1
|
Amor-Salamanca A, Santana Rodríguez A, Rasoul H, Rodríguez-Palomares JF, Moldovan O, Hey TM, Delgado MG, Cuenca DL, de Castro Campos D, Basurte-Elorz MT, Macías-Ruiz R, Fuentes Cañamero ME, Galvin J, Bilbao Quesada R, de la Higuera Romero L, Trujillo-Quintero JP, García-Cruz LM, Cárdenas-Reyes I, Jiménez-Jáimez J, García-Hernández S, Valverde-Gómez M, Gómez-Díaz I, Limeres Freire J, García-Pinilla JM, Gimeno-Blanes JR, Savattis K, García-Pavía P, Ochoa JP. Role of TBX20 Truncating Variants in Dilated Cardiomyopathy and Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004404. [PMID: 38353104 PMCID: PMC11019988 DOI: 10.1161/circgen.123.004404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/07/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Less than 40% of patients with dilated cardiomyopathy (DCM) have a pathogenic/likely pathogenic genetic variant identified. TBX20 has been linked to congenital heart defects; although an association with left ventricular noncompaction (LVNC) and DCM has been proposed, it is still considered a gene with limited evidence for these phenotypes. This study sought to investigate the association between the TBX20 truncating variant (TBX20tv) and DCM/LVNC. METHODS TBX20 was sequenced by next-generation sequencing in 7463 unrelated probands with a diagnosis of DCM or LVNC, 22 773 probands of an internal comparison group (hypertrophic cardiomyopathy, channelopathies, or aortic diseases), and 124 098 external controls (individuals from the gnomAD database). Enrichment of TBX20tv in DCM/LVNC was calculated, cosegregation was determined in selected families, and clinical characteristics and outcomes were analyzed in carriers. RESULTS TBX20tv was enriched in DCM/LVNC (24/7463; 0.32%) compared with internal (1/22 773; 0.004%) and external comparison groups (4/124 098; 0.003%), with odds ratios of 73.23 (95% CI, 9.90-541.45; P<0.0001) and 99.76 (95% CI, 34.60-287.62; P<0.0001), respectively. TBX20tv was cosegregated with DCM/LVNC phenotype in 21 families for a combined logarythm of the odds score of 4.53 (strong linkage). Among 57 individuals with TBX20tv (49.1% men; mean age, 35.9±20.8 years), 41 (71.9%) exhibited DCM/LVNC, of whom 14 (34.1%) had also congenital heart defects. After a median follow-up of 6.9 (95% CI, 25-75:3.6-14.5) years, 9.7% of patients with DCM/LVNC had end-stage heart failure events and 4.8% experienced malignant ventricular arrhythmias. CONCLUSIONS TBX20tv is associated with DCM/LVNC; congenital heart defect is also present in around one-third of cases. TBX20tv-associated DCM/LVNC is characterized by a nonaggressive phenotype, with a low incidence of major cardiovascular events. TBX20 should be considered a definitive gene for DCM and LVNC and routinely included in genetic testing panels for these phenotypes.
Collapse
Affiliation(s)
- Almudena Amor-Salamanca
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Alfredo Santana Rodríguez
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Hazhee Rasoul
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
| | - José F. Rodríguez-Palomares
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- Vall d′Hebron Rsrch Unit, Barcelona, Spain (J.F.R.-P.)
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - Oana Moldovan
- Serviço de Genética Médica, Department de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Portugal (O.M.)
| | - Thomas Morris Hey
- Department of Cardiology, The Clinic of Inherited Cardiovascular Diseases, Odense University Hospital, Denmark (T.M.H.)
| | - María Gallego Delgado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Cardiology Department, Hospital Universitario de Salamanca, Spain (M.G.D.)
- Biomedical Research Institute of Salamanca, Gerencia Regional de Salud de Castilla y León, Spain (M.G.D.)
| | - David López Cuenca
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Daniel de Castro Campos
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
| | | | - Rosa Macías-Ruiz
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | | | - Joseph Galvin
- Department of Cardiology, University College Dublin School of Medicine, Mater Misericordiae University Hospital, Ireland (J.G.)
| | | | - Luis de la Higuera Romero
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Pablo Trujillo-Quintero
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Sabadell, Spain (J.P.T.-Q.)
- Institut d’Investigació i Innovació Parc Taulí, Sabadell, Spain (J.P.T.-Q.)
| | - Loida María García-Cruz
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Ivonne Cárdenas-Reyes
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Jiménez-Jáimez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | - Soledad García-Hernández
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Inherited Cardiac Diseases Unit, Hospital Universitario San Cecilio, Granada, Spain (S.G.-H.)
| | - María Valverde-Gómez
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (M.V.-G.)
| | - Iria Gómez-Díaz
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Javier Limeres Freire
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - José M. García-Pinilla
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain (J.M.G.-P.)
- Department of Medicine and Dermatology, Universidad de Málaga, Spain (J.M.G.-P.)
| | - Juan R. Gimeno-Blanes
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Konstantinos Savattis
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
- Institute for Cardiovascular Science, University College London, United Kingdom (K.S.)
- Biomedical Research Center, National Institute for Health and Care Research (NIHR) University College London Hospitals, United Kingdom (K.S.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.S.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain (P.G.-P.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| | - Juan Pablo Ochoa
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| |
Collapse
|
2
|
Wang T, Chen X, Wang K, Ju J, Yu X, Wang S, Liu C, Wang K. Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Front Cardiovasc Med 2023; 10:1085629. [PMID: 36923960 PMCID: PMC10008892 DOI: 10.3389/fcvm.2023.1085629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes. Therefore, emerging lineage-tracing techniques advance the study of cardiovascular-related cellular plasticity. In this review, we illustrate the principles and methods of the emerging Cre-loxP-based genetic lineage tracing technology for trajectory monitoring of distinct cell lineages in the heart. The comprehensive demonstration of the differentiation process of single-cell progeny using genetic lineage tracing technology has made outstanding contributions to cardiac development and homeostasis, providing new therapeutic strategies for tissue regeneration in congenital and cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shaocong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Integrated bioinformatics analysis reveals marker genes and immune infiltration for pulmonary arterial hypertension. Sci Rep 2022; 12:10154. [PMID: 35710932 PMCID: PMC9203517 DOI: 10.1038/s41598-022-14307-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary syndrome with high pulmonary vascular load and eventually causing RV heart failure even death. However, the mechanism of pulmonary hypertension remains unclear. The purpose of this research is to detect the underlying key genes and potential mechanism of PAH using several bioinformatic methods. The microarrays GSE22356, GSE131793 and GSE168905 were acquired from the GEO. Subsequently, a host of bioinformatics techniques such as DAVID, STRING, R language and Cytoscape were utilized to investigate DEGs between PAH and healthy controls and conduct GO annotation, KEGG enrichment analysis and PPI network construction etc. Additionally, we predicted the transcription factors regulating DEGs through iRegulon plugin of Cytoscape and CIBERSORT was used to conduct immune infiltration analysis. One thousand two hundred and seventy-seven DEGs (403 up-regulated and 874 down-regulated) were identified from peripheral blood samples of 32 PAH patients and 29 controls, among which SLC4A1, AHSP, ALAS2, CA1, HBD, SNCA, HBM, SELENBP1, SERPINE1 and ITGA2B were detected as hub genes. The functional enrichment changes of DEGs were mainly enriched in protein binding, extracellular exosome, extracellular space, extracellular region and integral component of plasma membrane. The hub genes are chiefly enriched at extracellular exosome, hemoglobin complex, blood microparticle, oxygen transporter activity. Among TF-DEGs network, 42 target DEGs and 6 TFs were predicted with an NES > 4 (TEAD4, TGIF2LY, GATA5, GATA1, GATA2, FOS). Immune infiltration analysis showed that monocytes occupied the largest proportion of immune cells. The trend analysis results of infiltration immune cells illustrated that PAH patients had higher infiltration of NK cell activation, monocyte, T cell CD4 memory activation, and mast cell than healthy controls and lower infiltration of T cell CD4 naive. We detected SLC4A1, AHSP, ALAS2, CA1, HBD, SNCA, HBM, SELENBP1, SERPINE1 and ITGA2B as the most significant markers of PAH. The PAH patients had higher infiltration of NK cell activation, monocyte, T cell CD4 memory activation, and mast cell than healthy controls and lower infiltration of T cell CD4 naive. These identified genes and these immune cells probably have precise regulatory relationships in the development of PAH.
Collapse
|
4
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
5
|
Winter MJ, Ono Y, Ball JS, Walentinsson A, Michaelsson E, Tochwin A, Scholpp S, Tyler CR, Rees S, Hetheridge MJ, Bohlooly-Y M. A Combined Human in Silico and CRISPR/Cas9-Mediated in Vivo Zebrafish Based Approach to Provide Phenotypic Data for Supporting Early Target Validation. Front Pharmacol 2022; 13:827686. [PMID: 35548346 PMCID: PMC9082939 DOI: 10.3389/fphar.2022.827686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
The clinical heterogeneity of heart failure has challenged our understanding of the underlying genetic mechanisms of this disease. In this respect, large-scale patient DNA sequencing studies have become an invaluable strategy for identifying potential genetic contributing factors. The complex aetiology of heart failure, however, also means that in vivo models are vital to understand the links between genetic perturbations and functional impacts as part of the process for validating potential new drug targets. Traditional approaches (e.g., genetically-modified mice) are optimal for assessing small numbers of genes, but less practical when multiple genes are identified. The zebrafish, in contrast, offers great potential for higher throughput in vivo gene functional assessment to aid target prioritisation, by providing more confidence in target relevance and facilitating gene selection for definitive loss of function studies undertaken in mice. Here we used whole-exome sequencing and bioinformatics on human patient data to identify 3 genes (API5, HSPB7, and LMO2) suggestively associated with heart failure that were also predicted to play a broader role in disease aetiology. The role of these genes in cardiovascular system development and function was then further investigated using in vivo CRISPR/Cas9-mediated gene mutation analysis in zebrafish. We observed multiple impacts in F0 knockout zebrafish embryos (crispants) following effective somatic mutation, including changes in ventricle size, pericardial oedema, and chamber malformation. In the case of lmo2, there was also a significant impact on cardiovascular function as well as an expected reduction in erythropoiesis. The data generated from both the human in silico and zebrafish in vivo assessments undertaken supports further investigation of the potential roles of API5, HSPB7, and LMO2 in human cardiovascular disease. The data presented also supports the use of human in silico genetic variant analysis, in combination with zebrafish crispant phenotyping, as a powerful approach for assessing gene function as part of an integrated multi-level drug target validation strategy.
Collapse
Affiliation(s)
- Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Yosuke Ono
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan S Ball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Michaelsson
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Tochwin
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steve Rees
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Malcolm J Hetheridge
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
7
|
Tan Z, Wu L, Fang Y, Chen P, Wan R, Shen Y, Hu J, Jiang Z, Hong K. Systemic Bioinformatic Analyses of Nuclear-Encoded Mitochondrial Genes in Hypertrophic Cardiomyopathy. Front Genet 2021; 12:670787. [PMID: 34054926 PMCID: PMC8150003 DOI: 10.3389/fgene.2021.670787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease and mitochondria plays a key role in the progression in HCM. Here, we analyzed the expression pattern of nuclear-encoded mitochondrial genes (NMGenes) in HCM and found that the expression of NMGenes was significantly changed. A total of 316 differentially expressed NMGenes (DE-NMGenes) were identified. Pathway enrichment analyses showed that energy metabolism-related pathways such as "pyruvate metabolism" and "fatty acid degradation" were dysregulated, which highlighted the importance of energy metabolism in HCM. Next, we constructed a protein-protein interaction network based on 316 DE-NMGenes and identified thirteen hubs. Then, a total of 17 TFs (transcription factors) were predicted to potentially regulate the expression of 316 DE-NMGenes according to iRegulon, among which 8 TFs were already found involved in pathological hypertrophy. The remaining TFs (like GATA1, GATA5, and NFYA) were good candidates for further experimental verification. Finally, a mouse model of transverse aortic constriction (TAC) was established to validate the genes and results showed that DDIT4, TKT, CLIC1, DDOST, and SNCA were all upregulated in TAC mice. The present study represents the first effort to evaluate the global expression pattern of NMGenes in HCM and provides innovative insight into the molecular mechanism of HCM.
Collapse
Affiliation(s)
- Zhaochong Tan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Limeng Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingshan Chen
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Patterson J, Coats C, McGowan R. Familial dilated cardiomyopathy associated with pathogenic TBX5 variants: Expanding the cardiac phenotype associated with Holt-Oram syndrome. Am J Med Genet A 2020; 182:1725-1734. [PMID: 32449309 DOI: 10.1002/ajmg.a.61635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/07/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant disorder caused by heterozygous pathogenic variants in cardiac T-box transcription factor, TBX5. Classically, it is associated with upper limb malformations and variable cardiac abnormalities. Limb manifestations are considered to be invariably present, ranging in severity from limitation in movement, to triphalangeal thumbs, absent thumbs, shortened forearms, or phocomelia. Cardiac involvement is characterized by congenital heart defects, most commonly septal structural malformations, and conduction system disease. Recently, novel TBX5 variants have also been reported in association with dilated cardiomyopathy (DCM). In this context, we report eight individuals from four unrelated families, in whom pathogenic variants in TBX5 segregated with an atypical HOS phenotype. Affected individuals exhibit relatively mild skeletal features of HOS, with a predominant cardiac phenotype, which includes several individuals affected by non-ischaemic DCM. To our knowledge, these represent the first reported cases of DCM in families with skeletal features of HOS, some of whom also harbored variants previously linked to a classical HOS phenotype (p. Arg279* and p.Arg237Gln). This finding supports diverse roles of TBX5 in cardiovascular development and function, and confirms the importance of long-term cardiac surveillance for individuals affected by HOS. Furthermore, these families highlight the wide phenotypic variability of HOS, which may include comparatively mild upper limb findings in respect to cardiac manifestations.
Collapse
Affiliation(s)
- Jenny Patterson
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Caroline Coats
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
9
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
11
|
HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet 2019; 62:103540. [DOI: 10.1016/j.ejmg.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
|
12
|
Liu Y, Zhu H, Liu Y, Qu J, Han M, Jin C, Zhang Q, Liu J. Molecular characterization and expression profiles provide new insights into GATA5 functions in tongue sole (Cynoglossus semilaevis). Gene 2019; 708:21-29. [PMID: 31082502 DOI: 10.1016/j.gene.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
GATA5 is a member of the GATA transcription factor family, which serves essential roles in varieties of cellular functions and biological processes. In this study, we have accomplished the molecular cloning, bioinformatic analysis and preliminary function study of C. semilaevis GATA5. The full-length cDNA nucleotide sequence is 1955 bp, with a coding sequence of 1167 bp, which encodes a polypeptide of 388 amino acids. Homology, phylogenetic, gene structure and synteny analysis showed that C. semilaevis GATA5 was highly conserved among vertebrates. Tissue distribution pattern exhibited that C. semilaevis GATA5 was significantly expressed in heart, intestine, liver, kidney and gonad, with a sexual dimorphic feature observed in testis and ovary. Embryonic development expression profiles showed that C. semilaevis GATA5 transcripts increased at the blastula stage, and peaked at the heat-beating period. Strong signals were detected at spermatids of male testis and stage III oocytes of female ovary by ISH. The expression of C. semilaevis GATA5 was regulated by 17α-MT and E2 after hormone stimulation to the ovary. Together, all the results pointed out that GATA5 might play a vital role during gonadal maturation and the reproductive cycle of C. semilaevis. This study lays the foundation for further researches on the sex control breeding in tongue sole.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
13
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|
14
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
15
|
Sun YM, Wang J, Xu YJ, Wang XH, Yuan F, Liu H, Li RG, Zhang M, Li YJ, Shi HY, Zhao L, Qiu XB, Qu XK, Yang YQ. ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart Vessels 2018; 33:722-732. [DOI: 10.1007/s00380-017-1110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
|
16
|
Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, Jiang WF, Liu X, Qiu XB, Qu XK, Yang YQ. MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 56:502-511. [PMID: 28902616 DOI: 10.1515/cclm-2017-0461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Background:
The MADS-box transcription factor myocyte enhancer factor 2C (MEF2C) is required for the cardiac development and postnatal adaptation and in mice-targeted disruption of the MEF2C gene results in dilated cardiomyopathy (DCM). However, in humans, the association of MEF2C variation with DCM remains to be investigated.
Methods:
The coding regions and splicing boundaries of the MEF2C gene were sequenced in 172 unrelated patients with idiopathic DCM. The available close relatives of the index patient harboring an identified MEF2C mutation and 300 unrelated, ethnically matched healthy individuals used as controls were genotyped for MEF2C. The functional effect of the mutant MEF2C protein was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system.
Results:
A novel heterozygous MEF2C mutation, p.Y157X, was detected in an index patient with adult-onset DCM. Genetic screen of the mutation carrier’s family members revealed that the mutation co-segregated with DCM, which was transmitted as an autosomal dominant trait with complete penetrance. The non-sense mutation was absent in 300 control individuals. Functional analyses unveiled that the mutant MEF2C protein had no transcriptional activity. Furthermore, the mutation abolished the synergistic transactivation between MEF2C and GATA4 as well as HAND1, two other transcription factors that have been associated with DCM.
Conclusions:
This study indicates MEF2C as a new gene responsible for human DCM, which provides novel insight into the mechanism underpinning DCM, suggesting potential implications for development of innovative prophylactic and therapeutic strategies for DCM, the most prevalent form of primary myocardial disease.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Emergency Medicine, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Zhao-Hui Qiu
- Department of Cardiology, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Xing-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| |
Collapse
|
17
|
Xu JH, Gu JY, Guo YH, Zhang H, Qiu XB, Li RG, Shi HY, Liu H, Yang XX, Xu YJ, Qu XK, Yang YQ. Prevalence and Spectrum of NKX2-5 Mutations Associated With Sporadic Adult-Onset Dilated Cardiomyopathy. Int Heart J 2017; 58:521-529. [PMID: 28690296 DOI: 10.1536/ihj.16-440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is a leading cause of congestive heart failure and the most common indication for heart transplantation. Recently, NKX2-5 mutations have been involved in the pathogenesis of familial DCM. However, the prevalence and spectrum of NKX2-5 mutations associated with sporadic DCM remain to be evaluated. In this study, the coding regions and flanking introns of the NKX2-5 gene, which encodes a cardiac transcription factor pivotal for cardiac development and structural remodeling, were sequenced in 210 unrelated patients with sporadic adult-onset DCM. A total of 300 unrelated healthy individuals used as controls were also genotyped for NKX2-5. The functional effect of the mutant NKX2-5 was investigated using a dual-luciferase reporter assay system. As a result, two novel heterozygous NKX2-5 mutations, p.R139W and p.E167X, were identified in 2 unrelated patients with sporadic adult-onset DCM, with a mutational prevalence of approximately 0.95%. The mutations were absent in 600 referential chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional assays revealed that the NKX2-5 mutants were associated with significantly reduced transcriptional activity. Furthermore, the mutations abrogated the synergistic activation between NKX2-5 and GATA4 as well as TBX20, two other cardiac key transcription factors that have been causally linked to adult-onset DCM. This study is the first to associate NKX2-5 loss-of-function mutations with enhanced susceptibility to sporadic DCM, which provides novel insight into the molecular etiology underpinning DCM, and suggests the potential implications for the genetic counseling and personalized treatment of the DCM patients.
Collapse
Affiliation(s)
- Jia-Hong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Jian-Yun Gu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Yu-Han Guo
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Hong Zhang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xiao-Xiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University.,Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University.,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University
| |
Collapse
|
18
|
Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn 2017; 17:393-401. [PMID: 28274167 DOI: 10.1080/14737159.2017.1300062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan-Jie Li
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou XM, Qu XK, Liu X, Huang RT, Xue S, Yang YQ, Li RG. Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Mol Med Rep 2017; 15:2247-2254. [PMID: 28259982 DOI: 10.3892/mmr.2017.6249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022] Open
Abstract
Congenital atrial septal defect (ASD) and progressive atriventricular block (AVB) are the two most common phenotypes linked to NK2 homeobox 5 (NKX2.5) mutations in animals and humans. However, the prevalence and spectrum of NKX2.5 mutation in patients with ASD and AVB remain to be elucidated. In the present study, the coding exons and flanking introns of the NKX2.5 gene, which encodes a homeobox‑containing transcription factor essential for development of the heart, were sequenced in a cohort of 62 unrelated patients with ASD and AVB, and subsequently in a mutation carrier's available family members. As controls, 300 unrelated, ethnically‑matched healthy individuals were recruited, who were also genotyped for NKX2.5. The functional consequence of the mutant NKX2.5 was evaluated in contrast to its wild‑type counterpart using a dual‑luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.Q181X, was identified in an index patient with ASD and AVB, with a prevalence of ~1.61%. Genetic analysis of the proband's pedigree revealed that the mutation co‑segregated with ASD and AVB with complete penetrance. The nonsense mutation, which eliminated partial homeobox and the carboxyl terminus, was absent in the 600 control chromosomes. Functional evaluation showed that the NKX2.5 mutant had no transcriptional activity. Furthermore, the mutation disrupted the synergistic activation between NKX2.5 and GATA binding protein 4, another cardiac core transcription factor associated with ASD. The results of the present study expand the spectrum of NKX2.5 mutations linked to ASD and AVB, and indicated that NKX2.5 loss‑of‑function mutations are an uncommon cause of ASD and AVB in humans.
Collapse
Affiliation(s)
- Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu-Min Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
20
|
Tayal U, Prasad S, Cook SA. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med 2017; 9:20. [PMID: 28228157 PMCID: PMC5322656 DOI: 10.1186/s13073-017-0410-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heart failure is a major health burden, affecting 40 million people globally. One of the main causes of systolic heart failure is dilated cardiomyopathy (DCM), the leading global indication for heart transplantation. Our understanding of the genetic basis of both DCM and systolic heart failure has improved in recent years with the application of next-generation sequencing and genome-wide association studies (GWAS). This has enabled rapid sequencing at scale, leading to the discovery of many novel rare variants in DCM and of common variants in both systolic heart failure and DCM. Identifying rare and common genetic variants contributing to systolic heart failure has been challenging given its diverse and multiple etiologies. DCM, however, although rarer, is a reasonably specific and well-defined condition, leading to the identification of many rare genetic variants. Truncating variants in titin represent the single largest genetic cause of DCM. Here, we review the progress and challenges in the detection of rare and common variants in DCM and systolic heart failure, and the particular challenges in accurate and informed variant interpretation, and in understanding the effects of these variants. We also discuss how our increasing genetic knowledge is changing clinical management. Harnessing genetic data and translating it to improve risk stratification and the development of novel therapeutics represents a major challenge and unmet critical need for patients with heart failure and their families.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Sanjay Prasad
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Stuart A Cook
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK. .,Duke National University Hospital, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
21
|
Hempel M, Casar Tena T, Diehl T, Burczyk MS, Strom TM, Kubisch C, Philipp M, Lessel D. Compound heterozygous GATA5 mutations in a girl with hydrops fetalis, congenital heart defects and genital anomalies. Hum Genet 2017; 136:339-346. [DOI: 10.1007/s00439-017-1762-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023]
|
22
|
Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang M, Shi HY, Hou XM, Liu X, Yuan F, Sun YM, Wang J, Huang RT, Xue S, Yang YQ. CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 55:1417-1425. [DOI: 10.1515/cclm-2016-0612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
AbstractBackground:The zinc finger transcription factor CASZ1 plays a key role in cardiac development and postnatal adaptation, and in mice, deletion of theMethods:The coding exons and splicing junction sites of theResults:A novel heterozygous CASZ1 mutation, p.K351X, was identified in an index patient with DCM. Genetic analysis of the mutation carrier’s family showed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 referential chromosomes, altered the amino acid that was highly conserved evolutionarily. Biological investigations revealed that the mutant CASZ1 had no transcriptional activity.Conclusions:The current study reveals
Collapse
|
23
|
Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224:461-472. [PMID: 27736720 DOI: 10.1016/j.ijcard.2016.09.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/19/2023]
|
24
|
Zhou YM, Dai XY, Huang RT, Xue S, Xu YJ, Qiu XB, Yang YQ. A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep 2016; 14:3307-14. [DOI: 10.3892/mmr.2016.5609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
|
25
|
Zhao Y, Cao H, Song Y, Feng Y, Ding X, Pang M, Zhang Y, Zhang H, Ding J, Xia X. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system. Int J Mol Med 2016; 37:1511-20. [PMID: 27082122 PMCID: PMC4867886 DOI: 10.3892/ijmm.2016.2565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our knowledge. This patient provided us with more information regarding the genotype-phenotype correlation between mutations of MYH7 and PRKAG2. Taken together, these findings provide insight into the molecular mechanisms underlying inherited cardiomyopathy. The mutations identified in this study may be further investigated in the future in order to improve the diagnosis and treatment of patients with inherited cardiomyopathy. Furthermore, our findings indicated that sequencing using the Ion Torrent PGM system is a useful approach for the identification of pathogenic mutations associated with inherited cardiomyopathy, and it may be used for the risk evaluation of individuals with a possible susceptibility to inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zhao
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Hong Cao
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yindi Song
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yue Feng
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiaoxue Ding
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Mingjie Pang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yunmei Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Hong Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Jiahuan Ding
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
26
|
Zhou YM, Dai XY, Qiu XB, Yuan F, Li RG, Xu YJ, Qu XK, Huang RT, Xue S, Yang YQ. HAND1 loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2016; 54:1161-7. [DOI: 10.1515/cclm-2015-0766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
Abstract
AbstractThe basic helix-loop-helix transcription factor HAND1 is essential for cardiac development and structural remodeling, and mutations in HAND1 have been causally linked to various congenital heart diseases. However, whether genetically compromised HAND1 predisposes to dilated cardiomyopathy (DCM) in humans remains unknown.The whole coding region and splicing junctions of theA novel heterozygous HAND1 mutation, p.R105X, was identified in a family with DCM transmitted as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. The nonsense mutation was absent in 520 control chromosomes. Functional analyses unveiled that the mutant HAND1 had no transcriptional activity. Furthermore, the mutation abolished the synergistic activation between HAND1 and GATA4, another crucial cardiac transcription factors that has been associated with various congenital cardiovascular malformations and DCM.This study firstly reports the association of HAND1 loss-of-function mutation with increased susceptibility to DCM in humans, which provides novel insight into the molecular mechanisms underpinning DCM.
Collapse
|
27
|
Kassab K, Hariri H, Gharibeh L, Fahed AC, Zein M, El-Rassy I, Nemer M, El-Rassi I, Bitar F, Nemer G. GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient. Mol Genet Genomic Med 2015; 4:160-71. [PMID: 27066509 PMCID: PMC4799877 DOI: 10.1002/mgg3.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background GATA transcription factors are evolutionary conserved zinc finger proteins with multiple roles in cell differentiation/proliferation and organogenesis. GATA5 is only transiently expressed in the embryonic heart, and the inactivation of both Gata5 alleles results in a partially penetrant bicuspid aortic valve (BAV) phenotype in mice. We hypothesized that only biallelic mutations in GATA5 could be disease causing. Methods A total of 185 patients with different forms of congenital heart disease (CHD) were screened along 150 healthy individuals for GATA4, 5, and 6. All patients' phenotypes were diagnosed with echocardiography. Results Sequencing results revealed eight missense variants (three of which are novel) in cases with various conotruncal and septal defects. Out of these, two were inherited in recessive forms: the p.T67P variant, which was found both in patients and in healthy individuals, and the previously described p.Y142H variant which was only found in a patient with a double outlet right ventricle (DORV). We characterized the p.Y142H variant and showed that it significantly reduced the transcriptional activity of the protein over cardiac promoters by 30–40%. Conclusion Our results do prove that p.Y142H is associated with DORV and suggests including GATA5 as a potential gene to be screened in patients with this phenotype.
Collapse
Affiliation(s)
- Kameel Kassab
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Hadla Hariri
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Lara Gharibeh
- Department of Biochemistry University of Ottawa Ottawa Ontario Canada
| | - Akl C Fahed
- Department of Genetics Harvard Medical School and Department of Internal Medicine Massachusetts General Hospital Boston Massachusetts
| | - Manal Zein
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Inaam El-Rassy
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Mona Nemer
- Department of Biochemistry University of Ottawa Ottawa Ontario Canada
| | - Issam El-Rassi
- Department of Pediatrics and Adolescent Medicine American University of Beirut Beirut Lebanon
| | - Fadi Bitar
- Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon; Department of SurgeryAmerican University of BeirutBeirutLebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| |
Collapse
|
28
|
LU CAIXIA, GONG HAIRONG, LIU XINGYUAN, WANG JUAN, ZHAO CUIMEI, HUANG RITAI, XUE SONG, YANG YIQING. A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. Int J Mol Med 2015; 37:445-51. [DOI: 10.3892/ijmm.2015.2436] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
29
|
Zhao Y, Feng Y, Zhang YM, Ding XX, Song YZ, Zhang AM, Liu L, Zhang H, Ding JH, Xia XS. Targeted next-generation sequencing of candidate genes reveals novel mutations in patients with dilated cardiomyopathy. Int J Mol Med 2015; 36:1479-86. [PMID: 26458567 PMCID: PMC4678153 DOI: 10.3892/ijmm.2015.2361] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure, and it is characterized by genetic and clinical heterogeneity, even for some patients with a very poor clinical prognosis; in the majority of cases, DCM necessitates a heart transplant. Genetic mutations have long been considered to be associated with this disease. At present, mutations in over 50 genes related to DCM have been documented. This study was carried out to elucidate the characteristics of gene mutations in patients with DCM. The candidate genes that may cause DCM include MYBPC3, MYH6, MYH7, LMNA, TNNT2, TNNI3, MYPN, MYL3, TPM1, SCN5A, DES, ACTC1 and RBM20. Using next-generation sequencing (NGS) and subsequent mutation confirmation with traditional capillary Sanger sequencing analysis, possible causative non-synonymous mutations were identified in ~57% (12/21) of patients with DCM. As a result, 7 novel mutations (MYPN, p.E630K; TNNT2, p.G180A; MYH6, p.R1047C; TNNC1, p.D3V; DES, p.R386H; MYBPC3, p.C1124F; and MYL3, p.D126G), 3 variants of uncertain significance (RBM20, p.R1182H; MYH6, p.T1253M; and VCL, p.M209L), and 2 known mutations (MYH7, p.A26V and MYBPC3, p.R160W) were revealed to be associated with DCM. The mutations were most frequently found in the sarcomere (MYH6, MYBPC3, MYH7, TNNC1, TNNT2 and MYL3) and cytoskeletal (MYPN, DES and VCL) genes. As genetic testing is a useful tool in the clinical management of disease, testing for pathogenic mutations is beneficial to the treatment of patients with DCM and may assist in predicting disease risk for their family members before the onset of symptoms.
Collapse
Affiliation(s)
- Yue Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yue Feng
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yun-Mei Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming 650034, P.R. China
| | - Xiao-Xue Ding
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming 650034, P.R. China
| | - Yu-Zhu Song
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Li Liu
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Hong Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming 650034, P.R. China
| | - Jia-Huan Ding
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xue-Shan Xia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
30
|
Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang YQ, Qiu XB. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int J Mol Med 2015; 36:282-8. [PMID: 25963046 DOI: 10.3892/ijmm.2015.2206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) represents the most prevalent form of primary cardiomyopathy, and is the most common reason for heart transplantation and a major cause of congestive heart failure. Aggregating evidence demonstrates that genetic defects are associated with DCM, and a great number of mutations in >50 genes have been linked to DCM. However, DCM is a genetically heterogeneous disorder and the genetic components underpinning DCM in a significant proportion of patients remain unknown. In the present study, the coding exons and flanking exon‑intron boundaries of the T-Box 5 (TBX5) gene, which encodes a T‑box transcription factor required for normal cardiac development, were sequenced in 146 unrelated patients with sporadic DCM. The functional characteristics of the mutant TBX5 were assayed in contrast to its wild‑type counterpart by using a dual‑luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.A143T, was identified in a patient with sporadic DCM. The missense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily among species. Biological analyses revealed that the A143T mutation of TBX5 was associated with significantly decreased transcriptional activity on the promoter of the target gene atrial natriuretic factor (ANF), when compared to its wild‑type counterpart. Furthermore, the A143T mutation abolished the synergistic activation of the ANF promoter between TBX5 and GATA binding protein 4 (GATA4), another crucial transcriptional factor for heart development. To the best of our knowledge, this is the first report on the association of a TBX5 loss‑of‑function mutation with an enhanced susceptibility to sporadic DCM, providing novel insight into the molecular mechanisms of the pathogenesis of DCM and suggesting potential implications for the prenatal prophylaxis and personalized treatment of this commonest primary myocardial disease.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Jin-Qi Jiang
- Department of Emergency Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|