1
|
Xu K, Huang RQ, Wen RM, Yao TT, Cao Y, Chang B, Cheng Y, Yi XJ. Annexin A family: A new perspective on the regulation of bone metabolism. Biomed Pharmacother 2024; 178:117271. [PMID: 39121589 DOI: 10.1016/j.biopha.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Ming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Ting-Ting Yao
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cao
- Graduate School, Anhui University of Traditional Chinese Medicine, Heifei, Anhui 230012, China.
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Xue-Jie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| |
Collapse
|
2
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Nowwarote N, Petit S, Ferre FC, Dingli F, Laigle V, Loew D, Osathanon T, Fournier BPJ. Extracellular Matrix Derived From Dental Pulp Stem Cells Promotes Mineralization. Front Bioeng Biotechnol 2022; 9:740712. [PMID: 35155398 PMCID: PMC8829122 DOI: 10.3389/fbioe.2021.740712] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Extracellular matrix (ECM) plays a pivotal role in many physiological processes. ECM macromolecules and associated factors differ according to tissues, impact cell differentiation, and tissue homeostasis. Dental pulp ECM may differ from other oral tissues and impact mineralization. Thus, the present study aimed to identify the matrisome of ECM proteins derived from human dental pulp stem cells (DPSCs) and its ability to regulate mineralization even in cells which do not respond to assaults by mineralization, the human gingival fibroblasts (GF). Methods: ECM were extracted from DPSCs cultured in normal growth medium supplemented with L-ascorbic acid (N-ECM) or in osteogenic induction medium (OM-ECM). ECM decellularization (dECM) was performed using 0.5% triton X-100 in 20 mM ammonium hydroxide after 21 days. Mass spectrometry and proteomic analysis identified and quantified matrisome proteins. Results: The dECM contained ECM proteins but lacked cellular components and mineralization. Interestingly, collagens (COL6A1, COL6A2, and COL6A3) and elastic fibers (FBN1, FBLN2, FN1, and HSPG2) were significantly represented in N-ECM, while annexins (ANXA1, ANXA4, ANXA5, ANXA6, ANXA7, and ANXA11) were significantly overdetected in OM-ECM. GF were reseeded on N-dECM and OM-dECM and cultured in normal or osteogenic medium. GF were able to attach and proliferate on N-dECM and OM-dECM. Both dECM enhanced mineralization of GF at day 14 compared to tissue culture plate (TCP). In addition, OM-dECM promoted higher mineralization of GF than N-dECM although cultured in growth medium. Conclusions: ECM derived from DPSCs proved to be osteoinductive, and this knowledge supported cell-derived ECM can be further utilized for tissue engineering of mineralized tissues.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty Garancière, Université de Paris, Paris, France
| | - Stephane Petit
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
| | - Francois Come Ferre
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Victor Laigle
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Thanaphum Osathanon, ; Benjamin P. J. Fournier,
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty Garancière, Université de Paris, Paris, France
- *Correspondence: Thanaphum Osathanon, ; Benjamin P. J. Fournier,
| |
Collapse
|
4
|
Chen P, Min J, Wu H, Zhang H, Wang C, Tan G, Zhang F. Annexin A1 is a potential biomarker of bone metastasis in small cell lung cancer. Oncol Lett 2020; 21:141. [PMID: 33552260 PMCID: PMC7798093 DOI: 10.3892/ol.2020.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a poor prognosis, with bone metastasis being one of the main causes of treatment failure. Therefore, investigating new biomarkers associated with bone metastasis may result in positive treatment outcomes. The present study detected the expression levels of annexin A1 (ANXA1) in the serum of 82 patients with SCLC using ELISA. ANXA1 expression in patients with SCLC with bone metastasis was significantly higher compared with that in patients without bone metastasis. Receiver operating characteristic analysis revealed that ANXA1 expression was significant in the diagnosis of bone metastasis in SCLC. ANXA1 was inhibited in SBC-5 cells and overexpressed in SBC-3 cells. Results revealed that ANXA1 was able to enhance SCLC cell proliferation, invasion, migration and bone adhesion in vitro. In vivo xenograft bone metastasis assays indicated that ANXA1 had the potential to promote the bone-metastasis ability of SCLC cells in NOD/SCID mice. Furthermore, ANXA1 increased parathyroid hormone-related protein secretion and enhanced Smad2 phosphorylation following TGF-β treatment in SCLC cells. Overall, ANXA1 may be involved in the pathogenesis of bone metastasis in SCLC and may be a potential biomarker for the diagnosis of SCLC.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Hong Wu
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Guangguo Tan
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Feng Zhang
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
5
|
Genome-Wide Association Analysis Identified ANXA1 Associated with Shoulder Impingement Syndrome in UK Biobank Samples. G3-GENES GENOMES GENETICS 2020; 10:3279-3284. [PMID: 32690583 PMCID: PMC7466970 DOI: 10.1534/g3.120.401257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Shoulder impingement syndrome (SIS) is a common shoulder disorder with unclear genetic mechanism. In this study, Genome-wide Association Study (GWAS) was conducted to identify the candidate loci associated with SIS by using the UK Biobank samples (including 3,626 SIS patients and 3,626 control subjects). Based on the GWAS results, gene set enrichment analysis was further performed to detect the candidate gene ontology and pathways associated with SIS. We identified multiple risk loci associated with SIS, such as rs750968 (P = 4.82 × 10−8), rs754832 (P = 4.83 × 10−8) and rs1873119 (P = 6.39 × 10−8) of ANXA1 gene. Some candidate pathways have been identified related to SIS, including those linked to infection response and hypoxia, “ZHOU_INFLAMMATORY_RESPONSE_FIMA_DN” (P = 0.012) and “MANALO_HYPOXIA_UP” (P = 5.00 × 10−5). Our results provide novel clues for understanding the genetic mechanism of SIS.
Collapse
|
6
|
TMEM18 inhibits osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells by inactivating β-catenin. Exp Cell Res 2019; 383:111491. [DOI: 10.1016/j.yexcr.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023]
|
7
|
Li J, Guo X, Li M, Xiao Y, Bao C. [Research progress in the mechanism of protein factors in regulating bone remodeling]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:115-123. [PMID: 30644271 DOI: 10.7507/1002-1892.201808059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the role and mechanism of protein factors in bone remodeling, and provides theoretical basis for further elucidating the pathogenesis and clinical treatment of bone-related diseases. Methods The relevant research results at home and abroad in recent years were extensively consulted, analyzed, and summarized. Results Bone remodeling is an important physiological process to maintain bone homeostasis. Protein, as an important stimulator in bone remodeling, regulates the balance between bone resorption and bone formation. Conclusion At present, the research on the mechanism of protein in bone remodeling is insufficient. Therefore, it is necessary to further study the specific time, process, and interaction network of protein in bone remodeling, and to confirm its mechanism in bone remodeling, so as to reveal and treat the pathogenesis of bone-related diseases.
Collapse
Affiliation(s)
- Ju Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaodong Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mingzheng Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041,
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
8
|
TRPM7 and MagT1 in the osteogenic differentiation of human mesenchymal stem cells in vitro. Sci Rep 2018; 8:16195. [PMID: 30385806 PMCID: PMC6212439 DOI: 10.1038/s41598-018-34324-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells are fundamental for bone formation and repair since they respond to microenvironmental stimuli by undergoing osteogenic differentiation. We show that the kinase and cation channel TRPM7 and the magnesium transporter MagT1 have a role in harmonizing the osteogenic differentiation of human mesenchymal stem cells. TRPM7 and MagT1 are upregulated in osteogenic differentiation and silencing either one accelerates osteogenic differentiation, partly through the activation of autophagy. Intriguingly, similar results were obtained when the cells were cultured under magnesium deficient conditions. These results underpin the contribution of magnesium, TRPM7 and MagT1 to autophagy and osteoblastogenesis.
Collapse
|
9
|
Association of miR-146a, miR-149, miR-196a2, and miR-499 Polymorphisms with Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. PLoS One 2016; 11:e0159756. [PMID: 27454313 PMCID: PMC4959720 DOI: 10.1371/journal.pone.0159756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/07/2016] [Indexed: 12/31/2022] Open
Abstract
Background Ossification of the posterior longitudinal ligament (OPLL) of the spine is considered a multifactorial and polygenic disease. We aimed to investigate the association between four single nucleotide polymorphisms (SNPs) of pre-miRNAs [miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444)] and the risk of cervical OPLL in the Korean population. Methods The genotypic frequencies of these four SNPs were analyzed in 207 OPLL patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Findings For four SNPs in pre-miRNAs, no significant differences were found between OPLL patients and controls. However, subgroup analysis based on OPLL subgroup (continuous: continuous type plus mixed type, segmental: segmental and localized type) showed that miR-499GG genotype was associated with an increased risk of segmental type OPLL (adjusted odds ratio = 4.314 with 95% confidence interval: 1.109–16.78). In addition, some allele combinations (C-T-T-G, G-T-T-A, and G-T-C-G of miR-146a/-149/-196a2/-499) and combined genotypes (miR-149TC/miR-196a2TT) were associated with increased OPLL risk, whereas the G-T-T-G and G-C-C-G allele combinations were associated with decreased OPLL risk. Conclusion The results indicate that GG genotype of miR-499 is associated with significantly higher risks of OPLL in the segmental OPLL group. The miR-146a/-149/-196a2/-499 allele combinations may be a genetic risk factor for cervical OPLL in the Korean population.
Collapse
|
10
|
Inserra I, Martelli C, Cipollina M, Cicione C, Iavarone F, Taranto GD, Barba M, Castagnola M, Desiderio C, Lattanzi W. Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine. Electrophoresis 2016; 37:1015-26. [PMID: 26719138 DOI: 10.1002/elps.201500504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.
Collapse
Affiliation(s)
- Ilaria Inserra
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Martelli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mara Cipollina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Cicione
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Di Taranto
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Banca del Tessuto Muscolo-Scheletrico della Regione Lazio, Università Cattolica del, Sacro Cuore, Roma, Italy
| |
Collapse
|
11
|
Ito K, Sugita Y, Saito T, Komatsu S, Sato N, Isomura M, Yoshida W, Kubo K, Maeda H. Effects of Nicotinamide on Cytotoxicity-induced Morphological Changes in Osteoblastic Cells <i>In Vitro</i>. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Koji Ito
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Aichi Implant Center
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Center of Advanced Oral Science, Aichi Gakuin University
| | - Takashi Saito
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Aichi Implant Center
| | - Shinichi Komatsu
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Aichi Implant Center
| | - Nobuaki Sato
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Madoka Isomura
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Waka Yoshida
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Center of Advanced Oral Science, Aichi Gakuin University
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Center of Advanced Oral Science, Aichi Gakuin University
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Center of Advanced Oral Science, Aichi Gakuin University
| |
Collapse
|
12
|
Lin ZL, Zheng GW, Zhang L, Zheng JT, Chen H. RETRACTED: Effect of transplantation of BMMSCs on pathological change of gastric precancerous lesions of rats. ASIAN PAC J TROP MED 2015; 8:1060-1063. [PMID: 26706680 DOI: 10.1016/j.apjtm.2015.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To build the rat model of gastric precancerous lesions and discuss the effect of transplantation of mesenchymal stem cells (BMMSCs) on the pathological change. METHODS The rat model of gastric precancerous lesions was built using N-methyl-N'-nitro-N'-nitrosoguanidine. After the intravenous transplantation of BMMSCs, the migration and colonization location was then observed, as well as its effect on the related factors of gastric precancerous lesions, including VEGF, IL-10 and IFN-γ. RESULTS BMMSCs were mainly colonized in the gastric body and gastric antrum, which could be differentiated into the epithelial and interstitial cells. The expression of VEGF in the transplantation group and non-transplantation group was significantly higher than that in the control group (P < 0.05); while the expression of VEGF in the transplantation group was significantly higher than that in the non-transplantation group (t = 3.88, P < 0.001). The expression of serum IL-10 and IFN-γ in the transplantation group and non-transplantation group was significantly higher than that in the control group (P < 0.05), while the expression of IL-10 and IFN-γ in the transplantation group was significantly lower than that in the non-transplantation group (t = 3.03, P = 0.004; t = 3.80, P < 0.001). CONCLUSIONS BMMSCs can be directionally differentiated into the epithelial and interstitial cells and can also regulate the related growth factors and inflammatory factors to reduce the injury of inflammation, relieve or reverse the process of gastric precancerous lesions.
Collapse
Affiliation(s)
- Zhen-Lv Lin
- Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Guang-Wei Zheng
- Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Lin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Jian-Tao Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| |
Collapse
|