Semerci Gündüz N. Investigation of vascular endothelial growth factor (VEGF) polymorphism in patients with idiopathic heavy menstrual bleeding. Arch Gynecol Obstet 2021; 305:109-116. [DOI: 10.1007/s00404-021-06225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
|
9
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
10
|
Kirkwood PM, Gibson DA, Smith JR, Wilson-Kanamori JR, Kelepouri O, Esnal-Zufiaurre A, Dobie R, Henderson NC, Saunders PTK. Single-cell RNA sequencing redefines the mesenchymal cell landscape of mouse endometrium. FASEB J 2021; 35:e21285. [PMID: 33710643 PMCID: PMC9328940 DOI: 10.1096/fj.202002123r] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
The endometrium is a dynamic tissue that exhibits remarkable resilience to repeated episodes of differentiation, breakdown, regeneration, and remodeling. Endometrial physiology relies on a complex interplay between the stromal and epithelial compartments with the former containing a mixture of fibroblasts, vascular, and immune cells. There is evidence for rare populations of putative mesenchymal progenitor cells located in the perivascular niche of human endometrium, but the existence of an equivalent cell population in mouse is unclear. We used the Pdgfrb‐BAC‐eGFP transgenic reporter mouse in combination with bulk and single‐cell RNA sequencing to redefine the endometrial mesenchyme. In contrast to previous reports we show that CD146 is expressed in both PDGFRβ + perivascular cells and CD31 + endothelial cells. Bulk RNAseq revealed cells in the perivascular niche which express the high levels of Pdgfrb as well as genes previously identified in pericytes and/or vascular smooth muscle cells (Acta2, Myh11, Olfr78, Cspg4, Rgs4, Rgs5, Kcnj8, and Abcc9). scRNA‐seq identified five subpopulations of cells including closely related pericytes/vascular smooth muscle cells and three subpopulations of fibroblasts. All three fibroblast populations were PDGFRα+/CD34 + but were distinct in their expression of Ngfr/Spon2/Angptl7 (F1), Cxcl14/Smoc2/Rgs2 (F2), and Clec3b/Col14a1/Mmp3 (F3), with potential functions in the regulation of immune responses, response to wounding, and organization of extracellular matrix, respectively. Immunohistochemistry was used to investigate the spatial distribution of these populations revealing F1/NGFR + cells in most abundance beside epithelial cells. We provide the first definitive analysis of mesenchymal cells in the adult mouse endometrium identifying five subpopulations providing a platform for comparisons between mesenchymal cells in endometrium and other adult tissues which are prone to fibrosis.
Collapse
Affiliation(s)
- Phoebe M Kirkwood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - James R Smith
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Olympia Kelepouri
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
B Arcanjo R, Richardson KA, Yang S, Patel S, Flaws JA, Nowak RA. Effects of Chronic Dietary Exposure to Phytoestrogen Genistein on Uterine Morphology in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1693-1704. [PMID: 33528250 DOI: 10.1021/acs.jafc.0c07456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genistein is naturally occurring in plants and binds to estrogen receptors. Humans are mainly exposed through diet, but the use of supplements is increasing as genistein is claimed to promote health and alleviate menopausal symptoms. We analyzed diverse uterine features in adult mice chronically fed genistein for different times. The luminal epithelium height was increased in females treated with 500 and 1000 ppm at PND 95, and the width of the outer myometrium was increased in females treated with 1000 ppm at PND 65 compared to that in controls. An increase in proliferation was noted in the inner myometrium layer of animals exposed to 300 ppm genistein at PND 185 compared to that in controls. Luminal hyperplasia was greater in the 1000 ppm group at PND 65, 95, and 185, although not statistically different from control. These results indicate that genistein may exert estrogenic activity in the uterus, without persistent harm to the organ.
Collapse
Affiliation(s)
- Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Kadeem A Richardson
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shuhong Yang
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shreya Patel
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
13
|
Muñoz-Fernández R, de la Mata C, Prados A, Perea A, Ruiz-Magaña MJ, Llorca T, Fernández-Rubio P, Blanco O, Abadía-Molina AC, Olivares EG. Human predecidual stromal cells have distinctive characteristics of pericytes: Cell contractility, chemotactic activity, and expression of pericyte markers and angiogenic factors. Placenta 2018; 61:39-47. [DOI: 10.1016/j.placenta.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
|
14
|
Demolli S, Doddaballapur A, Devraj K, Stark K, Manavski Y, Eckart A, Zehendner CM, Lucas T, Korff T, Hecker M, Massberg S, Liebner S, Kaluza D, Boon RA, Dimmeler S. Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovasc Res 2017; 113:681-691. [PMID: 28453731 DOI: 10.1093/cvr/cvx032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 11/14/2022] Open
Abstract
AIMS Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. METHODS AND RESULTS Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. CONCLUSION The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.
Collapse
Affiliation(s)
- Shemsi Demolli
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Anuradha Doddaballapur
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Kavi Devraj
- Institute for Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Yosif Manavski
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Annekathrin Eckart
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Christoph M Zehendner
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- ZIM III, Department of Cardiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tina Lucas
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, 69120 Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Munich, Germany
| | - Stefan Liebner
- Institute for Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - David Kaluza
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite RheinMain, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite RheinMain, Germany
| |
Collapse
|
15
|
Elkilani OA, Soliman MA. Angiogenesis mediators in women with idiopathic heavy menstrual bleeding. Int J Gynaecol Obstet 2016; 136:280-284. [PMID: 28099683 DOI: 10.1002/ijgo.12068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/04/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the relationship between stromal cell-derived factor 1 (SDF-1) and mature endothelial cells in patients with heavy menstrual bleeding (HMB). METHODS In a prospective observational study, women with idiopathic HMB and control individuals attending Menoufia University Hospital, Egypt, between August 2015 and January 2016 were enrolled. The inclusion criteria were a regular menstrual cycle, a normal coagulation study, and no anomalous ultrasonographic or hysteroscopic findings. Blood samples were collected during different phases of the menstrual cycle (day 5, ovulation, day 24) for measurement of the SDF-1 plasma level (by enzyme-linked immunosorbent assay) and for quantification of mature endothelial cells (by flow cytometry). RESULTS Overall, 20 women with HMB and 10 control individuals were enrolled. The SDF-1 level was significantly lower in the HMB group than in the control group during all phases of the menstrual cycle (P≤0.05 for all). The percentage of mature endothelial cells was significantly higher in the HMB group than among controls (P<0.001 for all). The SDF-1 level and the percentage of endothelial cells were negatively correlated throughout the cycle (P<0.001 for all). CONCLUSION Some mediators of angiogenesis, such as SDF-1 and endothelial cells, are disturbed in women with idiopathic HMB.
Collapse
Affiliation(s)
- Osama A Elkilani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohamed A Soliman
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
16
|
Aberrant bone marrow vascularization patterns in untreated patients with Gaucher disease type 1. Blood Cells Mol Dis 2016; 68:54-59. [PMID: 27836528 DOI: 10.1016/j.bcmd.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023]
Abstract
Bone marrow (BM) in subjects with Gaucher disease (GD) displays accumulation of Gaucher cells (GC), i.e. glucocerebroside-laden macrophages. Following the assumption that macrophage proliferation and perturbation in GD modulates local inflammation-associated phenomena including angiogenesis, BM biopsies from 11 untreated GD patients and 36 controls were investigated for morphology and angiogenesis-associated features. These included microvascular density, (MVD), vessel structure and pericyte coverage, expression of VEGF-A and angiopoietins (ANGPT1 and 2). In GD BM, cellularity was higher, and GC clustered in cohesive but poorly demarcated areas, leaving irregular islands with normal hematopoiesis. MVD was 2.6-fold higher in GD marrows than in controls (p<0.001). In GC-rich areas, MVD was 1.4-fold higher (p=0.026), and vessel architecture was abnormal compared with GC-poor areas. MVD correlated with BM cellularity, particularly in GC-rich areas. Moreover, 30±17% of GD BM vessels were pericyte-coated, significantly fewer than in controls (48±16%; p<0.001). Expression of ANGPT1 and 2 was significantly higher in GD BM vessel walls than in controls (7.2- and 13.2-fold higher), whereas VEGF expression was 20-fold lower (p<0.05 for all). Thus, human GD BM shows increased angiogenesis with defective pericyte coating and skewed VEGF/ANGPT1 and 2 balances, presumably related to local accumulation of GC.
Collapse
|
17
|
Pakrashi T, Taylor JE, Nelson A, Archer DF, Jacot T. The Effect of Levonorgestrel on Fibrinolytic Factors in Human Endometrial Endothelial Cells. Reprod Sci 2016; 23:1536-1541. [DOI: 10.1177/1933719116645193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tarita Pakrashi
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | | | - Ashley Nelson
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | - David F. Archer
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | - Terry Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|