1
|
Wei S, Li J, Zhang Y, Li Y, Wang Y. Ferroptosis in eye diseases: a systematic review. Eye (Lond) 2024:10.1038/s41433-024-03371-z. [PMID: 39379520 DOI: 10.1038/s41433-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis is a type of iron-dependent cell death that differs from apoptosis, necroptosis, autophagy, and other forms of cell death. It is mainly characterized by the accumulation of intracellular lipid peroxides, redox imbalance, and reduced levels of glutathione and glutathione peroxidase 4. Studies have demonstrated that ferroptosis plays an important regulatory role in the occurrence and development of neurodegenerative diseases, stroke, traumatic brain injury, and ischemia-reperfusion injuries. Multiple mechanisms, such as iron metabolism, ferritinophagy, p53, and p62/Keap1/Nrf2, as well as the combination of FSP1/CoQ/NADPH and hepcidin/FPN-1 can alter the vulnerability to ferroptosis. Nevertheless, there has been limited research on the development and management of ferroptosis in the realm of eye disorders, with most studies focusing on retinal conditions such as age-related macular degeneration and retinitis pigmentosa. This review offers a thorough examination of the disruption of iron homeostasis in eye disorders, investigating the underlying mechanisms. We anticipate that the occurrence of ferroptotic cell death will not only establish a fresh field of study in eye diseases, but also present a promising therapeutic target for treating these diseases.
Collapse
Affiliation(s)
- Shengsheng Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Jing Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yaohua Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China.
- Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne) 2024; 11:1353624. [PMID: 38585147 PMCID: PMC10995365 DOI: 10.3389/fmed.2024.1353624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the field of eye health, the profound impact of exercise and physical activity on various ocular diseases has become a focal point of attention. This review summarizes and elucidates the positive effects of exercise and physical activities on common ocular diseases, including dry eye disease (DED), cataracts, myopia, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD). It also catalogues and offers exercise recommendations based on the varying impacts that different types and intensities of physical activities may have on specific eye conditions. Beyond correlations, this review also compiles potential mechanisms through which exercise and physical activity beneficially affect eye health. From mitigating ocular oxidative stress and inflammatory responses, reducing intraocular pressure, enhancing mitochondrial function, to promoting ocular blood circulation and the release of protective factors, the complex biological effects triggered by exercise and physical activities reveal their substantial potential in preventing and even assisting in the treatment of ocular diseases. This review aims not only to foster awareness and appreciation for how exercise and physical activity can improve eye health but also to serve as a catalyst for further exploration into the specific mechanisms and key targets through which exercise impacts ocular health. Such inquiries are crucial for advancing innovative strategies for the treatment of eye diseases, thereby holding significant implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Li Y, Zhao Z, Nai X, Li M, Kong J, Chen Y, Liu M, Zhang Q, Liu J, Yan H. Effects of Temperature, Metal Ions and Biosurfactants on Interaction Mechanism between Caffeic Acid Phenethyl Ester and Hemoglobin. Molecules 2023; 28:molecules28083440. [PMID: 37110675 PMCID: PMC10144779 DOI: 10.3390/molecules28083440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Caffeic acid phenylethyl ester (CAPE) is a natural polyphenol extracted from propolis, which is reported to have several pharmacological effects such as antibacterial, antitumor, antioxidant and anti-inflammatory activities. Hemoglobin (Hb) is closely related to the transport of drugs, and some drugs, including CAPE, can lead to a change in Hb concentration. Herein, the effects of temperature, metal ions and biosurfactants on the interaction between CAPE and Hb were studied using ultraviolet-visible spectroscopy (UV-Vis), fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering (DLS) and molecular docking analysis. The results showed that the addition of CAPE led to changes in the microenvironment of Hb amino acid residues as well as the secondary structure of Hb. Hydrogen bonding and van der Waals force were found to be the main driving forces for the interaction between CAPE and Hb through fluorescence spectroscopy and thermodynamic parameter data. The results of fluorescence spectroscopy also showed that lowering the temperature, adding biosurfactants (sodium cholate (NaC) and sodium deoxycholate (NaDC)) and the presence of Cu2+ increased the binding force between CAPE and Hb. These results provide useful data for the targeted delivery and absorption of CAPE and other drugs.
Collapse
Affiliation(s)
- Yutong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhen Zhao
- College of Pharmacy, Liaocheng University, Liaocheng 252059, China
| | - Xiao Nai
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- College of Pharmacy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Zhang J, Sheng S, Wang W, Dai J, Zhong Y, Ren J, Jiang K, Li S, Bian X, Liu L. Molecular Mechanisms of Iron Mediated Programmed Cell Death and Its Roles in Eye Diseases. Front Nutr 2022; 9:844757. [PMID: 35495915 PMCID: PMC9038536 DOI: 10.3389/fnut.2022.844757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Ferroptosis, a newly identified, iron-dependent type of programmed cell death, is active in several diseases, such as heart disease, brain damage, and cancer. Its main characteristics commonly involve excess iron accumulation, elevated lipid peroxides and reactive oxygen species, and reduced levels of glutathione and glutathione peroxidase 4 levels. The effects of ferroptosis in eye diseases cannot be underestimated, with ferroptosis becoming a research target in ocular disorders and emerging evidence from a series of in vivo and in vitro researches into ferroptosis revealing its role in eye conditions. However, no report provides comprehensive information on the pathophysiology of ferroptosis in eye diseases and its possible treatments. In the current review, we present an up-to-date overview of ferroptosis biology and its involvement in the pathological processes of ocular diseases. Furthermore, we pose several outstanding questions and areas for future research in this topic. We deem ferroptosis-associated cell death a pivotal new field of scientific study in ocular diseases and consider it a new therapeutic target in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Public Health, Weifang Medical University, Weifang, China.,Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuai Sheng
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Wenting Wang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Jiazhen Dai
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiantao Ren
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Keke Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuchan Li
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Xiaoyan Bian
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Boatou, China
| | - Lei Liu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Xi Y, Miao Y, Zhou R, Wang M, Zhang F, Li Y, Zhang Y, Yang H, Guo F. Exploration of the Specific Pathology of HXMM Tablet Against Retinal Injury Based on Drug Attack Model to Network Robustness. Front Pharmacol 2022; 13:826535. [PMID: 35401181 PMCID: PMC8990835 DOI: 10.3389/fphar.2022.826535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases are related to retinal injury because of the activation of the complement cascade, oxidative stress-induced cell death mechanisms, dysfunctional mitochondria, chronic neuroinflammation, and production of the vascular endothelial growth factor. Anti-VEGF therapy demonstrates remarkable clinical effects and benefits in retinal degenerative disease patients. Hence, new drug development is necessary to treat patients with severe visual loss. He xue ming mu (HXMM) tablet is a CFDA-approved traditional Chinese medicine (TCM) for retinal degenerative diseases, which can alleviate the symptoms of age-related macular degeneration (AMD) and diabetic retinopathy (DR) alone or in combination with anti-VEGF agents. To elucidate the mechanisms of HXMM, a quantitative evaluation algorithm for the prediction of the effect of multi-target drugs on the disturbance of the disease network has been used for exploring the specific pathology of HXMM and TCM precision positioning. Compared with anti-VEGF agents, the drug disturbance of HXMM on the functional subnetwork shows that HXMM reduces the network robustness on the oxidative stress subnetwork and inflammatory subnetwork to exhibit the anti-oxidation and anti-inflammation activity. HXMM provides better protection to ARPE-19 cells against retinal injury after H2O2 treatment. HXMM can elevate GSH and reduce LDH levels to exhibit antioxidant activity and suppress the expression of IL-6 and TNF-α for anti-inflammatory activity, which is different from the anti-VEGF agent with strong anti-VEGF activity. The experimental result confirmed the accuracy of the computational prediction. The combination of bioinformatics prediction based on the drug attack on network robustness and experimental validation provides a new strategy for precision application of TCM.
Collapse
Affiliation(s)
- Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Miao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maolin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| |
Collapse
|
7
|
Guzmán-Oyarzo D, Hernández-Montelongo J, Rosas C, Leal P, Weber H, Alvear M, Salazar LA. Controlled Release of Caffeic Acid and Pinocembrin by Use of nPSi-βCD Composites Improves Their Antiangiogenic Activity. Pharmaceutics 2022; 14:pharmaceutics14030484. [PMID: 35335862 PMCID: PMC8955862 DOI: 10.3390/pharmaceutics14030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although polyphenols have great pharmacological potential, the main disadvantage is that they have low bioavailability at the desired site. Thus, the use of biocompatible systems for drug delivery is a strategy that is currently gaining great interest. The objective of this study is to evaluate the effect of microencapsulation of caffeic acid and pinocembrin on the antioxidant and antiangiogenic activity of both polyphenols, by the use of nPSi-βCD composite microparticles. For this HUVEC, cells were exposed to H2O2 and to treatments with polyphenols in solution and loaded in the composite microparticle. The polyphenols were incorporated into a microparticle using nanoporous silicon, chitosan and a β-cyclodextrin polymer as the biomaterial. The evaluation of the antiangiogenic effect of the treatments with polyphenols in solution and microencapsulated was carried out through functional tests, and the changes in the expression of target genes associated with the antioxidant pathway and angiogenesis was performed through qPCR. The results obtained show that the caffeic acid and pinocembrin have an antioxidant and antiangiogenic activity, both in solution as microencapsulated. In the caffeic acid, a greater biological effect was observed when it was incorporated into the nPSi-βCD composite microparticle. Our results suggest that the nPSi-βCD composite microparticle could be used as an alternative oral drug administration system.
Collapse
Affiliation(s)
- Dina Guzmán-Oyarzo
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile;
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad San Sebastián, General Cruz 1577, Concepción 4030000, Chile
| | - Jacobo Hernández-Montelongo
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile;
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Universidad Católica de Temuco, Temuco 4813302, Chile
| | - Carlos Rosas
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, General Lagos 1163, Valdivia 5110693, Chile;
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CETM) and Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4810296, Chile; (P.L.); (H.W.)
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CETM) and Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4810296, Chile; (P.L.); (H.W.)
| | - Marysol Alvear
- Department of Chemical Sciences and Natural Resources, Faculty of Engineering and Sciences, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile;
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|
8
|
Caban M, Lewandowska U. Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Balogun TA, Ige OM, Alausa AO, Onyeani CO, Tiamiyu ZA, Omoboyowa DA, Saibu OA, Abdullateef OT. Receptor tyrosine kinases as a therapeutic target by natural compounds in cancer treatment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Receptor tyrosine kinases (RTKs) are single-pass transmembrane proteins that play significant roles in regulating cellular processes, including cell division and growth. Overexpression and mutations of RTKs have been found in clinical manifestations of different forms of cancer. Therefore, RTKs have received considerable interest as a therapeutic biomarker in the treatment of cancer cells.
Main body of the abstract
Comprehensive data on RTKs, pharmacological and biological properties of natural compounds were systematically searched up to 2021 using relevant keywords from various databases, such as Google Scholar, PubMed, Web of Science, and Scopus. The scientific search by various standard electronic resources and databases unveils the effectiveness of medicinal plants in the treatment of various cancers. In vitro and in vivo studies suggested that bioactive compounds such as flavonoids, phenols, alkaloids, and many others can be used pharmacologically as RTKs inhibitors (RTKI) either by competing with ATP at the ATP binding site of the tyrosine kinase domain or competing for the receptor extracellular domain. Additionally, studies conducted on animal models indicated that inhibition of RTKs catalytic activity by natural compounds is one of the most effective ways to block the activation of RTKs signaling cascades, thereby hampering the proliferation of cancer cells. Furthermore, various pharmacological experiments, transcriptomic, and proteomic data also reported that cancer cells treated with different plants extracts or isolated phytochemicals exhibited better anticancer properties with minimal side effects than synthetic drugs. Clinically, natural compounds have demonstrated significant anti-proliferative effect via induction of cell apoptosis in cancer cell lines.
Short conclusion
An in-depth knowledge of the mechanism of inhibition and structural characterization of RTKs is important to the design of novel and selective RTKIs. This review focuses on the molecular mechanisms and structures of natural compounds RTKI targeting vascular endothelial growth factor, epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor while also giving future directions to ameliorate the scientific burden of cancer.
Graphic abstract
Collapse
|
10
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
11
|
Complement family member CFI polymorphisms and AMD susceptibility from a comprehensive analysis. Biosci Rep 2021; 40:222471. [PMID: 32215612 PMCID: PMC7146047 DOI: 10.1042/bsr20200406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The complement factor I (CFI) gene polymorphisms have been reported to age-related macular degenerative (AMD) risk, nevertheless, above association is not consistent. We investigated a meta-analysis to evaluate the conclusions between CFI polymorphisms (rs10033900 and rs2285714) and AMD risk. An identification was covered with the PubMed and other databases through February 8, 2020. Odds ratios (OR) and 95% confidence intervals (CI) were used to assess the strength of associations. After a comprehensive search, 11 different articles (12 case–control studies for total AMD and 11 case–control studies about neovascular disease/geographic atrophy in AMD) were retrieved. Individuals carrying C-allele or CC genotype of rs10033900 polymorphism may have a decreased risk to be AMD disease. For example, there has a significantly decreased relationship between rs10033900 polymorphism and AMD both in the whole group, Caucasian population and population-based source of control. Moreover, a similar trend in subgroup of genotype method group by MALDI-TOF MS was detected. To classify the type of AMD in further, decreased association was also observed in both neovascular disease and geographic atrophy AMD. No association was found about rs2285714 polymorphism. Our present groundbreaking study suggests that the CFI rs10033900 polymorphism is potentially associated with the risk of AMD development.
Collapse
|
12
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
13
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Zhao X, Gao M, Liang J, Chen Y, Wang Y, Wang Y, Xiao Y, Zhao Z, Wan X, Jiang M, Luo X, Wang F, Sun X. SLC7A11 Reduces Laser-Induced Choroidal Neovascularization by Inhibiting RPE Ferroptosis and VEGF Production. Front Cell Dev Biol 2021; 9:639851. [PMID: 33681224 PMCID: PMC7930391 DOI: 10.3389/fcell.2021.639851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
In age-related macular degeneration (AMD), one of the principal sources of vascular endothelial growth factor (VEGF) is retinal pigment epithelium (RPE) cells under hypoxia or oxidative stress. Solute carrier family 7 member 11 (SLC7A11), a key component of cystine/glutamate transporter, regulates the level of cellular lipid peroxidation, and restrains ferroptosis. In our study, we assessed the role of SLC7A11 in laser-induced choroidal neovascularization (CNV) and explored the underlying mechanism. We established a mouse model of CNV to detect the expression level of SLC7A11 and VEGF during disease progression. We found the expression of the SLC7A11 protein in RPE cells peaked at 3 days after laser treatment, which was correlated with the expression of VEGF. Intraperitoneal injection of SLC7A11 inhibitor expanded the area of CNV. We examined functional proteins related to oxidative stress and Fe2+ and found laser-induced ferroptosis accompanied by increased Fe2+ content and GPX4 expression in the RPE-choroidal complex after laser treatment. We verified the expression of SLC7A11 in the ARPE19 cell line and the effects of its inhibitors on cell viability and lipid peroxidation in vitro. Application of SLC7A11 inhibitor and SLC7A11 knockdown increased the level of lipid peroxidation and reduced the cell viability of ARPE19 which can be rescued by ferroptosis inhibitors ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1). Conversely, SLC7A11 overexpression induced resistance to erastin or RSL3-induced ferroptosis. Moreover, we tested the possible regulatory transcription factor NF-E2-related factor 2 (NRF2) of SLC7A11 by Western blot. Knock-down of NRF2 decreased the expression of SLC7A11. Our study suggests that SLC7A11 plays a key role in the laser-induced CNV model by protecting RPE cells from ferroptosis. SLC7A11 provides a new therapeutic target for neovascular AMD patients.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhenzhen Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Feng Wang
- The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
15
|
Cornebise C, Courtaut F, Taillandier-Coindard M, Valls-Fonayet J, Richard T, Monchaud D, Aires V, Delmas D. Red Wine Extract Inhibits VEGF Secretion and Its Signaling Pathway in Retinal ARPE-19 Cells to Potentially Disrupt AMD. Molecules 2020; 25:molecules25235564. [PMID: 33260857 PMCID: PMC7731402 DOI: 10.3390/molecules25235564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative disease of the retina where the molecular mechanism involves the production of vascular endothelial growth factor (VEGF), a factor of poor prognosis of the progression of the disease. Previous studies have shown that resveratrol, a polyphenol of grapevines, can prevent VEGF secretion induced by stress from retinal cells. Considering the fundamental role played by VEGF in development and progression of AMD, we investigate the potential effect of red wine extract (RWE) on VEGF secretion and its signaling pathway in human retinal cells ARPE-19. To examine the effect of RWE in ARPE-19, a quantitative and qualitative analysis of the RWE was performed by HPLC MS/MS. We show for the first time that RWE decreased VEGF-A secretion from ARPE-19 cells and its protein expression in concentration-dependent manner. RWE-induced alteration in VEGF-A production is associated with a down of VEGF-receptor 2 (VEGF-R2) protein expression and its phosphorylated intracytoplasmic domain. Subsequently, the activation of kinase pathway is disturbing and RWE prevents the phosphorylation of MEK and ERK 1/2 in human retinal cells ARPE-19. Finally, this study sheds light on the interest that the use of polyphenolic cocktails could represent in a prevention strategy.
Collapse
Affiliation(s)
- Clarisse Cornebise
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Flavie Courtaut
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Marie Taillandier-Coindard
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Josep Valls-Fonayet
- Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France; (J.V.-F.); (T.R.)
| | - Tristan Richard
- Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France; (J.V.-F.); (T.R.)
| | - David Monchaud
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, F-21078 Dijon, France
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (M.T.-C.); (D.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| |
Collapse
|
16
|
Silva H, Lopes NMF. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front Physiol 2020; 11:595516. [PMID: 33343392 PMCID: PMC7739266 DOI: 10.3389/fphys.2020.595516] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeic acid (CA) and its phenethyl ester (CAPE) are naturally occurring hydroxycinnamic acids with an interesting array of biological activities; e.g., antioxidant, anti-inflammatory, antimicrobial and cytostatic. More recently, several synthetic analogs have also shown similar properties, and some with the advantage of added stability. The actions of these compounds on the cardiovascular system have not been thoroughly explored despite presenting an interesting potential. Indeed the mechanisms underlying the vascular effects of these compounds particularly need clarifying. The aim of this paper is to provide a comprehensive and up-to-date review on current knowledge about CA and its derivatives in the cardiovascular system. Caffeic acid, CAPE and the synthetic caffeic acid phenethyl amide (CAPA) exhibit vasorelaxant activity by acting on the endothelial and vascular smooth muscle cells. Vasorelaxant mechanisms include the increased endothelial NO secretion, modulation of calcium and potassium channels, and modulation of adrenergic receptors. Together with a negative chronotropic effect, vasorelaxant activity contributes to lower blood pressure, as several preclinical studies show. Their antioxidant, anti-inflammatory and anti-angiogenic properties contribute to an important anti-atherosclerotic effect, and protect tissues against ischemia/reperfusion injuries and the cellular dysfunction caused by different physico-chemical agents. There is an obvious shortage of in vivo studies to further explore these compounds' potential in vascular physiology. Nevertheless, their favorable pharmacokinetic profile and overall lack of toxicity make these compounds suitable for clinical studies.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Miguel F. Lopes
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Ilex paraguariensis extracts and its polyphenols prevent oxidative damage and senescence of human retinal pigment epithelium cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Krishna L, Nilawar S, Ponnalagu M, Subramani M, Jayadev C, Shetty R, Chatterjee K, Das D. Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nanofibrous Tissue Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:823-837. [DOI: 10.1021/acsabm.9b00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| |
Collapse
|
19
|
Holubiec MI, Galeano P, Romero JI, Hanschmann EM, Lillig CH, Capani F. Thioredoxin 1 Plays a Protective Role in Retinas Exposed to Perinatal Hypoxia-Ischemia. Neuroscience 2019; 425:235-250. [PMID: 31785355 DOI: 10.1016/j.neuroscience.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Thioredoxin family proteins are key modulators of cellular redox regulation and have been linked to several physiological functions, including the cellular response to hypoxia-ischemia. During perinatal hypoxia-ischemia (PHI), the central nervous system is subjected to a fast decrease in O2 and nutrients with a subsequent reoxygenation that ultimately leads to the production of reactive species impairing physiological redox signaling. Particularly, the retina is one of the most affected tissues, due to its high oxygen consumption and exposure to light. One of the main consequences of PHI is retinopathy of prematurity, comprising changes in retinal neural and vascular development, with further compensatory mechanisms that can ultimately lead to retinal detachment and blindness. In this study, we have analyzed long-term changes that occur in the retina using two well established in vivo rat PHI models (perinatal asphyxia and carotid ligation model), as well as the ARPE-19 cell line that was exposed to hypoxia and reoxygenation. We observed significant changes in the protein levels of the cytosolic oxidoreductase thioredoxin 1 (Trx1) in both animal models and a cell model. Knock-down of Trx1 in ARPE-19 cells affected cell morphology, proliferation and the levels of specific differentiation markers. Administration of recombinant Trx1 decreased astrogliosis and improved delayed neurodevelopment in animals exposed to PHI. Taken together, our results suggest therapeutical implications for Trx1 in retinal damage induced by hypoxia-ischemia during birth.
Collapse
Affiliation(s)
- M I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina.
| | - P Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - J I Romero
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - E-M Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany; Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - C H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - F Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Facultad de Medicina, Universidad Católica Argentina (UCA), Buenos Aires, Argentina; Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
20
|
Park SM, Lee KP, Huh MI, Eom S, Park BU, Kim KH, Park DH, Kim DS, Kim HK. Development of an in vitro 3D choroidal neovascularization model using chemically induced hypoxia through an ultra-thin, free-standing nanofiber membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109964. [PMID: 31499990 DOI: 10.1016/j.msec.2019.109964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Choroidal neovascularization (CNV) is the pathological growth of new blood vessels in the sub-retinal pigment epithelial (RPE) space from the choroid through a break in the Bruch's membrane (BM). Despite its importance in studying biological processes and drug discovery, the development of an in vitro CNV model that achieves the physiological structures of native RPE-BM-choroidal capillaries (CC) is still challenging. Here, we develop a novel 3D RPE-BM-CC complex biomimetic system on an ultra-thin, free-standing nanofiber membrane. The thickness of the pristine nanofiber membrane is 2.17 ± 0.81 μm, and the Matrigel-coated nanofiber membrane attains a permeability coefficient of 2.95 ± 0.25 × 10-6 cm/s by 40 kDa FITC-dextran, which is similar to the physiological value of the native BM. On the in vitro 3D RPE-BM-CC complex system, we demonstrate endothelial cell invasion across the 3D RPE-BM-CC complex and the mechanism of the invasion by imposing a hypoxic condition, which is thought to be the major pathological cause of CNV. Furthermore, alleviation of the invasion is achieved by treating with chrysin and anti-VEGF antibody. Thus, the in vitro 3D RPE-BM-CC complex biomimetic system can recapitulate essential features of the pathophysiological environment and be employed for the screening of drug candidates to reduce the number of costly and time-consuming in vivo tests or clinical trials.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Kyoung-Pil Lee
- Bio-Medical Institute, Kyungpook National University Hospital, 807 Hoguk-ro, Buk-gu, Daegu 41404, South Korea; Department of Ophthalmology, School of Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - Man-Il Huh
- Bio-Medical Institute, Kyungpook National University Hospital, 807 Hoguk-ro, Buk-gu, Daegu 41404, South Korea; Department of Ophthalmology, School of Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Byeong-Ung Park
- Bio-Medical Institute, Kyungpook National University Hospital, 807 Hoguk-ro, Buk-gu, Daegu 41404, South Korea; Department of Ophthalmology, School of Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, 807 Hoguk-ro, Buk-gu, Daegu 41404, South Korea; Department of Ophthalmology, School of Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea.
| |
Collapse
|
21
|
Guzmán-Oyarzo D, Plaza T, Recio-Sánchez G, Abdalla DSP, Salazar LA, Hernández-Montelongo J. Use of nPSi-βCD Composite Microparticles for the Controlled Release of Caffeic Acid and Pinocembrin, Two Main Polyphenolic Compounds Found in a Chilean Propolis. Pharmaceutics 2019; 11:E289. [PMID: 31248192 PMCID: PMC6630447 DOI: 10.3390/pharmaceutics11060289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Propolis is widely recognized for its various therapeutic properties. These are attributed to its rich composition in polyphenols, which exhibit multiple biological properties (e.g., antioxidant, anti-inflammatory, anti-angiogenic). Despite its multiple benefits, oral administration of polyphenols results in low bioavailability at the action site. An alternative to face this problem is the use of biomaterials at nano-micro scale due to its high versatility as carriers and delivery systems of various drugs and biomolecules. The aim of this work is to determine if nPSi-βCD microparticles are a suitable material for the load and controlled release of caffeic acid (CA) and pinocembrin (Pin), two of the main components of a Chilean propolis with anti-atherogenic and anti-angiogenic activity. Polyphenols and nPSi-βCD microparticles cytocompatibility studies were carried out with human umbilical vein endothelial cells (HUVECs). Results from physicochemical characterization demonstrated nPSi-βCD microparticles successfully retained and controlled release CA and Pin. Furthermore, nPSi-βCD microparticles presented cytocompatibility with HUVECs culture at concentrations of 0.25 mg/mL. These results suggest that nPSi-βCD microparticles could safely be used as an alternate oral delivery system to improve controlled release and bioavailability of CA or Pin-and eventually other polyphenols-thus enhancing its therapeutic effect for the treatment of different diseases.
Collapse
Affiliation(s)
- Dina Guzmán-Oyarzo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile.
| | - Tanya Plaza
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
| | - Gonzalo Recio-Sánchez
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Universidad Católica de Temuco, Temuco 4813302, Chile.
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes 580, CEP 05508-000 São Paulo, SP, Brazil.
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile.
| | - Jacobo Hernández-Montelongo
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Universidad Católica de Temuco, Temuco 4813302, Chile.
| |
Collapse
|
22
|
Cheng CC, Chi PL, Shen MC, Shu CW, Wann SR, Liu CP, Tseng CJ, Huang WC. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20061468. [PMID: 30909527 PMCID: PMC6470604 DOI: 10.3390/ijms20061468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial proliferation and remodeling, resulting in a specific increase in right ventricle systolic pressure (RVSP) and, ultimately right ventricular failure. Recent studies have demonstrated that caffeic acid phenethyl ester (CAPE) exerts a protective role in NF-κB-mediated inflammatory diseases. However, the effect of CAPE on PAH remains to be elucidated. In this study, monocrotaline (MCT) was used to establish PAH in rats. Two weeks after the induction of PAH by MCT, CAPE was administrated by intraperitoneal injection once a day for two weeks. Pulmonary hemodynamic measurements and pulmonary artery morphological assessments were examined. Our results showed that administration of CAPE significantly suppressed MCT-induced vascular remodeling by decreasing the HIF-1α expression and PDGF-BB production, and improved in vivo RV systolic performance in rats. Furthermore, CAPE inhibits hypoxia- and PDGF-BB-induced HIF-1α expression by decreasing the activation of the AKT/ERK pathway, which results in the inhibition of human pulmonary artery smooth muscle cells (hPASMCs) proliferation and prevention of cells resistant to apoptosis. Overall, our data suggest that HIF-1α is regarded as an alternative target for CAPE in addition to NF-κB, and may represent a promising therapeutic agent for the treatment of PAH diseases.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Caffeic Acids/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression
- Hemodynamics/drug effects
- Humans
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Phenylethyl Alcohol/analogs & derivatives
- Phenylethyl Alcohol/pharmacology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Shue-Ren Wann
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Kaohsiung Veterans General Hospital, Pingtung Branch, Pintung 91245, Taiwan.
| | - Chun-Peng Liu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
23
|
Fan L, Xiao Q, Zhang L, Wang X, Huang Q, Li S, Zhao X, Li Z. CAPE-pNO2 attenuates diabetic cardiomyopathy through the NOX4/NF-κB pathway in STZ-induced diabetic mice. Biomed Pharmacother 2018; 108:1640-1650. [DOI: 10.1016/j.biopha.2018.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
|
24
|
Krishna L, Dhamodaran K, Subramani M, Ponnulagu M, Jeyabalan N, Krishna Meka SR, Jayadev C, Shetty R, Chatterjee K, Khora SS, Das D. Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomater Sci Eng 2018; 5:357-372. [DOI: 10.1021/acsbiomaterials.8b00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murugeswari Ponnulagu
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Nallathambi Jeyabalan
- Grow Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal Services, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Debashish Das
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| |
Collapse
|
25
|
Bhargava P, Kumari A, Putri JF, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress Chaperones 2018; 23:1055-1068. [PMID: 29869000 PMCID: PMC6111076 DOI: 10.1007/s12192-018-0915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 8572, Japan
| | - Anjani Kumari
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
26
|
Chen L, Liu M, Luan Y, Liu Y, Zhang Z, Ma B, Liu X, Liu Y. BMP‑6 protects retinal pigment epithelial cells from oxidative stress‑induced injury by inhibiting the MAPK signaling pathways. Int J Mol Med 2018; 42:1096-1105. [PMID: 29767257 DOI: 10.3892/ijmm.2018.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/10/2018] [Indexed: 11/06/2022] Open
Abstract
Worldwide, neovascular age‑related macular degeneration (nAMD) is one of the most common causes of blindness in the elderly. In particular, degeneration of retinal pigment epithelial (RPE) cells represents the main pathological process in the development of nAMD, and oxidative stress serves a major role. The present study aimed to investigate the association between bone morphogenetic protein 6 (BMP‑6) and nAMD. BMP‑6 concentration was significantly reduced in patients with wet nAMD compared with in the control group. Furthermore, the present study investigated the protective effects of BMP‑6 on RPE cells following oxidative stress‑induced injury. Cell Counting Kit‑8 assay and terminal deoxynucleotidyl transferase dUTP nick‑end labeling staining demonstrated that BMP‑6 increased RPE cell viability, which was decreased following treatment with hydrogen peroxide (H2O2), and reduced H2O2‑induced apoptosis. In addition, western blotting revealed that BMP‑6 reversed the decrease in pro‑caspase‑3 levels and the dysregulation of the B‑cell lymphoma 2 (Bcl‑2)/Bcl‑2‑associated X protein (Bax) balance caused by H2O2. In addition, alterations in c‑Jun N‑terminal protein kinase (JNK) and p38 mitogen‑activated protein kinase (MAPK) expression were examined, and pretreatment with BMP‑6 was demonstrated to reduce H2O2‑induced activation of JNK and p38 MAPK. Conversely, the effects of BMP‑6 were attenuated by its inhibitor noggin. In conclusion, the present study demonstrated that BMP‑6 may protect RPE cells from oxidative stress injury to a certain extent, which may be associated with alterations in the MAPK signaling pathway. However, the specific mechanism of action underlying this effect requires further investigation. Overall, the present study laid a foundation for exploring novel nAMD treatment methods.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Liu
- Department of Ophthalmology, The First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Chen S, Zhou Y, Zhou L, Guan Y, Zhang Y, Han X. Anti-neovascularization effects of DMBT in age-related macular degeneration by inhibition of VEGF secretion through ROS-dependent signaling pathway. Mol Cell Biochem 2018; 448:225-235. [PMID: 29446046 DOI: 10.1007/s11010-018-3328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
Choroidal neovascularization (CNV) is the hallmark of late-staged wet age-related macular degeneration (AMD). Vascular endothelial growth factor (VEGF) is a key component in the development and progression of wet AMD. DMBT, 6,6'-bis(2,3-dimethoxybenzoyl)-α,α-D-trehalose, had been proved that it could suppress tumor angiogenesis and metastasis by inhibiting production of VEGF. But the effects of DMBT on CNV were not known. This study was to investigate effects and mechanisms of DMBT on CNV in vitro and in vivo. Results showed that DMBT could inhibit migration and tube formation of RF/6A cells under ARPE-19 hypoxia conditioned medium. DMBT could reduce lesion area in laser-induced CNV model mice. ELISA and Western blotting assay showed that DMBT markedly inhibited secretion of VEGF in vitro and in vivo. Furthermore, DMBT restrained ROS level under hypoxia via suppressing Nrf2/HO-1 pathway. DMBT effectively suppressed hypoxia-induced the up-regulation of p-Akt, p-NF-κB, and HIF-1α. These results suggest that DMBT can inhibit CNV by down-regulation of VEGF in retina through Akt/NF-κB/HIF-1α and ERK/Nrf2/HO-1/HIF-1α pathway. DMBT might be a promising lead molecule for anti-CNV and serve as a therapeutic agent to inhibit CNV.
Collapse
Affiliation(s)
- Shang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Minamikoguchi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Yue Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Lichun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yanhui Guan
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, Jinan, China.
| |
Collapse
|
28
|
Effects of Novel Nitric Oxide-Releasing Molecules against Oxidative Stress on Retinal Pigmented Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1420892. [PMID: 29158871 PMCID: PMC5660806 DOI: 10.1155/2017/1420892] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022]
Abstract
Oxidative stress is a hallmark of retinal degenerations such as age-related macular degeneration and diabetic retinopathy. Enhancement of heme oxygenase-1 (HO-1) activity in the retina would exert beneficial effects by protecting cells from oxidative stress, therefore promoting cell survival. Because a crosstalk exists between nitric oxide (NO) and HO-1 in promotion of cell survival under oxidative stress, we designed novel NO-releasing molecules also capable to induce HO-1. Starting from curcumin and caffeic acid phenethyl ester (CAPE), two known HO-1 inducers, the molecules were chemically modified by acylation with 4-bromo-butanoyl chloride and 2-chloro-propanoyl chloride, respectively, and then treated in the dark with AgNO3 to obtain the nitrate derivatives VP10/12 and VP10/39. Human retinal pigment epithelial cells (ARPE-19) subjected to H2O2-mediated oxidative stress were treated with the described NO-releasing compounds. VP10/39 showed significant (p < 0.05) antioxidant and protecting activity against oxidative damage, in comparison to VP10/12, which in turn showed at 100 μM concentration a slight but significant cell toxicity. Only VP10/39 significantly (p < 0.05) induced HO-1 in ARPE-19, most likely through covalent bond formation at Cys151 of the Keap1-BTB domain, as revealed from molecular docking analysis. In conclusion, the present data indicate VP10/39 as a promising candidate to protect ARPE-19 cells against oxidative stress.
Collapse
|
29
|
Dinc E, Ayaz L, Kurt AH. Protective Effect of Combined Caffeic Acid Phenethyl Ester and Bevacizumab Against Hydrogen Peroxide-Induced Oxidative Stress in Human RPE Cells. Curr Eye Res 2017; 42:1659-1666. [DOI: 10.1080/02713683.2017.1368085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Erdem Dinc
- Department of Ophthalmology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, K. Maraş, Turkey
| |
Collapse
|
30
|
Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 2017; 8:57870-57881. [PMID: 28915718 PMCID: PMC5593690 DOI: 10.18632/oncotarget.18628] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the primary cause of low back pain, a severe public health problem worldwide. Current therapy for IDD aims to alleviate the symptoms and does not target the underlying pathological alternations within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway protects against IDD, which is attributed to increase of ECM content, prevention of cell apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In the current review, we summarize recent progression on activation and negative regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. Targeting this pathway could become an attractive therapeutic strategy for IDD in the near future.
Collapse
Affiliation(s)
- Zhi-Hua Ouyang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China.,Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Chung LC, Chiang KC, Feng TH, Chang KS, Chuang ST, Chen YJ, Tsui KH, Lee JC, Juang HH. Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo. Mol Nutr Food Res 2017; 61. [PMID: 28181403 DOI: 10.1002/mnfr.201600842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, is considered as a new anti-cancer agent. Oral squamous cell carcinoma (OSCC) is the most common oral cancer with unsatisfying survival. N-myc downstream regulated family genes (NDRGs) involve in numerous physiological processes. We investigated the anti-cancer effect of CAPE on OSCC and related mechanisms. METHODS AND RESULTS Cell proliferation assay, western blot, gene transfection and knockdown, and reporter assay were applied. We showed that CAPE attenuated OSCC cell proliferation and invasion in vitro, and safely and effectively inhibited OSCC cell growth in a xenograft animal model. CAPE treatment induced NDRG1, but not NDRG2 and NDRG3, expression in OSCC cells as determined by western blot, RT-qPCR, and reporter assay. The 5'-deletion assay demonstrated that CAPE increased NDRG1 promoter activity depending on the region of -128 to +46 of the 5'-flanking of NDRG1 gene. NDRG1 gene knockdown attenuated CAPE anti-growth effect on OSCC cells. CAPE activated mitogen-activated protein kinase (MAPK) signaling pathway. The extracellular signal regulated kinase (ERK) inhibitor (PD0325901) and ERK1 knockdown blocked CAPE-induced NDRG1 expression in OSCC cells. CONCLUSION CAPE activated MAPK signaling pathway and increased NDRG1 expression through phosphorylation of ERK1/2 to repress OSCC cells growth.
Collapse
Affiliation(s)
- Li-Chuan Chung
- Department of General Education Center, Mackay Medicine, Nursing and Management College, New Taipei City, Taiwan
| | - Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jehn-Chuan Lee
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
32
|
Liu Y, Gao J, Huang S, Hu L, Wang Z, Wang Z, Chen X, Zhang X, Li W. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation. Oncol Lett 2016; 12:2828-2834. [PMID: 27698866 DOI: 10.3892/ol.2016.4948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/20/2016] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine, Key Laboratory of Preclinical Study for New Drugs of Gansu, Lanzhou University, Lanzhou, Gansu 730000, P.R. China; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Jing Gao
- Clinical Laboratory, Affiliated Hospital of Medical College of Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China
| | - Shuangsheng Huang
- Clinical Laboratory, Affiliated Hospital of Medical College of Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China
| | - Lamei Hu
- College of Basic Medicine, Key Laboratory of Preclinical Study for New Drugs of Gansu, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Wang
- College of Basic Medicine, Key Laboratory of Preclinical Study for New Drugs of Gansu, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zheyuan Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xiao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xiaoyu Zhang
- College of Basic Medicine, Key Laboratory of Preclinical Study for New Drugs of Gansu, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenguang Li
- College of Basic Medicine, Key Laboratory of Preclinical Study for New Drugs of Gansu, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
33
|
Mining for genes related to choroidal neovascularization based on the shortest path algorithm and protein interaction information. Biochim Biophys Acta Gen Subj 2016; 1860:2740-9. [PMID: 26987808 DOI: 10.1016/j.bbagen.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is a serious eye disease that may cause visual loss, especially for older people. Many factors have been proven to induce this disease including age, gender, obesity, and so on. However, until now, we have had limited knowledge on CNV's pathogenic mechanism. Discovering the genes that underlie this disease and performing extensive studies on them can help us to understand how CNV occurs and design effective treatments. METHODS In this study, we designed a computational method to identify novel CNV-related genes in a large protein network constructed using the protein-protein interaction information in STRING. The candidate genes were first extracted from the shortest paths connecting any two known CNV-related genes and then filtered by a permutation test and using knowledge of their linkages to known CNV-related genes. RESULTS A list of putative CNV-related candidate genes was accessed by our method. These genes are deemed to have strong relationships with CNV. CONCLUSIONS Extensive analyses of several of the putative genes such as ANK1, ITGA4, CD44 and others indicate that they are related to specific biological processes involved in CNV, implying they may be novel CNV-related genes. GENERAL SIGNIFICANCE The newfound putative CNV-related genes may provide new insights into CNV and help design more effective treatments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
34
|
Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16:10748-66. [PMID: 25984601 PMCID: PMC4463674 DOI: 10.3390/ijms160510748] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC). The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE) as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs), epidermal growth factor receptor (EGFR), and Cyclooxygenase-2 (COX-2). Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.
Collapse
|