1
|
Zeng J, Zhang W, Lu X, Zhou H, Huang J, Xu Z, Liao H, Liang J, Liang M, Ye C, Sun T, Hu Y, She Q, Chen H, Guo Q, Yan L, Wu R, Li Z. The association of SOD and HsCRP with the efficacy of sulforaphane in schizophrenia patients with residual negative symptoms. Eur Arch Psychiatry Clin Neurosci 2024; 274:1083-1092. [PMID: 37728803 PMCID: PMC11226471 DOI: 10.1007/s00406-023-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES Emerging evidence indicates a connection between oxidative stress, immune-inflammatory processes, and the negative symptoms of schizophrenia. In addition to possessing potent antioxidant and anti-inflammatory properties, sulforaphane (SFN) has shown promise in enhancing cognitive function among individuals with schizophrenia. This study aims to investigate the efficacy of combined treatment with SFN in patients with schizophrenia who experience negative symptoms and its effect on the levels of superoxide dismutase (SOD) and the inflammatory marker, high-sensitivity C-reactive protein (HsCRP). DESIGN Forty-five patients with schizophrenia were recruited, who mainly experienced negative symptoms during a stable period. In addition to the original treatments, the patients received SFN tablets at a daily dose of 90 mg for 24 weeks. At baseline, 12 weeks, and 24 weeks, the participants were interviewed and evaluated. The reduction rate of the Positive and Negative Syndrome Scale (PANSS) was used to assess each participant. The side effects scale of Treatment Emergent Symptom Scale (TESS) was applied to assess the adverse reactions. Additionally, the levels of the SOD, HsCRP, and other indicators were examined. RESULTS The study findings revealed a significant decrease in PANSS negative subscale scores (P < 0.001). Furthermore, there was a significant increase in SOD activity and HsCRP levels (P < 0.001 and P < 0.05). Notably, the group of participants who exhibited a reduction in PANSS negative subscale scores demonstrated a significant improvement in HsCRP levels (P < 0.05). CONCLUSIONS Our study suggests that SFN may potentially serve as a safe adjunctive intervention to improve the negative symptoms of schizophrenia. The potential mechanism by which SFN improves negative symptoms in schizophrenia patients may involve its anti-inflammatory properties, specifically its ability to reduce HsCRP levels. Trial registration ClinicalTrial.gov (ID: NCT03451734).
Collapse
Affiliation(s)
- Jianfei Zeng
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, China
| | - Weizhi Zhang
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
| | - Xiaobing Lu
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Hui Zhou
- Shiyan People's Hospital of Baoan District, Shenzhen, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenyu Xu
- Ganzhou People's Hospital of Jiangxi Province, Ganzhou, China
| | - Hairong Liao
- The Third People's Hospital of Foshan, Foshan, China
| | - Jiaquan Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Meihong Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Chan Ye
- University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Ting Sun
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Yutong Hu
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Qi She
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Haixia Chen
- Zhongshan Third People's Hospital, Zhongshan, China
| | - Qian Guo
- Zhaoqing Third People's Hospital, Zhaoqing, China
| | - LiuJiao Yan
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Jeong Y, Lee SH, Lee J, Kim MS, Lee YG, Hwang JT, Choi SY, Yoon HG, Lim TG, Lee SH, Choi HK. Water Extract of Capsella bursa-pastoris Mitigates Doxorubicin-Induced Cardiotoxicity by Upregulating Antioxidant Enzymes. Int J Mol Sci 2023; 24:15912. [PMID: 37958893 PMCID: PMC10648471 DOI: 10.3390/ijms242115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, causes cardiotoxicity in a cumulative and dose-dependent manner. The aim of this study is to investigate the effects of hot-water extract of Capsella bursa-pastoris (CBW) on DOX-induced cardiotoxicity (DICT). We utilized H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells to evaluate the effects of CBW on DOX-induced cell death. Superoxide dismutase (SOD) levels, reactive oxygen species (ROS) production, and oxygen consumption rate were measured in H9c2 cells. C57BL/6 mice were treated with DOX and CBW to assess their impact on various cardiac parameters. Human-induced pluripotent stem-cell-derived cardiomyocytes were also used to investigate DOX-induced electrophysiological changes and the potential ameliorative effects of CBW. UPLC-TQ/MS analysis identified seven flavonoids in CBW, with luteolin-7-O-glucoside and isoorientin as the major compounds. CBW inhibited DOX-induced death of H9c2 rat cardiomyocytes but did not affect DOX-induced death of MDA-MB-231 human breast cancer cells. CBW increased SOD levels in a dose-dependent manner, reducing ROS production and increasing the oxygen consumption rate in H9c2 cells. The heart rate, RR interval, QT, and ST prolongation remarkably recovered in C57BL/6 mice treated with the combination of DOX and CBW compared to those in mice treated with DOX alone. Administration of CBW with DOX effectively alleviated collagen accumulation, cell death in mouse heart tissues, and reduced the levels of creatinine kinase (CK) and lactate dehydrogenase (LDH) in serum. Furthermore, DOX-induced pathological electrophysiological features in human-induced pluripotent stem-cell-derived cardiomyocytes were ameliorated by CBW. CBW may prevent DICT by stabilizing SOD and scavenging ROS. The presence of flavonoids, particularly luteolin-7-O-glucoside and isoorientin, in CBW may contribute to its protective effects. These results suggest the potential of CBW as a traditional therapeutic option to mitigate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yuhui Jeong
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Sun-Ho Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
| | - Jangho Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Min-Sun Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Yu-Geon Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Jin-Taek Hwang
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Sang-Yoon Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| |
Collapse
|
5
|
Otoo RA, Allen AR. Sulforaphane's Multifaceted Potential: From Neuroprotection to Anticancer Action. Molecules 2023; 28:6902. [PMID: 37836745 PMCID: PMC10574530 DOI: 10.3390/molecules28196902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 10/15/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and anticancer effects of SFN and the potential mechanisms through which it exerts these effects. SFN has been shown to exert neuroprotective effects through the activation of the Nrf2 pathway, the modulation of neuroinflammation, and epigenetic mechanisms. In cancer treatment, SFN has demonstrated the ability to selectively induce cell death in cancer cells, inhibit histone deacetylase, and sensitize cancer cells to chemotherapy. SFN has also shown chemoprotective properties through inhibiting phase I metabolizing enzymes, modulating phase II xenobiotic-metabolizing enzymes, and targeting cancer stem cells. In addition to its potential as a therapeutic agent for neurological disorders and cancer treatment, SFN has shown promise as a potential treatment for cerebral ischemic injury and intracranial hemorrhage. Finally, the ongoing and completed clinical trials on SFN suggest potential therapeutic benefits, but more research is needed to establish its effectiveness. Overall, SFN holds significant promise as a natural compound with diverse therapeutic applications.
Collapse
Affiliation(s)
- Raymond A. Otoo
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Monteiro-Alfredo T, dos Santos JM, Antunes KÁ, Cunha J, da Silva Baldivia D, Pires AS, Marques I, Abrantes AM, Botelho MF, Monteiro L, Gonçalves AC, Botelho WH, Paula de Araújo Boleti A, Cabral C, Oliveira PJ, Lucas dos Santos E, Matafome P, de Picoli Souza K. Acrocomia aculeata associated with doxorubicin: cardioprotection and anticancer activity. Front Pharmacol 2023; 14:1223933. [PMID: 37654604 PMCID: PMC10466431 DOI: 10.3389/fphar.2023.1223933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used in the clinic, whose side effects include cardiotoxicity, associated with decreased antioxidant defenses and increased oxidative stress. The association of Dox with natural antioxidants can extend its use if not interfering with its pharmacological potential. In this study, we aimed to understand the effects and mechanisms of the aqueous extract of Acrocomia aculeata leaves (EA-Aa) in cancer cells and the co-treatment with Dox, in in vitro and in vivo models. It was found that EA-Aa showed a relevant decrease in the viability of cancer cells (K562 and MCF-7) and increased apoptosis and death. The Dox cytotoxic effect in co-treatment with EA-Aa was increased in cancer cells. The therapeutic association also promoted a change in cell death, leading to a higher rate of apoptosis compared to the Dox group, which induced necrosis. In addition, in non-cancer cells, EA-Aa enhanced red blood cell (RBC) redox state with lower hemolysis and malondialdehyde (MDA) content and had no in vitro nor in vivo toxicity. Furthermore, EA-Aa showed antioxidant protection against Dox-induced cytotoxicity in H9c2 cells (cardiomyoblast), partially mediated by the NRF2 pathway. In vivo, EA-Aa treatment showed a relevant decrease in MDA levels in the heart, kidney, and brain, evaluated in C57Bl/6 mice induced to cardiotoxicity by Dox. Together, our results proved the effectiveness of EA-Aa in potentiating Dox anticancer effects, with antioxidant and cardioprotective activity, suggesting EA-Aa as a potential Dox pharmacological adjuvant.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Kátia Ávila Antunes
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Janielle Cunha
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Salomé Pires
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Inês Marques
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Margarida Abrantes
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Maria Filomena Botelho
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Lúcia Monteiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
| | - Wellington Henrique Botelho
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Célia Cabral
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo Matafome
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
7
|
Uche N, Dai Q, Lai S, Kolander K, Thao M, Schibly E, Sendaydiego X, Zielonka J, Benjamin IJ. Carvedilol Phenocopies PGC-1α Overexpression to Alleviate Oxidative Stress, Mitochondrial Dysfunction and Prevent Doxorubicin-Induced Toxicity in Human iPSC-Derived Cardiomyocytes. Antioxidants (Basel) 2023; 12:1585. [PMID: 37627583 PMCID: PMC10451268 DOI: 10.3390/antiox12081585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular 'redox poise' as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents.
Collapse
Affiliation(s)
- Nnamdi Uche
- Cardiovascular Center, Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Qiang Dai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Shuping Lai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Kurt Kolander
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Mai Thao
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Elizabeth Schibly
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Xavier Sendaydiego
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Jacek Zielonka
- Free Radical Laboratory, Department of Biophysics, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Ivor J. Benjamin
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| |
Collapse
|
8
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
9
|
Boťanská B, Pecníková V, Fogarassyová M, Barančík M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol Res 2023; 72:S47-S59. [PMID: 37294118 DOI: 10.33549/physiolres.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a cytostatic agent belonging to anthracycline group. Important role in mechanism associated with negative effects of DOX plays an oxidative stress. Heat shock proteins (HSPs) are part of mechanisms initiated in response to stressful stimuli and play an important role in cellular responses to oxidative stress through interaction with components of redox signaling. The present work was aimed to study the role of HSPs and autophagy in mechanisms underlying effects of sulforaphane (SFN), a potential activator of Nrf-2, on doxorubicin-induced toxicity in human kidney HEK293 cells. We investigated effects of SFN and DOX on proteins associated with regulation of heat shock response, redox signaling, and autophagy. Results show that SFN significantly reduced cytotoxic effects of DOX. The positive effects of SFN on DOX-induced changes were associated with up-regulation of Nrf-2 and HSP60 protein levels. In the case of another heat shock protein HSP40, SFN increased its levels when was administered alone but not in conditions when cells were exposed to the effects of DOX. Sulforaphane also reversed negative effects of DOX on activities of superoxide dismutases (SODs) and up-regulation of autophagy markers (LC3A/B-II, Atg5, and Atg12). In conclusion, the changes observed in HSP60 are of particular importance in terms of protecting cells from the effects of DOX. Finding that under conditions where SFN reduced cytotoxic effects of DOX were significantly increased protein levels of both Nrf-2 and HSP60 point to the role of HSP60 in mechanisms of redox signaling underlying effects of SFN on DOX-induced toxicity in HEK293 cells. Moreover, data confirmed an important role of autophagy in effects of SFN on DOX-induced toxicity.
Collapse
Affiliation(s)
- B Boťanská
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
10
|
Lokman MS, Althagafi HA, Alharthi F, Habotta OA, Hassan AA, Elhefny MA, Al Sberi H, Theyab A, Mufti AH, Alhazmi A, Hawsawi YM, Khafaga AF, Gewaily MS, Alsharif KF, Albrakati A, Kassab RB. Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17657-17669. [PMID: 36197616 DOI: 10.1007/s11356-022-23314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy used to treat many types of cancer. Cardiotoxicity is one of the common drawbacks of 5-FU therapy. Quercetin (Qu) is a bioflavonoid with striking biological activities. This research aimed to assess the ameliorative effect of Qu against 5-FU-mediated cardiotoxicity. Thirty-five rats were allocated into five groups: control group (normal saline), 5-FU group (30 mg/kg, intraperitoneally), Qu group (50 mg/kg, oral), 25 mg/kg Qu+5-FU group, and 50 mg/kg Qu+5-FU. The experimental animals were received the above-mentioned drugs for 21 days. Results showed that 5-FU significantly elevated creatine kinase, lactate dehydrogenase, serum cholesterol and triglyceride, and upregulated troponin and renin mRNA expression. Additionally, cardiac oxidant/antioxidant imbalance was evident in elevated oxidants (malondialdehyde and nitric oxide) and depleted antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). 5-FU also downregulated the gene expression of nuclear factor erythroid 2-related factor 2. Furthermore, 5-FU significantly increased cardiac pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and upregulated gene expression of nuclear factor kappa-B. 5-FU significantly enhanced cardiac apoptosis through upregulating caspase-3 expression and downregulating B-cell lymphoma 2. Immunohistochemical and histopathological examinations verified the above-mentioned findings. However, all these changes were significantly ameliorated in Qu pre-administered rats. Conclusively, Qu counteracted 5-FU-mediated cardiotoxicity through potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Arwa A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El Arish, Egypt
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, PO Box 40047, Jeddah, 21499, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| |
Collapse
|
11
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
13
|
Kitakata H, Endo J, Ikura H, Moriyama H, Shirakawa K, Katsumata Y, Sano M. Therapeutic Targets for DOX-Induced Cardiomyopathy: Role of Apoptosis vs. Ferroptosis. Int J Mol Sci 2022; 23:1414. [PMID: 35163335 PMCID: PMC8835899 DOI: 10.3390/ijms23031414] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin (DOX) is the most widely used anthracycline anticancer agent; however, its cardiotoxicity limits its clinical efficacy. Numerous studies have elucidated the mechanisms underlying DOX-induced cardiotoxicity, wherein apoptosis has been reported as the most common final step leading to cardiomyocyte death. However, in the past two years, the involvement of ferroptosis, a novel programmed cell death, has been proposed. The purpose of this review is to summarize the historical background that led to each form of cell death, focusing on DOX-induced cardiotoxicity and the molecular mechanisms that trigger each form of cell death. Furthermore, based on this understanding, possible therapeutic strategies to prevent DOX cardiotoxicity are outlined. DNA damage, oxidative stress, intracellular signaling, transcription factors, epigenetic regulators, autophagy, and metabolic inflammation are important factors in the molecular mechanisms of DOX-induced cardiomyocyte apoptosis. Conversely, the accumulation of lipid peroxides, iron ion accumulation, and decreased expression of glutathione and glutathione peroxidase 4 are important in ferroptosis. In both cascades, the mitochondria are an important site of DOX cardiotoxicity. The last part of this review focuses on the significance of the disruption of mitochondrial homeostasis in DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (H.K.); (J.E.); (H.I.); (H.M.); (K.S.); (Y.K.)
| |
Collapse
|
14
|
Reis-Mendes A, Padrão AI, Duarte JA, Gonçalves-Monteiro S, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. Role of Inflammation and Redox Status on Doxorubicin-Induced Cardiotoxicity in Infant and Adult CD-1 Male Mice. Biomolecules 2021; 11:1725. [PMID: 34827723 PMCID: PMC8615472 DOI: 10.3390/biom11111725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is a topoisomerase II inhibitor commonly used in the treatment of several types of cancer. Despite its efficacy, DOX can potentially cause fatal adverse effects, like cardiotoxicity. This work aimed to assess the role of inflammation in DOX-treated infant and adult mice and its possible link to underlying cardiotoxicity. Two groups of CD-1 male mice of different ages (infants or adults) were subjected to biweekly DOX administrations, to reach a cumulative dose of 18.0 mg/kg, which corresponds approximately in humans to 100.6 mg/m2 for infants and 108.9 mg/m2 for adults a clinically relevant dose in humans. The classic plasmatic markers of cardiotoxicity increased, and that damage was confirmed by histopathological findings in both groups, although it was higher in adults. Moreover, in DOX-treated adults, an increase of cardiac fibrosis was observed, which was accompanied by an increase in specific inflammatory parameters, namely, macrophage M1 and nuclear factor kappa B (NF-κB) p65 subunit, with a trend toward increased levels of the tumor necrosis factor receptor 2 (TNFR2). On the other hand, the levels of myeloperoxidase (MPO) and interleukin (IL)-6 significantly decreased in DOX-treated adult animals. In infants, a significant increase in cardiac protein carbonylation and in the levels of nuclear factor erythroid-2 related factor 2 (Nrf2) was observed. In both groups, no differences were found in the levels of tumor necrosis factor (TNF-α), IL-1β, p38 mitogen-activated protein kinase (p38 MAPK) or NF-κB p52 subunit. In conclusion, using a clinically relevant dose of DOX, our study demonstrated that cardiac effects are associated not only with the intensity of the inflammatory response but also with redox response. Adult mice seemed to be more prone to DOX-induced cardiotoxicity by mechanisms related to inflammation, while infant mice seem to be protected from the damage caused by DOX, possibly by activating such antioxidant defenses as Nrf2.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal
| | - Salomé Gonçalves-Monteiro
- Outcomes Research Laboratory, MOREHealth, Outcomes Research Laboratory, Portuguese Institute of Oncology at Porto Francisco Gentil (IPO Porto), 4200-072 Porto, Portugal;
| | - Margarida Duarte-Araújo
- Department of Immuno-Physiology and Pharmacology, ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Esfandyari S, Aleyasin A, Noroozi Z, Taheri M, Khodarahmian M, Eslami M, Rashidi Z, Amidi F. The Protective Effect of Sulforaphane against Oxidative Stress through Activation of NRF2/ARE Pathway in Human Granulosa Cells. CELL JOURNAL 2021; 23:692-700. [PMID: 34939763 PMCID: PMC8665974 DOI: 10.22074/cellj.2021.7393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Objective Sulforaphane (SFN) is a natural free radical scavenger that can reduce oxidative stress (OS) through
mediating nuclear factor (erythroid-derived 2)-like 2 (NF-E2-related factor 2 or NRF2)/antioxidant response element
(ARE) signaling pathway and the downstream antioxidant enzymes. Here, we intended to study the role of SFN in OS-
induced human granulosa cells (GCs) by investigating the intracellular levels of reactive oxygen species (ROS), cell
death, and NRF2-ARE pathway.
Materials and Methods This experimental study was conducted on GCs of 12 healthy women who had normal menstrual
cycles with no history of polycystic ovary syndrome (PCOS), endometriosis, menstrual disorders, hyperprolactinemia,
or hormonal therapy. After isolation of GCs, the MTT assay was performed to explore GCs viability after treatment with
SFN in the presence or absence of H2O2. Flow cytometry was utilized to determine the intracellular ROS production
and the apoptosis rate. Evaluation of the mRNA and protein expression levels of NRF2 and phase II enzymes including
superoxide dismutase (SOD) and catalase (CAT) was performed by quantitative real-time polymerase chain reaction
(PCR) and western blotting. Finally, the data were analyzed by SPSS software using One-way ANOVA and the suitable
post-hoc test. Significance level was considered as P<0.05.
Results Pretreatment of GCs with SFN attenuated intracellular ROS production and apoptosis rate in the H2O2-exposed
cells. Moreover, SFN treatment increased the mRNA expression level of NRF2, SOD, and CAT. Higher expression of
NRF2 and SOD was also observed at the protein level.
Conclusion Our study demonstrated that SFN protects human GCs against H2O2induced-OS by reducing
the intracellular ROS production and the following apoptosis through a mechanism by which NRF2 increases the
antioxidant enzymes such as SOD and CAT. This result may have a potential application in assisted reproduction cycles
by improving the quality of GCs and the embedded oocyte, especially in PCOS patients.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of ART, Embryology Laboratory, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Eslami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran..,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
17
|
Ladak Z, Garcia E, Yoon J, Landry T, Armstrong EA, Yager JY, Persad S. Sulforaphane (SFA) protects neuronal cells from oxygen & glucose deprivation (OGD). PLoS One 2021; 16:e0248777. [PMID: 33735260 PMCID: PMC7971874 DOI: 10.1371/journal.pone.0248777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Perinatal brain injury results in neurodevelopmental disabilities (neuroDDs) that include cerebral palsy, autism, attention deficit disorder, epilepsy, learning disabilities and others. Commonly, injury occurs when placental circulation, that is responsible for transporting nutrients and oxygen to the fetus, is compromised. Placental insufficiency (PI) is a reduced supply of blood and oxygen to the fetus and results in a hypoxic-ischemic (HI) environment. A significant HI state in-utero leads to perinatal compromise, characterized by fetal growth restriction and brain injury. Given that over 80% of perinatal brain injuries that result in neuroDDs occur during gestation, prior to birth, preventive approaches are needed to reduce or eliminate the potential for injury and subsequent neuroDDs. Sulforaphane (SFA) derived from cruciferous vegetables such as broccoli sprouts (BrSps) is a phase-II enzyme inducer that acts via cytoplasmic Nrf2 to enhance the production of anti-oxidants in the brain through the glutathione pathway. We have previously shown a profound in vivo neuro-protective effect of BrSps/SFA as a dietary supplement in pregnant rat models of both PI and fetal inflammation. Strong evidence also points to a role for SFA as treatment for various cancers. Paradoxically, then SFA has the ability to enhance cell survival, and with conditions of cancer, enhance cell death. Given our findings of the benefit of SFA/Broccoli Sprouts as a dietary supplement during pregnancy, with improvement to the fetus, it is important to determine the beneficial and toxic dosing range of SFA. We therefore explored, in vitro, the dosing range of SFA for neuronal and glial protection and toxicity in normal and oxygen/glucose deprived (OGD) cell cultures. METHODS OGD simulates, in vitro, the condition experienced by the fetal brain due to PI. We developed a cell culture model of primary cortical neuronal, astrocyte and combined brain cell co-cultures from newborn rodent brains. The cultures were exposed to an OGD environment for various durations of time to determine the LD50 (duration of OGD required for 50% cell death). Using the LD50 as the time point, we evaluated the efficacy of varying doses of SFA for neuroprotective and neurotoxicity effects. Control cultures were exposed to normal media without OGD, and cytotoxicity of varying doses of SFA was also evaluated. Immunofluorescence (IF) and Western blot analysis of cell specific markers were used for culture characterization, and quantification of LD50. Efficacy and toxicity effect of SFA was assessed by IF/high content microscopy and by AlamarBlue viability assay, respectively. RESULTS We determined the LD50 to be 2 hours for neurons, 8 hours for astrocytes, and 10 hours for co-cultures. The protective effect of SFA was noticeable at 2.5 μM and 5 μM for neurons, although it was not significant. There was a significant protective effect of SFA at 2.5 μM (p<0.05) for astrocytes and co-cultures. Significant toxicity ranges were also confirmed in OGD cultures as ≥ 100 μM (p<0.05) for astrocytes, ≥ 50 μM (p<0.01) for co-cultures, but not toxic in neurons; and toxic in control cultures as ≥ 100 μM (p<0.01) for neurons, and ≥ 50 μM (p<0.01) for astrocytes and co-cultures. One Way ANOVA and Dunnett's Multiple Comparison Test were used for statistical analysis. CONCLUSIONS Our results indicate that cell death shows a trend to reduction in neuronal and astrocyte cultures, and is significantly reduced in co-cultures treated with low doses of SFA exposed to OGD. Doses of SFA that were 10 times higher were toxic, not only under conditions of OGD, but in normal control cultures as well. The findings suggest that: 1. SFA shows promise as a preventative agent for fetal ischemic brain injury, and 2. Because the fetus is a rapidly growing organism with profound cell multiplication, dosing parameters must be established to insure safety within efficacious ranges. This study will influence the development of innovative therapies for the prevention of childhood neuroDD.
Collapse
Affiliation(s)
- Zeenat Ladak
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Garcia
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Yoon
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Takaaki Landry
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A. Armstrong
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y. Yager
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Harris CM, Zamperoni KE, Sernoskie SC, Chow NSM, Massey TE. Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation. Toxicology 2021; 454:152753. [PMID: 33741493 DOI: 10.1016/j.tox.2021.152753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kristen E Zamperoni
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Samantha C Sernoskie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Natalie S M Chow
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
19
|
Hedrich WD, Wang H. Friend or Foe: Xenobiotic Activation of Nrf2 in Disease Control and Cardioprotection. Pharm Res 2021; 38:213-241. [PMID: 33619640 DOI: 10.1007/s11095-021-02997-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that governs a highly conserved pathway central to the protection of cells against various oxidative stresses. However, the biological impact of xenobiotic intervention of Nrf2 in physiological and pathophysiological conditions remains debatable. Activation of Nrf2 in cancer cells has been shown to elevate drug resistance and increase cell survival and proliferation, while inhibition of Nrf2 sensitizes cancer cells to drug treatment. On the other hand, activation of Nrf2 in normal healthy cells has been explored as a rather successful strategy for cancer chemoprevention. Selective activation of Nrf2 in off-target cells has recently been investigated as an approach for protecting off-target tissues from untoward drug toxicity. Specifically, induction of antioxidant response element genes via Nrf2 activation in cardiac cells is being explored as a means to limit the well-documented cardiotoxicity accompanied by cancer treatment with commonly prescribed anthracycline drugs. In addition to cancers, Nrf2 has been implicated in many other diseases including Alzheimer's and Parkinson's Diseases, diabetes, and cardiovascular disease. In this review, we discuss the roles of Nrf2 and its downstream target genes in the treatment of various diseases, and its recently explored potential for increasing the benefit: risk ratio of commonly utilized cancer treatments.
Collapse
Affiliation(s)
- William D Hedrich
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.,Bristol-Myers Squibb Company, Pharmaceutical Candidate Optimization, Metabolism and Pharmacokinetics, Rt. 206 and Province Line Road, Princeton, New Jersey, 08543, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
20
|
Human Amnion Membrane Proteins Prevent Doxorubicin-Induced Oxidative Stress Injury and Apoptosis in Rat H9c2 Cardiomyocytes. Cardiovasc Toxicol 2021; 20:370-379. [PMID: 32086724 DOI: 10.1007/s12012-020-09564-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Doxorubicin (DOX) is widely used as an effective chemotherapy agent in cancer treatment. Cardiac toxicity in cancer treatment with DOX demand urgent attention and no effective treatment has been established for DOX-induced cardiomyopathy. It has been well documented that human amniotic membrane proteins (AMPs), extracted from amnion membrane (AM), have antioxidant, anti-apoptotic, and cytoprotective properties. Therefore, in this study, we aimed to investigate the protective effects of AMPs against cardiotoxicity induced by DOX in cultured rat cardiomyocyte cells (H9c2). DOX-induced cell injury was evaluated using multi-parametric assay including thiazolyl blue tetrazolium bromide (MTT), the release of lactic dehydrogenase (LDH), intracellular Ca2+ , reactive oxygen species (ROS) levels, cellular antioxidant status, mitochondrial membrane potential (ΔΨm), malondialdehyde (MDA), and NF-κB p65 DNA-binding activity. Moreover, expression profiling of apoptosis-related genes (P53, Bcl-2, and Bax) and Annexin V by flow cytometry were used for cell apoptosis detection. It was shown that AMPs pretreatment inhibited the cell toxicity induced by DOX. AMPs effectively attenuated the increased levels of LDH, Ca2+ , ROS, and MDA and also simultaneously elevated the ΔΨm and antioxidant status such as superoxide dismutase (SOD) and Catalase (CAT) in pretreated H9c2 cardiomyocytes. Besides, the activity of NF-kB p65 was reduced and the p53 and Bax protein levels were inhibited in these myocardial cells subjected to DOX. These findings provide the first evidence that AMPs potently suppressed DOX-induced toxicity in cardiomyocytes through inhibition of oxidative stress and apoptosis. Thus, AMPs can be a potential therapeutic agent against DOX cardiotoxicity.
Collapse
|
21
|
Li T, Pang Q, Liu Y, Bai M, Peng Y, Zhang Z. Sulforaphane protects human umbilical vein endothelial cells from oxidative stress via the miR-34a/SIRT1 axis by upregulating nuclear factor erythroid-2-related factor 2. Exp Ther Med 2021; 21:186. [PMID: 33488795 PMCID: PMC7812584 DOI: 10.3892/etm.2021.9617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress-induced vascular endothelial cell dysfunction serves an essential role in the initiation and development of atherosclerosis. Sulforaphane (SFN), a naturally occurring antioxidant, has previously demonstrated to exert protective effects on the endothelium against oxidative stress. However, further studies are required to determine its underlying molecular mechanism prior to clinical application. Accumulating evidence suggests that alterations in the microRNA (miRNA/miR)-34a/sirtuin-1 (SIRT1) axis occur with oxidative stress. Therefore, the present study aimed to investigate if SFN exerts a protective role against oxidative stress in vascular endothelial cells through regulation of the miR-34a/SIRT1 axis. Human umbilical vein endothelial cells (HUVECs) were treated with H2O2 in the presence or absence of SFN pretreatment. Cell viability and apoptosis were analyzed using CellTiter-Blue and flow cytometry, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to determine changes in the expression levels of miR-34a and SIRT1. The expression levels of miR-34a and SIRT1 were artificially regulated following transfection with miR-34a mimic and inhibitor or SIRT1expression plasmid and small interfering RNA, respectively. Subsequently, the effect of the expression changes of miR-34 and SIRT1 on oxidative stress-induced cell injury was investigated. Dual-luciferase reporter assay was used to confirm the targeted binding of miR-34a to SIRT1. SFN was found to ameliorate cellular damage caused by H2O2 and inhibited intracellular reactive oxygen species production. In addition, miR-34a upregulation was accompanied with reduced SIRT1 expression in HUVECs, following H2O2 treatment. miR-34a was revealed to directly target SIRT1 by binding to its 3'-untranslated region. Down-regulation of miR-34a and up-regulation of SIRT1 increased the survival of HUVECs under oxidative stress. Taken together, the results of the present study suggest that SFN may protect HUVECs from oxidative stress by inducing changes in the miR-34a/SIRT1 axis via upregulation of nuclear factor erythroid-2-related factor 2 expression.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qi Pang
- Department of Traditional Chinese Medicine, The Gansu Gem Flower Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yongbin Liu
- Department of Cardiology, The Gansu Gem Flower Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yu Peng
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
22
|
Tavakoli R, Tabeshpour J, Asili J, Shakeri A, Sahebkar A. Cardioprotective Effects of Natural Products via the Nrf2 Signaling Pathway. Curr Vasc Pharmacol 2020; 19:525-541. [PMID: 33155913 DOI: 10.2174/1570161119999201103191242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Due to its poor regenerative capacity, the heart is specifically vulnerable to xenobiotic- induced cardiotoxicity, myocardial ischaemia/reperfusion injury and other pathologies. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered as an essential factor in protecting cardiomyocytes against oxidative stress resulting from free radicals and reactive oxygen species. It also serves as a key regulator of antioxidant enzyme expression via the antioxidant response element, a cis-regulatory element, which is found in the promoter region of several genes encoding detoxification enzymes and cytoprotective proteins. It has been reported that a variety of natural products are capable of activating Nrf2 expression, and in this way, increase the antioxidant potential of cardiomyocytes. In the present review, we consider the cardioprotective activities of natural products and their possible therapeutic potential.
Collapse
Affiliation(s)
- Rasool Tavakoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Bransh, Islamic Azad University, Damghan, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Calcabrini C, Maffei F, Turrini E, Fimognari C. Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects. Front Pharmacol 2020; 11:567. [PMID: 32425794 PMCID: PMC7207042 DOI: 10.3389/fphar.2020.00567] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The success of cancer therapy is often compromised by the narrow therapeutic index of many anticancer drugs and the occurrence of drug resistance. The association of anticancer therapies with natural compounds is an emerging strategy to improve the pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical found in cruciferous vegetables, targets multiple pathways involved in cancer development, as recorded in different cancers such as breast, brain, blood, colon, lung, prostate, and so forth. As examples to make the potentialities of the association chemotherapy raise, here we highlight and critically analyze the information available for two associations, each composed by a paradigmatic anticancer drug (cisplatin or doxorubicin) and sulforaphane.
Collapse
Affiliation(s)
- Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| |
Collapse
|
25
|
Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J Cell Mol Med 2020; 24:6534-6557. [PMID: 32336039 PMCID: PMC7299722 DOI: 10.1111/jcmm.15305] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines is an effective chemotherapeutic treatment used for many types of cancer. However, high cumulative dosage of anthracyclines leads to cardiac toxicity and heart failure. Dysregulation of mitochondrial dynamics and function are major pathways driving this toxicity. Several pharmacological and non‐pharmacological interventions aiming to attenuate cardiac toxicity by targeting mitochondrial dynamics and function have shown beneficial effects in cell and animal models. However, in clinical practice, there is currently no standard therapy for the prevention of anthracycline‐induced cardiotoxicity. This review summarizes current reports on the impact of anthracyclines on cardiac mitochondrial dynamics and mitochondrial function and potential interventions targeting these pathways. The roles of mitochondrial dynamics and mitochondrial function in the development of anthracycline‐induced cardiotoxicity should provide insights in devising novel strategies to attenuate the cardiac toxicity induced by anthracyclines.
Collapse
Affiliation(s)
- Nichanan Osataphan
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon 2020; 6:e03803. [PMID: 32337383 PMCID: PMC7177035 DOI: 10.1016/j.heliyon.2020.e03803] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOXO), a potent and widely used chemotherapeutic agent, causes irreversible heart failure by increasing oxidative stress, which limits its clinical utility. Nuclear factor erythroid-derived 2 -like 2 (Nrf2) is a prominent central regulator of cellular impenetrable to oxidants. The purpose of the study is to assess the ameliorative outcome of quercetin in cardiomyopathic rats induced by doxorubicin. Cardiomyopathy was produced in rats by single intraperitoneal weekly with DOXO (2 mg/kg) for 4 weeks. The rats were divided into five groups: (I) control group; (II) DOXO (2 mg/kg, i.p.) group; (III-V) DOXO + quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally), and were treated for 7 weeks. At the end of the treatment duration, cardiac function and biochemical parameters were assessed. Quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally) treatment reduced the raised blood pressure (BP) and left ventricular dysfunction. Withal, it prevented the rise in CKMB and LDH, suggesting the effect of quercetin in the maintaining the integrity of the cell membrane Besides, it also prevented the alteration in electrolyte levels, the activity of ATPase, and antioxidant status. Quercetin increased Nrf2 mRNA expression and reduced histological abnormalities compared to the DOXO control group. In conclusion, quercetin protected against DOXO- induced cardiomyopathy, by increasing expression of NRF2, and thereby increasing antioxidant defense and restoring biochemical and histological abnormalities.
Collapse
|
27
|
Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43:371-384. [PMID: 32152852 DOI: 10.1007/s12272-020-01225-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.
Collapse
|
28
|
Teneligliptin prevents doxorubicin-induced inflammation and apoptosis in H9c2 cells. Arch Biochem Biophys 2019; 683:108238. [PMID: 31881187 DOI: 10.1016/j.abb.2019.108238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 11/23/2022]
Abstract
Doxorubicin is a common chemotherapy treatment with numerous negative ramifications of use such as nephropathy and radiation-induced cardiotoxicity. Doxorubicin has been shown to cause overexpression of proinflammatory cytokines including MCP-1 and IL-1β via activation of the NF-κB pathway. Furthermore, apoptosis marked by dysregulation of the Bax/Bcl-2 ratio and oxidative stress and the production of reactive oxygen species (ROS) are also exacerbated by doxorubicin administration. Teneligliptin is part of the wider dipeptidyl peptidase-4 (DPP-4) inhibitor family which has until recently been almost exclusively used to treat type 2 diabetes mellitus. DPP-4 inhibitors such as teneligliptin control the overexpression of glucagon-like peptidase 1 (GLP-1) which has the downstream effects of general insulin resistance and high blood sugar levels. Our findings indicate a significant protective effect of teneligliptin against the aftereffects of doxorubicin as a chemotherapy treatment. This protective effect includes but is not limited to the reduction of inflammation and the mitigation of dysregulated apoptosis, as evidenced by reduced expression of IL-1β and MCP-1, inhibition of NF-κB activation, and improvement of the Bax/Bcl-2 ratio. The aim of the present study was to establish teneligliptin as a potentially useful agent for the treatment of radiation-induced cardiotoxicity, and our findings support this notion.
Collapse
|
29
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
30
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
31
|
Curdione Ameliorated Doxorubicin-Induced Cardiotoxicity Through Suppressing Oxidative Stress and Activating Nrf2/HO-1 Pathway. J Cardiovasc Pharmacol 2019; 74:118-127. [DOI: 10.1097/fjc.0000000000000692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Drugs used in clinical oncology have narrow therapeutic indices with adverse toxicity often involving oxidative damage. Chemoresistance to these conventional antineoplastics is usually mediated by oxidative stress-upregulated pathways such as those of nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1 alpha (HIF-1α). Accordingly, the use of antioxidants in combinational approaches has begun to be considered for fighting cancer because of both the protective role against adverse effects and the ability to sensitize chemoresistant cancer cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a mediator of the cytoprotection but it is not regularly associated with tumor chemosensitization. However, some Nrf2 inducers could be exerting cytoprotective and chemosensitizing roles through a simple integrated mechanism in which the cellular level of reactive oxygen species is controlled, thus inhibiting the oxidative damage in non-target tissues and the tumor chemoresistance mediated by NF-κB or HIF-1α. As examples to show the general idea of this antioxidant combination chemotherapy, this review explores the preclinical information available for four combinations, each composed by a paradigmatic oncological drug (cisplatin or doxorubicin) and a recognized antioxidant (sulforaphane or curcumin). The issues for translating these outcomes to clinical trials are briefly discussed.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, 68002, Colombia.
| |
Collapse
|
33
|
Oner Z, Altınoz E, Elbe H, Ekinci N. The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in Wistar albino rats. Hum Exp Toxicol 2019; 38:803-813. [DOI: 10.1177/0960327119842634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to determine the protective and therapeutic effects of linalool (LIN) against doxorubicin (DOX)-induced cardiotoxicity in rats histologically and biochemically. In experiments, 64 male Wistar albino rats were randomly divided into eight groups ( n = 8). These groups were control (C) (0.9% saline solution), DOX (20 mg/kg DOX), LIN50 (50 mg/kg LIN), LIN100 (100 mg/kg LIN), DOX + LIN50 (20 mg/kg DOX and 50 mg/kg LIN), DOX + LIN100 (20 mg/kg DOX and 100 mg/kg LIN), LIN50 + DOX (50 mg/kg LIN and 20 mg/kg DOX), and LIN100 + DOX (100 mg/kg LIN and 20 mg/kg DOX). It was determined that necrosis and extensive inflammatory cell infiltration were observed in the DOX group. It was determined that histopathological changes significantly decreased in groups treated with LIN after DOX administration. While the caspase-3 immunostaining was highly evident in DOX group apoptotic cells ( p < 0.001, for all), the intensity of caspase-3 immunostaining in the treatment groups decreased ( p < 0.05). While DOX administration resulted in a significant increase in malondialdehyde (MDA) levels and plasma Creatine kinase (CK) and lactate dehydrogenase (LDH) levels in cardiac tissue when compared to the C groups, it was observed that DOX + LIN administration led to a significant decrease in MDA, plasma CK and LDH levels and a significant increase in glutathione (GSH), superoxide dismutase, and catalase enzyme levels. Finally, it was concluded that DOX led to heavy cardiotoxicity and DOX + LIN administration could remove cardiomyopathy symptoms.
Collapse
Affiliation(s)
- Z Oner
- Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Turkey
| | - E Altınoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabük University, Karabük, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - N Ekinci
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
34
|
Mielczarek L, Krug P, Mazur M, Milczarek M, Chilmonczyk Z, Wiktorska K. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int J Pharm 2019; 558:311-318. [PMID: 30641176 DOI: 10.1016/j.ijpharm.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
A new combination of sulforaphane (a natural compound obtained from Brassicaceae vegetables) and the cytostatic drug doxorubicin was entrapped in nanometer-sized liposomes. In vitro experiments were performed to investigate the cytotoxicity of these structures on the human breast cancer cell line MDA-MB-231. Confocal microscopy studies revealed enhanced cellular endocytotic internalization, followed by the release of the examined combination from the lysosomes. The in vitro interaction analysis using the Chou-Talalay approach showed high synergistic activity of the examined combination. This synergistic activity enables a considerable reduction in cytostatic dosage and an increase in cancer treatment efficiency.
Collapse
Affiliation(s)
- Lidia Mielczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Department of Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Pamela Krug
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Małgorzata Milczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Zdzisław Chilmonczyk
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| |
Collapse
|
35
|
Guo Z, Yan M, Chen L, Fang P, Li Z, Wan Z, Cao S, Hou Z, Wei S, Li W, Zhang B. Nrf2-dependent antioxidant response mediated the protective effect of tanshinone IIA on doxorubicin-induced cardiotoxicity. Exp Ther Med 2018; 16:3333-3344. [PMID: 30233680 PMCID: PMC6143869 DOI: 10.3892/etm.2018.6614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX), a potent and widely used anticancer agent, can give rise to severe cardiotoxicity that limits its clinical use by inducing oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the central regulator of cellular responses to electrophilic/oxidative stress, which serves a critical role in maintenance of normal cardiac function. Tanshinone IIA (Tan IIA) has previously been reported to protect against DOX-induced cardiotoxicity. The aim of the present study was to elucidate whether Nrf2 signaling serves a role in the underlying mechanism. In the animal model, DOX induced acute cardiotoxicity, whereas Tan IIA pretreatment reduced the activity of myocardial enzymes, and increased activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione (GSH). Furthermore, Tan IIA pretreatment (3-10 µM) significantly increased the cell viability and markedly restored morphological changes in DOX-injured H9c2 cells, decreased the generation of reactive oxygen species, and increased the level of intracellular GSH. Additionally, Tan IIA pretreatment also induced the nuclear accumulation of Nrf2 and its downstream genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone) 1, and glutamate-cysteine ligase catalytic subunit in both the mice cardiac tissues and H9c2 cells. Nrf2 knockdown by small interfering RNA downregulated Tan IIA-induced Nrf2 activation and reversed the effect of Tan IIA on the DOX-induced inhibition of cell viability. These results suggest that the Nrf2-dependent antioxidant response mediates the protective effect of Tan IIA on DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhaohui Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Department of Pharmacy, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhihua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zimeng Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sisi Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenyan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
36
|
Kim KW, Yoon CS, Kim YC, Oh H. Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotox Res 2018; 35:230-243. [PMID: 30168019 DOI: 10.1007/s12640-018-9951-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
37
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
38
|
Sulforaphane protects granulosa cells against oxidative stress via activation of NRF2-ARE pathway. Cell Tissue Res 2018; 374:629-641. [PMID: 30032437 DOI: 10.1007/s00441-018-2877-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/20/2018] [Indexed: 01/06/2023]
Abstract
Sulforaphane (SFN) has been considered as an indirect antioxidant and potential inducer of the Nrf2-ARE pathway. This study was conducted to investigate the protective role of SFN against oxidative stress in bovine granulosa cells (GCs). GCs were collected from antral follicles (4-8 mm) and cultured according to the experimental design where group 1 = control, group 2 = treated with SFN, group 3 = treated with hydrogen peroxide (H2O2), group 4 = pretreated with SFN and then with H2O2 (protective) and group 5 = treated with H2O2 followed by SFN treatment (rescuing). Results showed that SFN pretreatment significantly increases cell viability and reduces cytotoxicity in GCs under oxidative stress. Following H2O2 exposure, expression of NRF2 was found to be significantly increased (p < 0.05) in SFN-pretreated cells, while no significant differences were observed between group 3 and group 5, although the expression was significantly increased compared to the control group. Moreover, the relative abundance of the NRF2 downstream target antioxidant genes (CAT, PRDX1, SOD1 and TXN1) were higher (fold change ranged from 7 to 14, p < 0.05) in sulforaphane pretreated GCs. Low level of ROS and lipid accumulation and higher mitochondrial activity were observed in GCs pretreated with SFN, whereas no such changes were observed in GCs treated with SFN after exposure to oxidative stress (group 5). Thus, we suggest that SFN pretreatment effectively protects GCs against oxidative damage through the activation of the NRF2-ARE pathway, whereas addition of SFN during oxidative insult failed to rescue GCs.
Collapse
|
39
|
Xu J, Tang S, Song E, Yin B, Wu D, Bao E. Hsp70 expression induced by Co-Enzyme Q10 protected chicken myocardial cells from damage and apoptosis under in vitro heat stress. Poult Sci 2018; 96:1426-1437. [PMID: 27794544 DOI: 10.3382/ps/pew402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether induction of Hsp70 expression by co-enzyme Q10 (Q10) treatment protects chicken primary myocardial cells (CPMCs) from damage and apoptosis in response to heat stress for 5 hours. Analysis of the expression and distribution of Hsp70 and the levels of the damage-related enzymes creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), as well as pathological analysis showed that co-enzyme Q10 alleviated the damage caused to CPMCs during heat stress. Further, analysis of cell apoptosis and the expression of cleaved caspase-3 indicated that co-enzyme Q10 did have an anti-apoptotic role during heat stress. Western blot analysis showed that pretreatment with co-enzyme Q10 led to a significant increase in the expression of Hsp70 during heat stress. Immunostaining assays confirmed the results of western blot analysis and also showed that co-enzyme Q10 could accelerate the translocation of Hsp70 into the nucleus during heat stress, but this was not observed in the group that was treated with only co-enzyme Q10. These findings seem to indicate that co-enzyme Q10 protected CPMCs from heat stress via the induction of Hsp70. To investigate this, 200 μM quercetin, an Hsp70 inhibitor, was used to inhibit the expression of Hsp70 2 h before heat stress. Quercetin pre-treatment was observed to suppress the expression of Hsp70 as well the protective function of co-enzyme Q10 at 5 h of heat stress. This finding confirms that Q10 brought about its effects via Hsp70 expression, but the mechanism underlying this needs further investigation.
Collapse
|
40
|
Tian H, Sun W, Zhang Q, Li X, Sang Y, Li J, Niu Y, Ding H. Procyanidin B2 mitigates behavioral impairment and protects myelin integrity in cuprizone-induced schizophrenia in mice. RSC Adv 2018; 8:23835-23846. [PMID: 35540280 PMCID: PMC9081829 DOI: 10.1039/c8ra03854f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have suggested that neuropathological changes in schizophrenia may be related to damage to white matter or demyelination. Procyanidin B2, which is a constituent of many fruits such as grapes and strawberries, has various biological activities such as anti-inflammatory and anti-tumor activity, as has been reported. This study aimed to estimate the effects of procyanidin B2 on behavioral impairment and the protection of myelin integrity in a cuprizone-induced schizophrenia model. Mice were exposed to cuprizone (0.2% w/w in chow) for five weeks to induce schizophrenia-like behavioral changes and demyelination. Procyanidin B2 (20 or 100 mg kg−1 day−1) or vehicle was administered orally to mice after withdrawal from cuprizone. Behavioral impairment was detected with an open-field test, a rotarod test and a Morris water maze. Myelin integrity was assessed using LFB staining and MBP expression, including immunofluorescence and western blotting. In addition, enhancements in the expression of HO-1 and NQO1 suggested that procyanidin B2 may regulate oxidative homeostasis via promoting the translation of Nrf2 to the nucleus. Data indicated that procyanidin B2 could mitigate behavioral impairment and protect myelin integrity in the cuprizone-induced model via regulating oxidative stress by activating Nrf2 signaling. Numerous studies have suggested that neuropathological changes in schizophrenia may be related to damage to white matter or demyelination.![]()
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Wanchun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Qianying Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Ying Sang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| |
Collapse
|
41
|
Wahyudi LD, Jeong J, Yang H, Kim JH. Amentoflavone-induced oxidative stress activates NF-E2-related factor 2 via the p38 MAP kinase-AKT pathway in human keratinocytes. Int J Biochem Cell Biol 2018; 99:100-108. [DOI: 10.1016/j.biocel.2018.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
|
42
|
Sunitha MC, Dhanyakrishnan R, PrakashKumar B, Nevin KG. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed Pharmacother 2018; 102:823-832. [PMID: 29605770 DOI: 10.1016/j.biopha.2018.03.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (Dox) is a widely administered chemotherapeutic drug and incidences of cardiotoxicity associated with its administration have been of general concern. Extensive research proposes several mechanisms as a cause of Dox induced cardiotoxicity. However, none of these studies have been able to suggest a find one, cure all antidote for the same. To this end, several studies involving plant based compounds or natural products have gained acclaim for their ability to address at least one factor contributing to drug induced pathogenesis. We had previously reported that p-coumaric (pCA) has a protective effect on Dox induced oxidative stress in rat-derived cardiomyoblasts. In this study we investigated the effects of pCA on the regulation of Nrf-2, mitochondrial viability, autophagy and apoptosis in Doxorubicin treated H9c2 cardiomyocytes. ROS induced mitochondrial stress, changes in mitochondrial membrane potential, loss of membrane integrity; nuclear damage as single/double stranded breaks, autophagy and the effects of pre and co-treatment of pCA on Nrf-2 mediated signaling was evaluated by various approaches. The effect of pCA on drug uptake was evaluated through confocal Raman Spectroscopy. We find that nuclear translocation of Nrf-2 is prominently marked by protein-specific antibody conjugated fluorophore in Dox treated cells especially. Cell survival is mediated to a certain extent by the expression of the anti-apoptotic BCl2 in pCA treated cells. However, mRNA levels of autophagy related (Atg) genes suggest that autophagy plays a decisive role in deciding cellular fate. Caspase-3 activation is also observed in pCA treated cells which suggest an alternative function of caspase-3 in pCA mediated cell survival. Expression of antioxidant enzymes confirm the oxidative stress induced by Dox treatment in cells and the modulation of cell redox homeostasis through treatment with pCA.
Collapse
Affiliation(s)
- Mary Chacko Sunitha
- School of Biosciences, Mahatma Gandhi University, PD Hills PO, Kottayam, Kerala, 686560, India
| | | | - Bhaskara PrakashKumar
- School of Biosciences, Mahatma Gandhi University, PD Hills PO, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
43
|
Ma T, Zhu D, Chen D, Zhang Q, Dong H, Wu W, Lu H, Wu G. Sulforaphane, a Natural Isothiocyanate Compound, Improves Cardiac Function and Remodeling by Inhibiting Oxidative Stress and Inflammation in a Rabbit Model of Chronic Heart Failure. Med Sci Monit 2018. [PMID: 29527002 PMCID: PMC5859672 DOI: 10.12659/msm.906123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of this study was to investigate the effects of sulforaphane (SFN), a natural isothiocyanate compound, in a rabbit ascending aortic cerclage model of chronic heart failure (CHF). Material/Methods Thirty New Zealand White rabbits were divided into the sham operation group (n=10), the CHF group (n=10), and the CHF + SFN group (n=10) treated with subcutaneous SFN (0.5 mg/kg) for five days per week for 12 weeks. After 12 weeks, echocardiography and biometric analysis were performed, followed by the examination of the rabbit hearts. Enzyme-linked immunosorbent assay (ELISA) and Western blot were used to detect levels of inflammatory cytokines, superoxide dismutase (SOD), and malondialdehyde (MDA). Results In the CHF group, compared with the sham operation group, there was an increase in the heart weight to body weight ratio (HW/BW), the left ventricular weight to body weight ratio (LVW/BW), the left ventricular end diastolic diameter (LVEDD), the left ventricular end systolic diameter (LVESD), plasma brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) levels, the cardiac collagen volume fraction (CVF), apoptotic index, expression levels of collagen I, collagen III, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) in the myocardial tissue, and a decrease in the left ventricular shortening fraction (LVFS) and left ventricular ejection fraction (LVEF), and cardiac superoxide dismutase (SOD) activity. These changes were corrected in the SFN-treated group. Conclusions In a rabbit model of CHF, treatment with SFN improved cardiac function and remodeling by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Tongliang Ma
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Decai Zhu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Duoxue Chen
- Department of Cardiology, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Qiaoyun Zhang
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huifang Dong
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Wenwu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huihe Lu
- Department of Cardiology, Nantong First People's Hospital, Nantong, Jiangsu, China (mainland)
| | - Guangfu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| |
Collapse
|
44
|
Vishnu KV, Ajeesh Kumar KK, Chatterjee NS, Lekshmi RGK, Sreerekha PR, Mathew S, Ravishankar CN. Sardine oil loaded vanillic acid grafted chitosan microparticles, a new functional food ingredient: attenuates myocardial oxidative stress and apoptosis in cardiomyoblast cell lines (H9c2). Cell Stress Chaperones 2018; 23:213-222. [PMID: 28766116 PMCID: PMC5823802 DOI: 10.1007/s12192-017-0834-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Fish oil has been widely recognized as an excellent dietary source of polyunsaturated n-3 fatty acids such as EPA and DHA. However, it can undergo oxidation easily resulting in the formation of toxic off flavor compounds such as hydroperoxides. These compounds adversely affect the nutritional quality and may induce several stress reactions in body. To solve this problem, a new antioxidant bio-material, vanillic acid-grafted chitosan (Va-g-Ch), was synthesized and used as a wall material for microencapsulation of fish oil. The sardine oil loaded Va-g-Ch microparticles could be a potential functional food ingredient considering the numerous health benefits of fish oil, chitosan, and vanillic acid. The current study aimed to investigate the possible protective effect of sardine oil-loaded Va-g-Ch microparticles against doxorubicin-induced cardiotoxicity and the underlying mechanisms. In vitro cytotoxicity evaluation was conducted using H9c2 cardiomyocytes. MTT assay revealed that effective cytoprotective effect was induced by a sample concentration of 12.5 μg/mL. Results of apoptosis by double fluorescent staining with acridine orange/ethidium bromide and caspase-3 evaluation by ELISA substantiated the above findings. Further, flow cytometric determination of membrane potential, relative expression of NF-κB by PCR, and ROS determination using DCFH-DA also confirmed the protective effect of encapsulated sardine oil against doxorubicin-induced cardiotoxicity. NF-κB expression was down-regulated nearly by 50% on cells treated with encapsulated sardine oil. Altogether, the results revealed that sardine oil-loaded Va-g-Ch microparticles demonstrated potential cell protection against doxorubicin-induced oxidative stress.
Collapse
Affiliation(s)
- K V Vishnu
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - K K Ajeesh Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - Niladri S Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India.
| | - R G K Lekshmi
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - P R Sreerekha
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| |
Collapse
|
45
|
Lin EY, Bayarsengee U, Wang CC, Chiang YH, Cheng CW. The natural compound 2,3,5,4'-tetrahydroxystilbene-2-O-β-d glucoside protects against adriamycin-induced nephropathy through activating the Nrf2-Keap1 antioxidant pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:72-82. [PMID: 29064158 DOI: 10.1002/tox.22496] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) is an active compound extracted from Polygonum multiflorum Thunb. This herb and radix Polygoni Multiflori preparata have been used to treat arteriosclerosis, hyperlipidemia, hypercholesterolemia, and diabetes for thousands of years. This study aimed to investigate the protective effects of THSG in an Adriamycin (AD)-induced focal segmental glomerulosclerosis (FSGS) mouse model and the underlying mechanisms in an in vitro system. Mice were treated with THSG (2.5 and 10 mg/kg, oral gavage) for 24 consecutive days. On the third day, mice were intravenously given a single dose of AD (10 mg/kg). At the end of the experiment, plasma and kidney samples were harvested to evaluate the therapeutic effects of THSG. The potential mechanisms of THSG in protecting against AD-induced cytotoxicity were examined using a real-time polymerase chain reaction, immunoblots, lactate dehydrogenase assay, and a cellular oxidized-thiol detection system in a mouse mesangial cell line. In this study, THSG showed concentration-dependent protective effects in ameliorating the progression of AD-induced FSGS. THSG suppressed albuminuria and hypercholesterolemia and reduced the status of lipid peroxidation in urine, plasma, and kidney tissue samples. Furthermore, THSG protected against podocyte damage, reduced renal fibrotic gene expressions, and alleviated the severity of glomerulosclerosis. Treatment of mouse mesangial cells with THSG induced nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, increased heme oxygenase-1 and NAD(P)H:quinone oxidoreductase (NQO)-1 gene expressions, and reduced cellular thiol oxidation and resistance to AD-induced cytotoxicity. Silencing Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), abolished these protective effects of THSG. In conclusion, THSG can play a protective role in ameliorating the progression of FSGS in a mouse model through activation of the Nrf2-Keap1 antioxidant pathway. Although a well-designed therapeutic study is needed, THSG may be applied to manage chronic kidney disease.
Collapse
Affiliation(s)
- En-Yuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Uyanga Bayarsengee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, Shastin Central Hospital in Ulaanbaatar, Mongolia
| | - Ching-Chiung Wang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
46
|
Bharathi Priya L, Baskaran R, Huang CY, Vijaya Padma V. Neferine modulates IGF-1R/Nrf2 signaling in doxorubicin treated H9c2 cardiomyoblasts. J Cell Biochem 2017; 119:1441-1452. [PMID: 28731223 DOI: 10.1002/jcb.26305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) induced cardiotoxicity is a major problem during chemotherapy of cancers. DOX-mediated suppression of type 1 IGF receptor (IGF-1R) signaling leads to cardiac dysfunction. Neferine, a bisbezylisoquinoline alkaloid from the seed embryos of Nelumbo nucifera Gaertn possesses a distinct range of pharmacological properties. Herewith, the present study attempts to elucidate the protective role of neferine against DOX induced toxicity in H9c2 rat cardiomyoblast cell line model. DOX-treated H9c2 cells significantly increased mitochondrial superoxide generation, depleted cellular antioxidant status, suppressed the activation of IGF-1R signaling via PI3K/Akt/mTOR and induced autophagy by the activation of ULK1, Beclin1, Atg7, and LC3B. Neferine pre-treatment activated IGF-1R signaling, improved cellular antioxidant pool, increased the expression of down-stream targets of IGF-1R, such as PI3K/Akt/mTOR, inhibited mitochondrial superoxide generation and autophagy significantly with the induction of Nrf2 translocation and expressions of HO1 and SOD1. Our study suggests the use of neferine for amelioration of DOX-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Jain A, Rani V. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts. Mol Cell Biochem 2017; 442:81-96. [DOI: 10.1007/s11010-017-3195-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023]
|
48
|
Gas signaling molecule hydrogen sulfide attenuates doxorubicin-induced dilated cardiomyopathy. Oncotarget 2017; 8:95425-95431. [PMID: 29221138 PMCID: PMC5707032 DOI: 10.18632/oncotarget.20729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence has revealed that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, whether H2S can attenuate the development of dilated cardiomyopathy (DCM) remains unclear. In this study, we generated a rat model of DCM induced by doxorubicin and investigated the protective effects of H2S against DCM. Cardiac structure and function were analyzed by two-dimensional echocardiography. Oxidative stress was evaluated by measuring malondialdehyde, superoxide dismutase, glutathione peroxidase and reactive oxygen species. Cardiomyocyte apoptosis was assessed by flow cytometry following Annexin V/PI staining. Our results showed that exogenous administration of H2S could improve left ventricular structure and function in DCM rats. H2S was found to suppress doxorubicin-induced oxidative stress by activating the Nrf2 pathway and upregulating the expression of antioxidant proteins NQO1 and GCLM. Moreover, H2S was also found to inhibit doxorubicin-induced cardiomyocyte apoptosis by activating the PI3K/Akt signaling pathway. In conclusion, our study demonstrates that H2S protects against doxorubicin-induced DCM via attenuation of oxidative stress and apoptosis.
Collapse
|
49
|
Koleini N, Nickel BE, Wang J, Roveimiab Z, Fandrich RR, Kirshenbaum LA, Cattini PA, Kardami E. Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget 2017; 8:87415-87430. [PMID: 29152091 PMCID: PMC5675643 DOI: 10.18632/oncotarget.20558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/09/2022] Open
Abstract
Background Cardiotoxic side effects impose limits to the use of anti-tumour chemotherapeutic drugs such as doxorubicin (Dox). There is a need for cardioprotective strategies to prevent the multiple deleterious effects of Dox. Here, we examined the ability of administered fibroblast growth factor-2 (FGF-2), a cardioprotective protein that is synthesized as high and low molecular weight (Hi-, Lo-FGF-2) isoforms, to prevent Dox-induced: oxidative stress; cell death; lysosome dysregulation; and inactivation of potent endogenous protective pathways, such as the anti-oxidant/detoxification nuclear factor erythroid-2-related factor (Nrf-2), heme oxygenase-1 (HO-1) axis. Methods and Results Brief pre-incubation of neonatal rat cardiomyocyte cultures with either Hi- or Lo-FGF-2 reduced the Dox-induced: oxidative stress; apoptotic/necrotic cell death; lysosomal dysregulation; decrease in active mammalian target of Rapamycin (mTOR). FGF-2 isoforms prevented the Dox-induced downregulation of Nrf-2, and promoted robust increases in the Nrf-2-downstream targets including the cardioprotective protein HO-1, and p62/SQSTM1, a multifunctional scaffold protein involved in autophagy. Chloroquine, an autophagic flux inhibitor, caused a further increase in p62/SQSTM1, indicating intact autophagic flux in the FGF-2-treated groups. A selective inhibitor for HO-1, Tin-Protoporphyrin, prevented the FGF-2 protection against cell death. The mTOR inhibitor Rapamycin prevented FGF-2 protection, and blocked the FGF-2 effects on Nrf-2, HO-1 and p62/SQSTM1. Conclusions In an acute setting Hi- or Lo-FGF-2 protect cardiomyocytes against multiple Dox-induced deleterious effects, by a mechanism dependent on preservation of mTOR activity, Nrf-2 levels, and the upregulation of HO-1. Preservation/activation of endogenous anti-oxidant/detoxification defences by FGF-2 is a desirable property in the setting of Dox-cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zeinab Roveimiab
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Zhao B, Gao W, Gao X, Leng Y, Liu M, Hou J, Wu Y. Sulforaphane attenuates acute lung injury by inhibiting oxidative stress via Nrf2/HO-1 pathway in a rat sepsis model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9021-9028. [PMID: 31966772 PMCID: PMC6965442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
Sulforaphane (SFN), an antioxidant derived from cruciferous vegetables, exerts antioxidant capacity and protects organ against oxidative damage. However, the effects of SFN on sepsis-induced acute lung injury (ALI) have not been determined. The aim of this study was to investigate the effect of SFN in sepsis-induced ALI and the role of Nrf2/HO-1 in this process. Rats were subjected to either sham-operated or cecal ligation and puncture-induced sepsis without or with SFN. Pulmonary oxidative stress was significantly increased (reduced SOD activity, enhanced 8-OHdG concentration, elevated 15-F2t-isoprostane level, and enhanced 4-HNE expression) in sepsis that were associated with elevated lung injuries (Increased lung injury index, elevated lung water content, and reduced endothelial barrier integrity). Supplementation of SFN significantly enhanced Nrf2 and HO-1 protein expression in the lungs in sepsis. Further, SFN dose-dependently reduced pulmonary oxidative stress and attenuated lung injuries in sepsis. However, these beneficial effects of SFN were reduced by HO-1 inhibition. Therefore, we concluded that SFN attenuated ALI in sepsis by reducing oxidative stress through activating Nrf2/HO-1.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Xiang Gao
- Department of Central Laboratory, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| |
Collapse
|