1
|
Li Q, Zhao C. A Review of the Current Status of Clinical Management of COVID-19 in the Elderly. Med Sci Monit 2021; 27:e930278. [PMID: 33833211 PMCID: PMC8043417 DOI: 10.12659/msm.930278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The high infectivity and severity of SARS-CoV-2 infection (COVID-19), and our limited understanding of the biology of the novel coronavirus, as well as the lack of an effective treatment for COVID-19, have created a global pandemic. Those most likely to become seriously ill with COVID-19 are adults, especially the elderly and those who are already weak or sick. At present, a specific drug for treatment of COVID-19 has not been developed. This, combined with the typical coexistence of a variety of chronic diseases in elderly patients, makes treatment challenging at present. In addition, for elderly patients, COVID-19 isolation measures during the epidemic can easily lead to psychological problems. Thus, how to manage elderly patients has become a focus of social attention in the current circumstances. This article reviews the effects of COVID-19 and makes management suggestions for elderly patients during this epidemic period. In addition to the elderly, critically ill people are also highly susceptible to this novel coronavirus. For elderly COVID-19 patients, antiviral therapy, immune regulation, and even auxiliary respiratory therapy can be given after a comprehensive evaluation of the disease. With the approval and use of COVID-19 vaccines, it is reasonable to expect that we can conquer SARS-CoV-2.
Collapse
Affiliation(s)
- Qiaoyun Li
- Graduate School, Qinghai University, Xining, Qinghai, P.R. China
| | - Chengyu Zhao
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, Qinghai, P.R. China
| |
Collapse
|
2
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
3
|
Stefano GB, Esch T, Kream RM. Behaviorally-Mediated Entrainment of Whole-Body Metabolic Processes: Conservation and Evolutionary Development of Mitochondrial Respiratory Complexes. Med Sci Monit 2019; 25:9306-9309. [PMID: 31809494 PMCID: PMC6911308 DOI: 10.12659/msm.920174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The relaxation response derives its health benefits by reestablishing “normal” equilibria between the sympathetic and parasympathetic branches of the autonomic nervous system. Recent work suggests that this behavioral training provides positive effects on mitochondrial bioenergetics, insulin secretion, and reductions in pro-inflammatory and stress-related pathways. We have previously contended, however, that correlative associations of relaxation training with positive changes in gene expression in selected biological systems are strongly suggestive of adaptive physiological changes, but do not elucidate an underlying, clinically compelling, unified mechanism of action consistent with its purported positive health effects. We surmise that any plausible model of behaviorally-mediated regulatory effects on whole-body metabolic processes must be intrinsically broad-based and multifaceted via integration of differential contributions of functionally interactive peripheral and CNS organ systems. Accordingly, the initiation of multiple cellular protective/anti-bio-senescence processes may have emerged during evolutionary development to ensure the survival of hybrid prokaryotic/eukaryotic progenitor cells, given the evolvement of oxidative metabolism and its associated negative byproducts. As an essential corollary, preservation and adaptation of multifaceted regulatory molecules, notably nitric oxide, paralleled the development of eukaryotic cell types via multifaceted stereo-selective recognition and conformational matching by complex biochemical and molecular enzyme systems. Hence, the relaxation response may be a manifestation of a metabolic corrective process/response, that may now include cognition (“awareness”).
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| | - Tobias Esch
- University Clinic for Integrative Health Care, Institute for Integrative Health Care and Health Promotion, Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Richard M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
4
|
Stefano GB, Esch T, Kream RM. Augmentation of Whole-Body Metabolic Status by Mind-Body Training: Synchronous Integration of Tissue- and Organ-Specific Mitochondrial Function. Med Sci Monit Basic Res 2019; 25:8-14. [PMID: 30631032 PMCID: PMC6505060 DOI: 10.12659/msmbr.913264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of our concise review is to elaborate an evidence-based integrative medicine model that incorporates functional linkages of key aspects of cortically-driven mind-body training procedures to biochemical and molecular processes driving enhanced cellular bioenergetics and whole-body metabolic advantage. This entails the adoption of a unified biological systems approach to selectively elucidate basic biochemical and molecular events responsible for achieving physiological relaxation of complex cellular structures. We provide accumulated evidence in support of the potential synergy of voluntary breathing exercises in combination with meditation and/or complementary cognitive tasks to promote medically beneficial enhancements in whole-body relaxation, anti-stress mechanisms, and restorative sleep. Accordingly, we propose that the widespread metabolic and physiological advantages emanating from a sustained series of complementary mind-body exercises will ultimately engender enhanced functional integration of cortical and limbic areas controlling voluntary respiratory processes with autonomic brainstem neural pattern generators. Finally, a unified mechanism is proposed that links behaviorally-mediated enhancements of whole-body metabolic advantage to optimization of synchronous regulation of mitochondrial oxygen utilization via recycling of nitrite and nitric oxide by iron-sulfur centers of coupled respiratory complexes and nitrite reductases.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| | - Tobias Esch
- School of Medicine, Faculty of Health, Witten/Herdecke University, Institute for Integrative Health Care, Witten, Germany
| | - Richard M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
5
|
Stefano GB, Kream RM. Alkaloids, Nitric Oxide, and Nitrite Reductases: Evolutionary Coupling as Key Regulators of Cellular Bioenergetics with Special Relevance to the Human Microbiome. Med Sci Monit 2018; 24:3153-3158. [PMID: 29756604 PMCID: PMC5978027 DOI: 10.12659/msm.909409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of “morphinergic” signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic.,Center for Cognitive and Molecular Neuroscience, General University Hospital in Prague, Prague, Czech Republic
| | - Richard M Kream
- Senior Advisor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
6
|
Stefano GB, Bjenning C, Wang F, Wang N, Kream RM. Mitochondrial Heteroplasmy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:577-594. [PMID: 28551808 DOI: 10.1007/978-3-319-55330-6_30] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic polymorphisms, in concert with well-characterized etiology and progression of major pathologies, plays a significant role in aberrant processes afflicting human populations. Mitochondrial heteroplasmy represents a dynamically determined co-expression of inherited polymorphisms and somatic pathology in varying ratios within individual mitochondrial DNA (mtDNA) genomes with repetitive patterns of tissue specificity. The ratios of the MtDNA genomes represent a balance between healthy and pathological cellular outcomes. Mechanistically, cardiomyopathies have profound alterations of normative mitochondrial function. Certain allele imbalances in the nuclear mitochondrial genome are associated with key energy mitochondrial proteins. Mitochondrial heteroplasmy may manifest itself at critical protein expression points, e.g., cytochrome c oxidase (COX). Pathological mtDNA mutations also are associated with the development of congestive heart failure. Interestingly, mitochondrial 'normal vs. abnormal' ratios of various heteroplasmic populations may occur in families. In the translational context of human health and disease, we discuss the need for determining critical foci to probe multiple biological roles of mitochondrial heteroplasmy in cardiomyopathy.
Collapse
Affiliation(s)
- George B Stefano
- International Scientific Information, Inc., 150 Broadhollow Rd, Ste 114, Melville, NY, 11747, USA.
| | - Christina Bjenning
- Cardiometabolic Designs LLC, 160 W15th Ave, Suite 303, Sea Cliff, NY, 11579, USA
| | - Fuzhou Wang
- Division of Neuroscience, Bonoi Academy of Science & Education, Chapel Hill, NC, 27510, USA
| | - Nan Wang
- Department of Anesthesiology, Affiliated Hospital of OB/GYN, Nanjing Medical University, Nanjing, 210004, China
| | - Richard M Kream
- International Scientific Information, Inc., 150 Broadhollow Rd, Ste 114, Melville, NY, 11747, USA
| |
Collapse
|
7
|
Stefano GB, Ptacek R, Raboch J, Kream RM. Microbiome: A Potential Component in the Origin of Mental Disorders. Med Sci Monit 2017. [PMID: 28636585 PMCID: PMC5489312 DOI: 10.12659/msm.905425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is not surprising to find microbiome abnormalities present in psychiatric disorders such as depressive disorders, bipolar disorders, etc. Evolutionary pressure may provide an existential advantage to the host eukaryotic cells in that it survives in an extracellular environment containing non-self cells (e.g., bacteria). This phenomenon is both positive and negative, as with other intercellular processes. In this specific case, the phenomenal amount of information gained from combined bacterial genome could enhance communication between self and non-self cells. This can be coupled to both pathological processes and healthy ones. In this review, we chose to examine potential associated disorders that may be coupled to the microbiome, from the perspective of their bidirectional communication with eukaryotic cells in the gut. Cognition, being the newest neural networking functionality to evolve, consumes a good amount of organismic energy, 30% of which arises from the gut flora. Furthermore, the mammalian gut is highly innervated and has a highly developed immune component, reflecting brain complexity. The brain-gut axis uses similar molecular messengers as the brain, which affects bacterial processes as well. Thus, any modification of normal bacterial processes may manifest itself in altered behavior/cognition, originating from the gut. The origin of some disorders associated with this bidirectional communication may be harnessed to restore normal functioning.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Richard M Kream
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
8
|
Stefano GB, Kream RM. Aging Reversal and Healthy Longevity is in Reach: Dependence on Mitochondrial DNA Heteroplasmy as a Key Molecular Target. Med Sci Monit 2017; 23:2732-2735. [PMID: 28579605 PMCID: PMC5470867 DOI: 10.12659/msm.902515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent trends in biomedical research have highlighted the potential for effecting significant extensions in longevity with enhanced quality of life in aging human populations. Within this context, any proposed method to achieve enhanced life extension must include therapeutic approaches that draw upon essential biochemical and molecular regulatory processes found in relatively simple single cell organisms that are evolutionarily conserved within complex organ systems of higher animals. Current critical thinking has established the primacy of mitochondrial function in maintaining good health throughout plant and animal phyla. The mitochondrion represents an existentially defined endosymbiotic model of complex organelle development driven by evolutionary modification of a permanently enslaved primordial bacterium. Cellular mitochondria are biochemically and morphologically tailored to provide exponentially enhanced ATP-dependent energy production accordingly to tissue- and organ-specific physiological demands. Thus, individual variations in longevity may then be effectively sorted according to age-dependent losses of single-cell metabolic integrity functionally linked to impaired mitochondrial bioenergetics within an aggregate presentation of compromised complex organ systems. Recent empirical studies have focused on the functional role of mitochondrial heteroplasmy in the regulation of normative cellular processes and the initiation and persistence of pathophysiological states. Accordingly, elucidation of the multifaceted functional roles of mitochondrial heteroplasmy in normal aging and enhanced longevity will provide both a compelling genetic basis and potential targets for therapeutic intervention to effect meaningful life extension in human populations.
Collapse
|
9
|
Stefano GB, Samuel J, Kream RM. Antibiotics May Trigger Mitochondrial Dysfunction Inducing Psychiatric Disorders. Med Sci Monit 2017; 23:101-106. [PMID: 28063266 PMCID: PMC5240889 DOI: 10.12659/msm.899478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical usage of several classes of antibiotics is associated with moderate to severe side effects due to the promotion of mitochondrial dysfunction. We contend that this may be due to perturbation of unique evolutionary relationships that link selective biochemical and molecular aspects of mitochondrial biology to conserved enzymatic processes derived from bacterial progenitors. Operationally, stereo-selective conformational matching between mitochondrial respiratory complexes, cytosolic and nuclear signaling complexes appears to support the conservation of a critically important set of chemical messengers required for existential regulation of homeostatic cellular processes. Accordingly, perturbation of normative mitochondrial function by select classes of antibiotics is certainly reflective of the high degree of evolutionary pressure designed to maintain ongoing bidirectional signaling processes between cellular compartments. These issues are of critical importance in evaluating potentially severe side effects of antibiotics on complex behavioral functions mediated by CNS neuronal groups. The CNS is extremely dependent on delivery of molecular oxygen for maintaining a required level of metabolic activity, as reflected by the high concentration of neuronal mitochondria. Thus, it is not surprising to find several distinct behavioral abnormalities conforming to established psychiatric criteria that are associated with antibiotic usage in humans. The manifestation of acute and/or chronic psychiatric conditions following antibiotic usage may provide unique insights into key etiological factors of major psychiatric syndromes that involve rundown of cellular bioenergetics via mitochondrial dysfunction. Thus, a potential window of opportunity exists for development of novel therapeutic agents targeting diminished mitochondrial function as a factor in severe behavioral disorders.
Collapse
Affiliation(s)
- George B Stefano
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Joshua Samuel
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Richard M Kream
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| |
Collapse
|
10
|
Stefano GB, Kream RM. Glycolytic Coupling to Mitochondrial Energy Production Ensures Survival in an Oxygen Rich Environment. Med Sci Monit 2016; 22:2571-5. [PMID: 27439008 PMCID: PMC4957629 DOI: 10.12659/msm.899610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mitochondrion exhibits biochemical and functional variations that emerged by random chance as an evolutionary survival strategy, which include enhanced energy production driven by anaerobic respiratory mechanisms. In invertebrates, this mitochondrial anaerobic respiration permits survival at a lower energy state suited for this type of environment while yielding more ATP than by glycolysis alone. This ability provides a protective existential advantage in naturally occurring hypoxic environments via diminished free radical generation. In the blue mussel Mytilus edulis and other marine organisms, a functionally active mitochondrial anaerobic respiratory mechanism tailored to hypoxic conditions reflects an evolutionary adaptation/reworking of ancient metabolic pathways. Components of these pathways were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. Mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors are known to occur, demonstrating commonalities in diverse life energy processes. Furthermore, cytoplasmic glycolytic processes are now shown also to exhibit a dynamic capacity for enhanced energy generation by increasing its efficiency in hypoxic environments, making it equally dynamic in meeting its cellular survival goal.
Collapse
Affiliation(s)
- George B Stefano
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Richard M Kream
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| |
Collapse
|
11
|
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. ACTA ACUST UNITED AC 2016; 2:185-187. [PMID: 27200181 PMCID: PMC4869880 DOI: 10.15761/jts.1000138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress and the generation of reactive oxygen species (ROS) can lead to mitochondrial dysfunction, DNA damage, protein misfolding, programmed cell death with apoptosis and autophagy, and the promotion of aging –dependent processes. Mitochondria control the processing of redox energy that yields adenosine triphosphate (ATP) through the oxidation of glucose, pyruvate, and nicotinamide adenine dinucleotide. Ultimately, the generation of ROS occurs with the aerobic production of ATP. Although reduced levels of ROS may lead to tolerance against metabolic, mechanical, and oxidative stressors and the generation of brief periods of ROS during ischemia-reperfusion models may limit cellular injury, under most circumstances ROS and mitochondrial dysfunction can lead to apoptotic caspase activation and autophagy induction that can result in cellular demise. Yet, new work suggests that ROS generation may have a positive impact through respiratory complex I reverse electron transport that can extend lifespan. Such mechanisms may bring new insight into clinically relevant disorders that are linked to cellular senescence and aging of the body’s system. Further investigation of the potential “bright side” of ROS and mitochondrial respiration is necessary to target specific pathways, such as the mechanistic target of rapamycin, nicotinamidases, sirtuins, mRNA decoupling and protein expression, and Wnt signaling, that can impact oxidative stress-ROS mechanisms to extend lifespan and eliminate disease onset.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
12
|
Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and Neurological Disorders: A Gut Feeling. Biores Open Access 2016; 5:137-45. [PMID: 27274912 PMCID: PMC4892191 DOI: 10.1089/biores.2016.0010] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | - Iphigenia Kanara
- Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts
- Consulate General of Greece in Boston, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Boston, Massachusetts
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| |
Collapse
|