1
|
Ning Y, Chen P, Shen Z, Liu X, Gu H. Hyaluronic acid-coated zein nanoparticle-mediated resveratrol therapy for the reduction of cisplatin-associated nephrotoxicity. Biochem Biophys Res Commun 2024; 736:150873. [PMID: 39461011 DOI: 10.1016/j.bbrc.2024.150873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Cisplatin (CDDP) is commonly used as an anticancer drug in clinical practice, but severe nephrotoxicity restricts it from exerting anticancer effects. Natural drugs, such as resveratrol, can alleviate the side effects of cisplatin, but their low solubility and gastrointestinal effects prevent them from working. Herein, we developed nanoparticles for kidney injury consisting of a biocompatible material, zein, as a carrier. HA-Zein/Res NPs were fabricated using low-molecular-weight hyaluronic acid coatings. This preparation is non-cytotoxic to renal tubular epithelial cells and can be used with confidence. Low-molecular-weight hyaluronic acid has inflammation-targeting properties and CDDP damage causes renal inflammation. Owing to this property of the low-molecular-weight hyaluronic acid coating, in vivo imaging experiments in mice demonstrated that the HA-Zein/Res NPs enabled more nanoparticles to accumulate in the renal sites affected by inflammation. Efficient resveratrol delivery alleviated kidney injury, and experiments demonstrated that HA-Zein/Res NPs could treat kidney injury while reducing the serum creatinine and urea nitrogen levels in mice. Collectively, these results indicated that this nanomaterial is a promising agent for reducing the clinical nephrotoxicity of cisplatin.
Collapse
Affiliation(s)
- Yuan Ning
- Department of Kidney Transplantation and Dialysis Center, The Second People's Hospital of Shanxi Province, Taiyuan, Shanxi, 030012, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zhengnan Shen
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Zheng-Qiang L, Jun N, Xin-Yu Z, Chao-Zhi Z, Rui A, Xu Y, Rong S, Xiao-Yan Y. Antioxidant and anti-inflammatory function of Eupatorium adenophora Spreng leaves (EASL) on human intestinal Caco-2 cells treated with tert-butyl hydroperoxide. Sci Rep 2024; 14:10509. [PMID: 38714697 PMCID: PMC11076498 DOI: 10.1038/s41598-024-61012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/10/2024] Open
Abstract
Chronic non-communicable diseases (CNCDs) pose a significant public health challenge. Addressing this issue, there has been a notable breakthrough in the prevention and mitigation of NCDs through the use of antioxidants and anti-inflammatory agents. In this study, we aim to explore the effectiveness of Eupatorium adenophora Spreng leaves (EASL) as an antioxidant and anti-inflammatory agent, and its potential applications. To construct a cellular model of oxidative damage and inflammation, Caco-2 cells were treated with tert-butyl hydroperoxide (t-BHP). The biocompatibility of EASL-AE with Caco-2 cells was assessed using the MTT assay, while compatibility was further verified by measuring LDH release and the protective effect against oxidative damage was also assessed using the MTT assay. Additionally, we measured intracellular oxidative stress indicators such as ROS and 8-OHdG, as well as inflammatory pathway signalling protein NFκB and inflammatory factors TNF-α and IL-1β using ELISA, to evaluate the antioxidant and anti-inflammatory capacity of EASL-AE. The scavenging capacity of EASL-AE against free radicals was determined through the DPPH Assay and ABTS Assay. Furthermore, we measured the total phenolic, total flavonoid, and total polysaccharide contents using common chemical methods. The chemical composition of EASL-AE was analyzed using the LC-MS/MS technique. Our findings demonstrate that EASL-AE is biocompatible with Caco-2 cells and non-toxic at experimental levels. Moreover, EASL-AE exhibits a significant protective effect on Caco-2 cells subjected to oxidative damage. The antioxidant effect of EASL-AE involves the scavenging of intracellular ROS, while its anti-inflammatory effect is achieved by down-regulation of the NFκB pathway. Which in turn reduces the release of inflammatory factors TNF-α and IL-1β. Through LC-MS/MS analysis, we identified 222 compounds in EASL-AE, among which gentianic acid, procaine and L-tyrosine were the compounds with high antioxidant capacity and may be the effective constituent for EASL-AE with antioxidant activity. These results suggest that EASL-AE is a natural and high-quality antioxidant and anti-inflammatory biomaterial that warrants further investigation. It holds great potential for applications in healthcare and other related fields.
Collapse
Affiliation(s)
- Li Zheng-Qiang
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Ni Jun
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Zhu Xin-Yu
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Zhang Chao-Zhi
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - An Rui
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Yang Xu
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - She Rong
- Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, 671003, Yunnan, China.
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
| | - Yang Xiao-Yan
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region From Dali University, Dali, 671003, Yunnan, China
| |
Collapse
|
3
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Fan H, Le JW, Sun M, Zhu JH. N-acetylcysteine protects septic acute kidney injury by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:850-856. [PMID: 38800015 PMCID: PMC11127075 DOI: 10.22038/ijbms.2024.72882.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 05/29/2024]
Abstract
Objectives To investigate the protective effect of N-acetylcysteine (NAC) on septic acute kidney injury (SAKI) via regulating Sirtuin3 (SIRT3)-mediated mitochondrial dysfunction and apoptosis. Materials and Methods By constructing SIRT3 knockout mice and culturing kidney tubular epithelial cells (KTECs), we assessed the changes of renal function and detected the protein expression of adenine nucleotide translocator (ANT), cyclophilin (CypD) and voltage-dependent anion channel (VDAC) using western-blotting, and simultaneously detected toll-like receptor 4 (TLR4), inhibitor of kappa B kinase (IKKβ), inhibitor of Kappa Bα (IκBα), and p65 protein expression. We observed mitochondrial damage of KTECs using a transmission electron microscope and assessed apoptosis by TdT-mediated dUTP Nick-End Labeling and flow cytometry. Results SIRT3 deficiency led to the deterioration of renal function, and caused a significant increase in inducible nitric oxide synthase production, a decrease in mitochondrial volume, up-regulation of TLR4, IκBα, IKKβ, and p65 proteins, and up-regulation of ANT, CypD and VDAC proteins. However, NAC significantly improved renal function and down-regulated the expression of TLR4, IκBα, IKKβ, and p65 proteins. Furthermore, SIRT3 deficiency led to a significant increase in KTEC apoptosis, while NAC up-regulated the expression of SIRT3 and inhibited apoptosis. Conclusion NAC has a significant protective effect on SAKI by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-wei Le
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-hua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| |
Collapse
|
5
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
6
|
Panova IG, Tatikolov AS. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals (Basel) 2023; 16:1077. [PMID: 37630992 PMCID: PMC10458090 DOI: 10.3390/ph16081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The use of conventional contrast media for diagnostic purposes (in particular, Gd-containing and iodinated agents) causes a large number of complications, the most common of which is contrast-induced nephropathy. It has been shown that after exposure to contrast agents, oxidative stress often occurs in patients, especially in people suffering from various diseases. Antioxidants in the human body can diminish the pathological consequences of the use of contrast media by suppressing oxidative stress. This review considers the research studies on the role of antioxidants in preventing the negative consequences of the use of contrast agents in diagnostics (mainly contrast-induced nephropathy) and the clinical trials of different antioxidant drugs against contrast-induced nephropathy. Composite antioxidant/contrast systems as theranostic agents are also considered.
Collapse
Affiliation(s)
- Ina G. Panova
- International Scientific and Practical Center of Tissue Proliferation, 29/14 Prechistenka Str., 119034 Moscow, Russia;
| | - Alexander S. Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
7
|
Structural and Functional Changes in Aging Kidneys. Int J Mol Sci 2022; 23:ijms232315435. [PMID: 36499760 PMCID: PMC9737118 DOI: 10.3390/ijms232315435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The renal condition is one of the crucial predictors of longevity; therefore, early diagnosis of any dysfunction plays an important role. Kidneys are highly susceptible to the aging process. Unfavorable conditions may lead to a significant disturbance of the body's homeostasis. Apart from physiological changes, there are some conditions such as hypertension, diabetes or obesity which contribute to the acceleration of the aging process. A determination of macroscopic and microscopic changes is essential for assessing the progression of aging. With age, we observe a decrease in the volume of renal parenchyma and an increase in adipose tissue in the renal sinuses. Senescence may also be manifested by the roughness of the kidney surface or simple renal cysts. The main microscopic changes are a thickening of the glomerular basement membrane, nephrosclerosis, an accumulation of extracellular matrix, and mesangial widening. The principal aspect of stopping unfavorable changes is to maintain health. Studies have shown many useful ways to mitigate renal aging. This review is focused especially on medications such as renin-angiotensin-aldosterone system blockers or resveratrol, but even eating habits and lifestyle.
Collapse
|
8
|
Peng Y, Li Y, Li H, Yu J. Shikonin attenuates kidney tubular epithelial cells apoptosis, oxidative stress, and inflammatory response through nicotinamide adenine dinucleotide phosphate oxidase 4/PTEN pathway in acute kidney injury of sepsis model. Drug Dev Res 2022; 83:1111-1124. [PMID: 35417044 DOI: 10.1002/ddr.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
Abstract
Natural compounds were used in the treatment of acute kidney injury (AKI) caused by sepsis. This study investigated the function of shikonin from the roots of Arnebia purpurea in sepsis-induced AKI model. The target genes of shikonin were predicted by traditional Chinese medicine integrative database (TCMID). The markers of kidney injury, oxidative stress, and inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). The pathological changes of kidney tubules were assessed by Hematoxylin and Eosin staining. Apoptosis of kidney tubular epithelial cells (KTECs) was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Protein expression was measured by western blot. Shikonin significantly improved kidney injury induced by cecal ligation and perforation (CLP). Besides, shikonin reduced KTECs apoptosis, malondialdehyde (MDA), reactive oxygen species (ROS), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, while augmented SOD and IL-10 levels. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase4 (NOX4) was predicted a target gene of shikonin. The expression of NOX4 was significantly inhibited in shikonin-treated group and the levels of phosphatidylinositol 3,4,5-trisphosphate 3-phosphate and dual specificity protein phosphate (PTEN) and p-p65 were decreased, while level of p-Akt was elevated. In vitro experiments, shikonin inhibited cell apoptosis, inflammatory, and ROS in human HK-2 cells and rat TECs. Shikonin downregulated expression of NOX4, PTEN and p-p65, and upregulated p-AKT and Bcl-2 expression in HK2 cells treated with lipopolysaccharide (LPS). Moreover, overexpression of NOX4 enhanced the effect of LPS on the expression level of PTEN, p-p65, p-AKT, and Bcl-2, which was reversed by the addition of shikonin. Taken together, shikonin could improve sepsis-induced AKI in rats, and attenuate the LPS induced KTECs apoptosis, oxidative stress, and inflammatory reaction via modulating NOX4/PTEN/AKT pathway.
Collapse
Affiliation(s)
- Yanqin Peng
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan Li
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Li
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhua Yu
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
10
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
11
|
Esfahani M, Rahbar AH, Soleimani Asl S, Mehri F. Resveratrol: a panacea compound for diazinon-induced renal toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Esfahani
- Department of Clinical Biochemistry, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Department of Clinical Biochemistry, Payame Noor University of Isfahan, Isfahan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences (Hemmat Pardis), Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Buyang Huanwu Decoction promotes neurogenesis via sirtuin 1/autophagy pathway in a cerebral ischemia model. Mol Med Rep 2021; 24:791. [PMID: 34515326 PMCID: PMC8441980 DOI: 10.3892/mmr.2021.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the main causes of disease-related mortality worldwide. Buyang Huanwu Decoction (BHD) has been used to protect against stroke and stroke-induced disability for several years in China. Studies have shown that BHD can relieve neuronal damage in rats with cerebral ischemia/reperfusion (I/R) injury. However, the mechanism remains unclear. A middle cerebral artery occlusion and reperfusion (MCAO-R) model was used in the present study. The animals were treated with BHD (5, 10 and 20 g/kg) or rapamycin. Infarct size and modified neurological severity score were calculated on day 5 following MCAO-R surgery. Cellular changes around the ischemic penumbra were revealed by hematoxylin and eosin and Nissl staining. The protein expression levels of nestin, brain-derived neurotrophic factor (BDNF), doublecortin on the X chromosome (DCX) and autophagy-related proteins (beclin 1, LC3-II and p62) in the peri-ischemic area of the brain were detected. The results demonstrated that post-surgical treatment with BHD reduced the brain infarct size and improved neurological deficits in MCAO-R rats. BHD protected against MCAO-R-induced neuronal impairment and promoted neurogenesis, increased the protein expression of nestin, BDNF and DCX and markedly enhanced autophagy by increasing beclin 1 and LC3-II and decreasing p62. Meanwhile, BHD promoted the expression of sirtuin 1 (SIRT1), an important regulator of autophagy. In conclusion, the present study suggested that post-surgical treatment with BHD could protect rat brains from I/R injury, potentially through the SIRT1/autophagy pathway.
Collapse
|
13
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
14
|
Hashemzaei M, Tabrizian K, Alizadeh Z, Pasandideh S, Rezaee R, Mamoulakis C, Tsatsakis A, Skaperda Z, Kouretas D, Shahraki J. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol Rep 2020; 7:1571-1577. [PMID: 33304826 PMCID: PMC7708762 DOI: 10.1016/j.toxrep.2020.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
RES, CUR and GA protected renal cells from GO–induced cells death. RES, CUR and GA reduced formation of ROS. RES, CUR and GA diminished lipid peroxidation products. RES, CUR and GA repressed GO-induced mitochondrial membrane potential collapse. RES, CUR and GA decreased lysosomal membrane leakage in GO-treated cells.
Glyoxal (GO), a by-product of glucose auto-oxidation, is involved in the glycation of proteins/ lipids and formation of advanced glycation (AGE) and lipoxidation (ALE) end products. AGE/ALE were shown to contribute to diabetic complications development/progression such as nephropathy. Diabetic nephropathy progression has an oxidative nature. Given the antioxidant effects of polyphenols, potential protective effects of resveratrol, curcumin and gallic acid, in rat renal cells treated with GO, were evaluated in the present work. According to our results, incubation of GO with the cells reduced their viability and led to membrane lysis, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential collapse, and lysosomal membrane leakage. These findings were prevented by pre-treatment with resveratrol, curcumin and gallic acid. Mitochondrial and lysosomal toxic interactions appear to worsen oxidative stress/cytotoxicity produced by GO. Resveratrol, curcumin and gallic acid inhibited ROS formation and attenuated GO-induced renal cell death.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Zeinab Alizadeh
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Sedigheh Pasandideh
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Jafar Shahraki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
15
|
Boozari M, Hosseinzadeh H. Preventing contrast-induced nephropathy (CIN) with herbal medicines: A review. Phytother Res 2020; 35:1130-1146. [PMID: 33015894 DOI: 10.1002/ptr.6880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Currently, the use of iodinated contrast media in diagnostic imaging has been increased in clinical medicine. Contrast-induced nephropathy (CIN) is an important adverse effect of contrast media injection. According to the significant role of oxidative stress in the pathophysiology of CIN, different herbal antioxidants have been used for the prevention of nephropathy in different studies. In this review, we discussed the preventive effects of herbal medicine and natural products against CIN. METHODS We searched the electronic databases or search engines including PubMed, Scopus, ISI, Google Scholar with search terms such as "Contrast-induced nephropathy" and "Herbal medicine," "Contrast acute kidney injury" AND "natural products" and similar headings such as plant and extract. RESULTS Known medicinal plants and active ingredients such as green tea, ginger, garlic, silymarin, curcumin, resveratrol, and thymoquinone have been examined for prophylactic effects or treatment of contrast media nephropathy. CONCLUSION Herbal medicines have promising effects in the laboratory-based studies for the prevention and/or treatment of CIN. However, more practical and completed clinical trials are needed to investigate the clinical benefits of natural products against CIN.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
17
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Ardalan M, Barzegari A, Zununi Vahed S. Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players. J Cell Physiol 2020; 236:3257-3274. [PMID: 32989772 DOI: 10.1002/jcp.30084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI), a rapid drop in kidney function, displays high mortality and morbidity, and its repeated or severe status can shift into chronic kidney disease or even end-stage renal disease. How and which events cause AKI still is controversial. In addition, no specific therapies have emerged that can attenuate AKI or expedite recovery. Some central mechanisms including tubular epithelial cells injury, endothelial injury, renal cell apoptosis, and necrosis signaling cascades, and inflammation have been reported in the pathophysiology of AKI. However, the timing of the activation of each pathway, their interactions, and the hierarchy of these pathways remain unknown. The main molecular mechanisms that might be complicated in this process are the mitochondrial impairment and alteration/shifting of cellular metabolites (e.g., acetyl-CoA and NAD+ /NADH) acting as cofactors to alter the activities of many enzymes, for instance, sirtuins. Moreover, alteration of mitochondrial structure over the fusion and fission mechanisms can regulate cellular signaling pathways by modifying the rate of reactive oxygen species generation and metabolic activities. The aim of this review is to better understand the underlying pathophysiological and molecular mechanisms of AKI. In addition, we predicted the main other molecular players in interaction with sirtuins as energy/stresses monitoring proteins for the development of future approaches in the treatment or prevention of ischemic AKI.
Collapse
Affiliation(s)
- Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | | |
Collapse
|
18
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
19
|
Ward DB, Brown KC, Valentovic MA. Radiocontrast Agent Diatrizoic Acid Induces Mitophagy and Oxidative Stress via Calcium Dysregulation. Int J Mol Sci 2019; 20:ijms20174074. [PMID: 31438500 PMCID: PMC6747199 DOI: 10.3390/ijms20174074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 01/15/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital associated kidney damage. Potential mechanisms of CI-AKI may involve diminished renal hemodynamics, inflammatory responses, and direct cytotoxicity. The hypothesis for this study is that diatrizoic acid (DA) induces direct cytotoxicity to human proximal tubule (HK-2) cells via calcium dysregulation, mitochondrial dysfunction, and oxidative stress. HK-2 cells were exposed to 0–30 mg I/mL DA or vehicle for 2–24 h. Conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion indicated a decrease in mitochondrial and cell viability within 2 and 24 h, respectively. Mitochondrial dysfunction was apparent within 8 h post exposure to 15 mg I/mL DA as shown by Seahorse XF cell mito and Glycolysis Stress tests. Mitophagy was increased at 8 h by 15 mg I/mL DA as confirmed by elevated LC3BII/I expression ratio. HK-2 cells pretreated with calcium level modulators BAPTA-AM, EGTA, or 2-aminophenyl borinate abrogated DA-induced mitochondrial damage. DA increased oxidative stress biomarkers of protein carbonylation and 4-hydroxynonenol (4HNE) adduct formation. Caspase 3 and 12 activation was induced by DA compared to vehicle at 24 h. These studies indicate that clinically relevant concentrations of DA impair HK-2 cells by dysregulating calcium, inducing mitochondrial turnover and oxidative stress, and activating apoptosis.
Collapse
Affiliation(s)
- Dakota B Ward
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, 1 Marshall Drive, Huntington, WV 25755, USA
| | - Kathleen C Brown
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, 1 Marshall Drive, Huntington, WV 25755, USA
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, 1 Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
20
|
Den Hartogh DJ, Tsiani E. Health Benefits of Resveratrol in Kidney Disease: Evidence from In Vitro and In Vivo Studies. Nutrients 2019; 11:nu11071624. [PMID: 31319485 PMCID: PMC6682908 DOI: 10.3390/nu11071624] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Different diseases and disorders that affect the kidneys include, but are not limited to, glomerulonephritis, diabetic nephropathy, polycystic kidney disease, kidney stones, renal fibrosis, sepsis, and renal cell carcinoma. Kidney disease tends to develop over many years, making it difficult to identify until much later when kidney function is severely impaired and undergoing kidney failure. Although conservative care, symptom management, medication, dialysis, transplantation, and aggressive renal cancer therapy are some of the current strategies/approaches to kidney disease treatment, new preventative targeted therapies are needed. Epidemiological studies have suggested that a diet rich in fruits and vegetables is associated with health benefits including protection against kidney disease and renal cancer. Resveratrol, a polyphenol found in grapes and berries, has been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, and anti-cancer properties. The current review summarizes the existing in vitro and in vivo animal and human studies examining the nephroprotective effects of resveratrol.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
21
|
Du N, Li XH, Bao WG, Wang B, Xu G, Wang F. Resveratrol‑loaded nanoparticles inhibit enterovirus 71 replication through the oxidative stress‑mediated ERS/autophagy pathway. Int J Mol Med 2019; 44:737-749. [PMID: 31173159 DOI: 10.3892/ijmm.2019.4211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/23/2019] [Indexed: 11/05/2022] Open
Abstract
A number of studies have demonstrated that resveratrol (RES) has a variety of biological functions, including cardiovascular protective effects, treatment of mutations, and anti‑inflammatory, anti‑tumor and antiviral effects. In the present study, RES‑loaded nanoparticles (RES‑NPs) were used to protect rhabdosarcoma (RD) cells from enterovirus 71 (EV71) infection, and the relevant mechanisms were also explored. An amphiphilic copolymer, monomethoxy poly (ethylene glycol)‑b‑poly (D,L‑lactide), was used as vehicle material, and RES‑NPs with necessitated drug‑loading content and suitable sizes were prepared under optimized conditions. RES‑NPs exhibited the ability to inhibit the increase of intracellular oxidative stress. The prospective mechanism for the function of RES‑NPs suggested was that RES‑NPs may inhibit the oxidative stress‑mediated PERK/eIF2α/ATF4 signaling pathway, downregulate the autophagy pathway and resist EV71‑induced RD cells injury. Furthermore, RES‑NPs treatment markedly inhibited the secretion of inflammatory factors, including interleukin (IL)‑6, IL‑8 and tumor necrosis factor‑α elicited by EV71 infection. Concomitantly, inhibitors of oxidative stress, endoplasmic reticulum stress (ERS) or autophagy were demonstrated to negate the anti‑inflammatory and antiviral effects of RES‑NPs on EV71‑infected RD cells. These results demonstrated that RES‑NPs attenuated EV71‑induced viral replication and inflammatory effects by inhibiting the oxidative stress‑mediated ERS/autophagy signaling pathway. In view of their safety and efficiency, these RES‑NPs have potential applications in protecting RD cells from EV71 injury.
Collapse
Affiliation(s)
- Na Du
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Hua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan-Guo Bao
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang Xu
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feng Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Ward DB, Valentovic MA. Contrast Induced Acute Kidney Injury and Direct Cytotoxicity of Iodinated Radiocontrast Media on Renal Proximal Tubule Cells. J Pharmacol Exp Ther 2019; 370:160-171. [PMID: 31101680 DOI: 10.1124/jpet.119.257337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
The administration of intravenous iodinated radiocontrast media (RCM) to visualize internal structures during diagnostic procedures has increased exponentially since their first use in 1928. A serious side effect of RCM exposure is contrast-induced acute kidney injury (CI-AKI), which is defined as an abrupt and prolonged decline in renal function occurring 48-72 hours after injection. Multiple attempts have been made to decrease the toxicity of RCM by altering ionic strength and osmolarity, yet there is little evidence to substantiate that a specific RCM is superior in avoiding CI-AKI. RCM-associated kidney dysfunction is largely attributed to alterations in renal hemodynamics, specifically renal vasoconstriction; however, numerous studies indicate direct cytotoxicity as a source of epithelial damage. Exposure of in vitro renal proximal tubule cells to RCM has been shown to affect proximal tubule epithelium in the following manner: 1) changes to cellular morphology in the form of vacuolization; 2) increased production of reactive oxygen species, resulting in oxidative stress; 3) mitochondrial dysfunction, resulting in decreased efficiency of the electron transport chain and ATP production; 4) perturbation of the protein folding capacity of the endoplasmic reticulum (ER) (activating the unfolded protein response and inducing ER stress); and 5) decreased activity of cell survival kinases. The present review focuses on the direct cytotoxicity of RCM on proximal tubule cells in the absence of in vivo complications, such as alterations in renal hemodynamics or cytokine influence.
Collapse
Affiliation(s)
- Dakota B Ward
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
23
|
Wang Y, Feng F, Liu M, Xue J, Huang H. Resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric rat model via Nrf2 signaling pathway. Exp Ther Med 2018; 16:3233-3240. [PMID: 30214546 DOI: 10.3892/etm.2018.6533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a hyper-inflammation-induced abrupt loss of kidney function and has become a major public health problem. The cecal ligation and puncture (CLP) model of peritonitis in rat pups mimics the development of sepsis-induced pediatric AKI is pre-renal without morphological changes of the kidneys and high lethality. Resveratrol, a natural polyphenolic compound with low toxicity, has obvious anti-oxidant and anti-inflammatory properties. The present study aimed to determine whether resveratrol alleviates pediatric AKI and investigated the potential mechanism. Thus, a CLP model of 17-18 day-old rat pups was used to mimic the development of sepsis-induced AKI in children. In the group treated with resveratrol, renal injury induced by CLP was alleviated with downregulation of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and kidney injury molecule (KIM)-1 expression. Nuclear factor-erythroid-2-related factor 2 (Nrf2) signaling is known to effectively inhibit inflammation, the present study found that resveratrol reduced the lipopolysaccharide-induced inflammatory response in kidney cells in vitro and induced the activation of Nrf2 signaling, including accumulation of nuclear Nrf2 and increase of the expression of Nrf2 target genes heme oxygenase (HO)-1 and NAD(P)H dehydrogenase (quinone) 1 (NQO1); this was confirmed by the induction of the expression of HO-1 and NQO1 by treatment of resveratrol in vitro and in vivo. Of note, knockdown of Nrf2 effectively abrogated the downregulation of TNF-α, IL-1β and KIM-1 expression induced by resveratrol in vitro. These results suggested that resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric model of AKI via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Ninth Hospital of Xi'an, Xi'an, Shaanxi 710054, P.R. China
| | - Fenling Feng
- Department of Pediatrics, Qikang Hospital of Chinese Traditional and Western Medicine, Xi'an, Shaanxi 710000, P.R. China
| | - Minna Liu
- Department of Pediatrics, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jiahong Xue
- Department of Pediatrics, The Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Huimei Huang
- Department of Pediatrics, Xi'an Children's Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
24
|
Álvarez-Cilleros D, Martín MÁ, Goya L, Ramos S. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
26
|
You N, Li J, Huang X, Wu K, Tang Y, Wang L, Li H, Mi N, Zheng L. COMMD7 activates CXCL10 production by regulating NF-κB and the production of reactive oxygen species. Mol Med Rep 2018. [PMID: 29532873 DOI: 10.3892/mmr.2018.8706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
While >80% of the incidence occurs in sub‑Saharan Africa and East Asia, cases of hepatocellular carcinoma (HCC) have been rapidly increasing in Western countries. Despite its global importance, HCC is relatively under‑researched compared with other lethal cancer types, which is possibly due to the high complexity and heterogeneity of HCC. It has been reported previously that COMM domain‑containing protein 7 (COMMD7) is upregulated in HCC and promotes HCC cell proliferation by triggering C‑X‑C motif chemokine 10 (CXCL10) production. However, the value of targeting CXCL10 signal transduction in treating COMMD7‑positive tumors, or the molecular mechanisms underlying COMMD7‑mediated CXCL10 expression, has not been completely addressed. In the present study, it was demonstrated that disruption of the CXCL10/C‑X‑C chemokine receptor type 3 axis reduces COMMD7‑mediated HCC cell proliferation. Furthermore, COMMD7 modulates CXCL10 production by activating nuclear factor (NF)‑κB. Additionally, it was demonstrated that intracellular reactive oxygen species (ROS) are required for NF‑κB activation and CXCL10 production. In conclusion, COMMD7 activates CXCL10 production by regulating NF‑κB and the production of ROS. The present study highlighted the role of COMMD7 in the development of HCC, and provides novel options for anticancer drug design.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yichen Tang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hongyan Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Na Mi
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
27
|
Tong Y, Huang X, Lu M, Yu BY, Tian J. Prediction of Drug-Induced Nephrotoxicity with a Hydroxyl Radical and Caspase Light-Up Dual-Signal Nanoprobe. Anal Chem 2018; 90:3556-3562. [DOI: 10.1021/acs.analchem.7b05454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuling Tong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xitong Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Mi Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
28
|
Madreiter-Sokolowski CT, Sokolowski AA, Graier WF. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients 2017; 9:nu9101117. [PMID: 29027961 PMCID: PMC5691733 DOI: 10.3390/nu9101117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 01/04/2023] Open
Abstract
The naturally occurring polyphenol, resveratrol (RSV), is known for a broad range of actions. These include a positive impact on lifespan and health, but also pro-apoptotic anti-cancer properties. Interestingly, cell culture experiments have revealed a strong impact of RSV on mitochondrial function. The compound was demonstrated to affect mitochondrial respiration, structure and mass of mitochondria as well as mitochondrial membrane potential and, ultimately, mitochondria-associated cell death pathways. Notably, the mitochondrial effects of RSV show a very strict and remarkable concentration dependency: At low concentrations, RSV (<50 μM) fosters cellular antioxidant defense mechanisms, activates AMP-activated protein kinase (AMPK)- and sirtuin 1 (SIRT1)-linked pathways and enhances mitochondrial network formation. These mechanisms crucially contribute to the cytoprotective effects of RSV against toxins and disease-related damage, in vitro and in vivo. However, at higher concentrations, RSV (>50 μM) triggers changes in (sub-)cellular Ca2+ homeostasis, disruption of mitochondrial membrane potential and activation of caspases selectively yielding apoptotic cancer cell death, in vitro and in vivo. In this review, we discuss the promising therapeutic potential of RSV, which is most probably related to the compound’s concentration-dependent manipulation of mitochondrial function and structure.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Armin A Sokolowski
- Department of Dentistry and Maxillofacial Surgery, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|
29
|
Abstract
In recent times the use of larger doses of vancomycin aimed at curbing the increasing incidence of resistant strains of Staphylococcus aureus has led to a wider report of acute kidney injury (AKI). Apart from biological plausibility, causality is implied by the predictive association of AKI with larger doses, longer duration, and graded plasma concentrations of vancomycin. AKI is more likely to occur with the concurrent use of nephrotoxic agents, and in critically ill patients who are susceptible to poor renal perfusion. Although most vancomycin-induced AKI cases are mild and therefore reversible, their occurrence may be associated with greater incidence of end-stage kidney disease and higher mortality rate. The strategy for its prevention includes adequate renal perfusion and therapeutic drug monitoring in high-risk individuals. In the near future, there is feasibility of renoprotective use of antioxidative substances in the delivery of vancomycin.
Collapse
|