1
|
Zhou H, Song WH. LncRNA HCG11 Accelerates Atherosclerosis via Regulating the miR-224-3p/JAK1 Axis. Biochem Genet 2023; 61:372-389. [PMID: 35931919 DOI: 10.1007/s10528-022-10261-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is the typical cardiovascular disease, which is the main underlying inducement of cardiovascular diseases. Aberrant expression of long noncoding RNA HLA complex group 11 (HCG11) was engaged with atherosclerosis. The objective of the present research was to explore the role and the potential mechanism of HCG11 in AS. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce the AS model in vitro. The cell viability was detected by MTT assay. Flow cytometry was performed to determine cell pyroptosis. Gene and protein levels were detected by qPCR or Western blot assay. The interaction between HCG11, miR-224-3p, and Janus kinase 1 (JAK1) was validated by dual-luciferase reporter assays. Ox-LDL treatment aggravated cell pyroptosis and inflammation in HUVECs. And the levels of HCG11 and JAK1 was enhanced in ox-LDL-induced HUVECs, while miR-224-3p expression was reduced. Additionally, knockdown of HCG11 or miR-224-3p overexpression reversed the ox-LDL-induced cell viability decline and the increase of cell pyroptosis and inflammation-related proteins, including gasdermin D N-terminal (GSDMD-N), Caspase-1, NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin 18 (IL-18), and interleukin 1beta (IL-1β). Moreover, HCG11 could modulate the JAK1 expression via targeting miR-224-3p. The inhibitory effect of HCG11 silencing on cell pyroptosis and inflammation was reversed by miR-224-3p knockdown. Furthermore, overexpression of miR-224-3p could repress the ox-LDL-induced cell pyroptosis and inflammation via regulating JAK1 expression. Knockdown of HCG11 alleviated cell pyroptosis and inflammation induced by ox-LDL via targeting the miR-224-3p/JAK1 axis, indicating that HCG11 could be the latent target of diagnosis or treatment for AS.
Collapse
Affiliation(s)
- Hua Zhou
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China
| | - Wei-Hong Song
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
2
|
Li X, Wang Y, Zhou X, Wang H, Xu J. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-reperfusion Injury by Down-regulating Mir-155-5p. Curr Neurovasc Res 2023; 20:480-492. [PMID: 37642006 DOI: 10.2174/1567202620666230828092916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Increasing evidence shows that electroacupuncture pretreatment (EP) plays a crucial role in cerebral ischemia-reperfusion (I/R) injury, and cerebral I/R injury is the most serious complication of ischemic stroke treatment. The role of miR-155-5p in cerebral I/R injury has been studied, but the regulation of EP on miR-155-5p has not been reported. METHODS The middle cerebral artery occlusion (MCAO) mice were used to investigate the role of EP in cerebral I/R injury. Longa and modified neurological severity scores (mNSS) were used to evaluate neurological impairment. HE staining and TUNEL staining were used to evaluate brain injury. The expressions of miR-155-5p, Yin Yang 1 (YY1) and p53 were detected by qRT-PCR. The expressions of related proteins were detected by western blot. The binding of YY1 to miR- 155-5p was verified by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Mice brain microvascular endothelial cells (BMECs) were isolated and cultured for in vitro experiments. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to verify the role of YY1, p53 and miR-155-5p in cerebral I/R injury in vitro. RESULTS MCAO modeling induced brain injury, apoptosis, and increased levels of miR-155-5p, YY1, and p53. EP markedly alleviated brain injury and reduced levels of miR-155-5p, p53, and YY1. miR-155 agomir markedly increased the expression of miR-155-5p and p53. miR-155 antagomir decreased the levels of miR-155-5p and p53. Dual-luciferase reporter and ChIP assay verified that YY1 regulated miR-155-5p expression. YY1 shNRA greatly decreased miR-155-5p and p53. Inhibition of p53 decreased miR-155-5p expression. Both miR-155-5p inhibitor and YY1 shRNA promoted proliferation, inhibited apoptosis, and decreased levels of ICAM-1 and Eselectin of OGD/R-treated BMECs. Inhibition of p53 strengthened the effect of miR-155-5p inhibitor and YY1 shNRA on BMECs. CONCLUSION Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by regulating the YY1/p53/miR-155-5p axis.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ying Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiang Zhou
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Hui Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
3
|
Chang J, Zhou B, Wei Z, Luo Y. IL-32 promotes the occurrence of atopic dermatitis by activating the JAK1/microRNA-155 axis. J Transl Med 2022; 20:207. [PMID: 35545774 PMCID: PMC9097387 DOI: 10.1186/s12967-022-03375-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Background This study aims to explore the mechanism of interleukin-32 (IL-32) affecting atopic dermatitis (AD) through the Janus-activated kinase-1 (JAK1)/microRNA-155 (miR-155) axis. Methods In this study, skin tissue samples and blood samples from normal subjects and patients with AD, human immortalized keratinocytes (HaCaT), and PA-induced mouse models of AD were selected for expression determination of IL-32, JAK1 and miR-155. The interaction among IL-32, JAK1 and miR-155 was identified with their roles in AD analyzed through loss- and gain-of-function assays. Results Elevated IL-32 was detected in AD tissues and blood samples and promoted the occurrence of AD. IL-32 upregulated JAK1 expression and phosphorylation of its downstream genes, thus activating the JAK signaling pathway. JAK1 promoted the expression of miR-155. IL-32/JAK1/miR-155 axis promoted inflammation in the AD skin reconstruction model. In vivo experiments further confirmed that IL-32 promoted AD development by activating the JAK1/miR-155 axis. Conclusion The present study underlined that IL-32 promoted the occurrence of AD by promoting JAK1 expression to upregulate miR-155 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03375-x.
Collapse
Affiliation(s)
- Jing Chang
- Department of Dermatology, Hunan Children's Hospital, No. 68 Ziyuan Road, Changsha, 410007, People's Republic of China
| | - Bin Zhou
- Department of Dermatology, Hunan Children's Hospital, No. 68 Ziyuan Road, Changsha, 410007, People's Republic of China
| | - Zhu Wei
- Department of Dermatology, Hunan Children's Hospital, No. 68 Ziyuan Road, Changsha, 410007, People's Republic of China
| | - Yongqi Luo
- Department of Dermatology, Hunan Children's Hospital, No. 68 Ziyuan Road, Changsha, 410007, People's Republic of China.
| |
Collapse
|
4
|
miR-155: An Important Role in Inflammation Response. J Immunol Res 2022; 2022:7437281. [PMID: 35434143 PMCID: PMC9007653 DOI: 10.1155/2022/7437281] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, mature, noncoding RNA that lead to posttranscriptional gene silencing to regulate gene expression. miRNAs are instrumental in biological processes such as cell development, cell differentiation, cell proliferation, and cell apoptosis. The miRNA-mediated gene silencing is an important part of the regulation of gene expression in many kinds of diseases. miR-155, one of the best-characterized miRNAs, has been found to be closely related to physiological and pathological processes. What is more, miR-155 can be used as a potential therapeutic target for inflammatory diseases. We analyze the articles about miR-155 for nearly five years, review the advanced study on the function of miR-155 in different inflammatory cells like T cells, B cells, DCs, and macrophages, and then summarize the biological functions of miR-155 in different inflammatory cells. The widespread involvement of miR-155 in human diseases has led to a novel therapeutic approach between Chinese and Western medicine.
Collapse
|
5
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
6
|
miRNA-576 Alleviates the Malignant Progression of Atherosclerosis through Downregulating KLF5. DISEASE MARKERS 2021; 2021:5450685. [PMID: 34925646 PMCID: PMC8674069 DOI: 10.1155/2021/5450685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/16/2021] [Indexed: 01/23/2023]
Abstract
Objective To elucidate the role of microRNA-576 (miRNA-576) in alleviating the deterioration of atherosclerosis (AS) through downregulating krüpple-like factor 5 (KLF5). Materials and Methods The AS model in mice was first constructed. Body weight, inflammation degrees, blood lipid, and relative levels of KLF5, miRNA-576, caspase-3, and bcl-2 in AS mice and control mice were compared. Dual-luciferase reporter gene assay was performed to evaluate the binding between miRNA-576 and KLF5. RAW264.7 cells were treated with 200 mg/L ox-LDL for establishing in vitro high-fat model. Regulatory effects of miRNA-576/KLF5 on relative levels of β-catenin and inflammatory factors in RAW264.7 cells were explored. Results Body weight was heavier in AS mice than in controls. Protein levels of KLF5 and caspase-3 were upregulated, while bcl-2 was downregulated in AS mice. In particular, protein level of KLF5 was highly expressed in aortic tissues of AS mice. TC and LDL increased, and HDL decreased in AS mice compared with controls. Inflammatory factor levels were markedly elevated in AS mice. KLF5 was verified to be the target gene binding miRNA-576. Overexpression of miRNA-576 downregulated KLF5, inflammatory factors, and β-catenin in ox-LDL-treated RAW264.7 cells. Regulatory effect of miRNA-576 on the release of inflammatory factors in RAW264.7 cells could be partially abolished by KLF5. Conclusions miRNA-576 alleviates malignant progression of AS via downregulating KLF5.
Collapse
|
7
|
Chen L, Hu L, Zhu X, Wang Y, Li Q, Ma J, Li H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle 2020; 19:2472-2485. [PMID: 32840181 DOI: 10.1080/15384101.2020.1807094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MALAT1 is associated with dendritic cells (DCs) maturation in Atherosclerosis (AS). This article aims to demystify the role of MALAT1 in AS. We separated immature DCs (iDCs) from healthy volunteers or ApoE-/- mice. And iDCs were treated with oxidized low density lipoprotein (ox-LDL) to induce DCs maturation. We found that ox-LDL promoted the levels of DCs maturation markers including CD83, CD86, IL-12 and IL-6. MALAT1 and NFIA were down-regulated, whereas miR-155-5p was up-regulated in the ox-LDL-treated iDCs. Furthermore, DCs maturation was notably suppressed by MALAT1 overexpression, NFIA overexpression or miR-155-5p knockdown. Moreover, MALAT1 functioned as a competing endogenous RNA to repress miR-155-5p, which controlled its down-stream target, NFIA. In addition, MALAT1 overexpression inhibited ox-LDL-stimulated DCs maturation by regulating miR-155-5p/NFIA axis. In AS mice, MALAT1 overexpression attenuated ox-LDL-stimulated DCs maturation and reduced atherosclerotic plaque area. In summary, our study demonstrates that MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated DCs maturation via miR-155-5p/NFIA axis. Thus, MALAT1/miR-155-5p/NFIA axis can potentially be used in the treatment of AS.
Collapse
Affiliation(s)
- Li Chen
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Liqun Hu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Xiang Zhu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Yan Wang
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Jian Ma
- Department of Cardiology, Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Hongqi Li
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| |
Collapse
|
8
|
Yang P, Cao X, Cai H, Chen X, Zhu Y, Yang Y, An W, Jie J. Upregulation of microRNA-155 Enhanced Migration and Function of Dendritic Cells in Three-dimensional Breast Cancer Microenvironment. Immunol Invest 2020; 50:1058-1071. [PMID: 32757734 DOI: 10.1080/08820139.2020.1801721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: Dendritic cells (DCs) play an essential role in the induction and regulation of immune responses, including the activation of effector T lymphocytes for the eradication of cancers. However, the tumor microenvironment (TME) often leads to DCs dysfunction due to their immature state. MicroRNA-155 (miR-155) has emerged as a typical multifunctional gene regulator associated with immune system development and immune cell activation and differentiation.Methods: In this study, a three-dimensional TME model that closely mimics the microenvironment of breast cancer was prepared. MiR-155 overexpression and control vectors were constructed using lentivirus. The relative expression of miR-155 was determined by qRT-PCR. Cell viability, antigen uptake and cell surface marker expression were analyzed by live-dead staining and flow cytometry. The migration ability of bone marrow-derived DCs (BMDCs) was qualified by transwell assay. A mixed lymphocyte culture assay was used to assess T cell-specific proliferation. Cytokine levels were determined by ELISA.Results: We found that the expression of miR-155 in DCs was inhibited by the TME. Furthermore, upregulation of miR-155 enhanced the migration ability, uptake of antigen and elevated the expression of the mature DCs markers CD80 and MHCII. More importantly, overexpression of miR-155 in DCs significantly induced T cell proliferation and IFN-γ and IL-2 secretion.Conclusion: MiR-155 is a potential molecular regulator that may improve the efficacy of DCs-based tumor immunotherapy.
Collapse
Affiliation(s)
- Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Xingjian Cao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, the First People's Hospital of Nantong, Nantong, China
| | - Huilong Cai
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Xiang Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, the First People's Hospital of Nantong, Nantong, China
| | - Yihua Zhu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, the First People's Hospital of Nantong, Nantong, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Jing Jie
- Medical Research Center, Affiliated Hospital 2 of Nantong University, the First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
9
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Kumar S, Williams D, Sur S, Wang JY, Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 2019; 114:76-92. [PMID: 30300747 PMCID: PMC6905428 DOI: 10.1016/j.vph.2018.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction, ischemic stroke, and peripheral artery disease. The disease preferentially occurs in arterial regions exposed to disturbed blood flow, in part, by altering expression of flow-sensitive coding- and non-coding genes. In this review, we summarize the role of noncoding RNAs, [microRNAs (miRNAs) and long noncoding RNAs(lncRNAs)], as regulators of gene expression and outline their relationship to the pathogenesis of atherosclerosis. While miRNAs are small noncoding genes that post-transcriptionally regulate gene expression by targeting mRNA transcripts, the lncRNAs regulate gene expression by diverse mechanisms, which are still emerging and incompletely understood. We focused on multiple flow-sensitive miRNAs such as, miR-10a, -19a, -23b, -17~92, -21, -663, -92a, -143/145, -101, -126, -712, -205, and -155 that play a critical role in endothelial function and atherosclerosis by targeting inflammation, cell cycle, proliferation, migration, apoptosis, and nitric oxide signaling. Flow-dependent regulation of lncRNAs is just emerging, and their role in vascular dysfunction and atherosclerosis is unknown. Here, we discuss the flow-sensitive lncRNA STEEL along with other lncRNAs studied in the context of vascular pathophysiology and atherosclerosis such as MALAT1, MIAT1, ANRIL, MYOSLID, MEG3, SENCR, SMILR, LISPR1, and H19. Also discussed is the use of these noncoding RNAs as potential biomarkers and therapeutics to reduce and regress atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Darian Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Sanjoli Sur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Jun-Yao Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA; Division of Cardiology, Emory University, Atlanta, USA.
| |
Collapse
|
11
|
Li Y, Xiao L, Li J, Sun P, Shang L, Zhang J, Zhao Q, Ouyang Y, Li L, Gong K. MicroRNA profiling of diabetic atherosclerosis in a rat model. Eur J Med Res 2018; 23:55. [PMID: 30390707 PMCID: PMC6215356 DOI: 10.1186/s40001-018-0354-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The incidence of diabetic atherosclerosis (DA) is increasing worldwide. The study aim was to identify differentially expressed microRNAs (DE-miRs) potentially associated with the initiation and/or progression of DA, thereby yielding new insights into this disease. METHODS Matched iliac artery tissue samples were isolated from 6 male rats with or without DA. The Affymetrix GeneChip microRNA 4.0 Array was used to detect miRs. Differential expression between atherosclerotic group and non-atherosclerotic group samples was analyzed using the Gene-Cloud of Biotechnology Information platform. Targetscan and miRanda were then used to predict targets of DE-miRs. Functions and pathways were identified for significantly enriched candidate target genes and a DE-miR functional regulatory network was assembled to identify DA-associated core target genes. RESULTS A total of nine DE-miRs (rno-miR-206-3p, rno-miR-133a-5p, rno-miR-133b-3p, rno-miR-133a-3p, rno-miR-325-5p, rno-miR-675-3p, rno-miR-411-5p, rno-miR-329-3p, and rno-miR-126a-3p) were identified, all of which were up-regulated and together predicted to target 3349 genes. The target genes were enriched in known functions and pathways related to lipid and glucose metabolism. The functional regulatory network indicated a modulatory pattern of these metabolic functions with DE-miRs. The miR-gene network suggested arpp19 and MDM4 as possible DA-related core target genes. CONCLUSION The present study identified DE-miRs and miRNA-gene networks enriched for lipid and glucose metabolic functions and pathways, and arpp19 and MDM4 as potential DA-related core target genes, suggesting DE-miRs and/or arpp19 and MDM4 could act as potential diagnostic markers or therapeutic targets for DA.
Collapse
Affiliation(s)
- Yuejin Li
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Le Xiao
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Jinyuan Li
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Ping Sun
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Lei Shang
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Jian Zhang
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Quan Zhao
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Yiming Ouyang
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Linhai Li
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| | - Kunmei Gong
- The First Department of General Surgery, The First People’s Hospital of Yunnan Province, 157 JinBi Road, Kunming, 650032 Yunnan People’s Republic of China
| |
Collapse
|
12
|
Ye Z, Li G, Kim C, Hu B, Jadhav RR, Weyand CM, Goronzy JJ. Regulation of miR-181a expression in T cell aging. Nat Commun 2018; 9:3060. [PMID: 30076309 PMCID: PMC6076328 DOI: 10.1038/s41467-018-05552-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/08/2018] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs have emerged as key regulators in T cell development, activation, and differentiation, with miR-181a having a prominent function. By targeting several signaling pathways, miR-181a is an important rheostat controlling T cell receptor (TCR) activation thresholds in thymic selection as well as peripheral T cell responses. A decline in miR-181a expression, due to reduced transcription of pri-miR-181a, accounts for T cell activation defects that occur with older age. Here we examine the transcriptional regulation of miR-181a expression and find a putative pri-miR-181a enhancer around position 198,904,300 on chromosome 1, which is regulated by a transcription factor complex including YY1. The decline in miR-181a expression correlates with reduced transcription of YY1 in older individuals. Partial silencing of YY1 in T cells from young individuals reproduces the signaling defects seen in older T cells. In conclusion, YY1 controls TCR signaling by upregulating miR-181a and dampening negative feedback loops mediated by miR-181a targets.
Collapse
Affiliation(s)
- Zhongde Ye
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Guangjin Li
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Chulwoo Kim
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Bin Hu
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Rohit R Jadhav
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Cornelia M Weyand
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Jörg J Goronzy
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA.
| |
Collapse
|
13
|
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018; 36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.
Collapse
Affiliation(s)
- Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Huangfu N, Wang Y, Cheng J, Xu Z, Wang S. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med 2018; 15:2485-2491. [PMID: 29456653 PMCID: PMC5795518 DOI: 10.3892/etm.2018.5704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidized low density lipoprotein (ox-LDL)-induced macrophage apoptosis contributes to the formation of atherosclerosis. Metformin, an antidiabetic drug, has been reported to attenuate lipid accumulation in macrophages. In this study, the effects of metformin on ox-LDL-induced macrophage apoptosis were investigated and the mechanisms involved in this process were examined. By performing flow cytometry analysis, it was demonstrated that metformin inhibited ox-LDL-induced macrophage apoptosis. Increased expression of endoplasmic reticulum (ER) stress marker proteins, including C/EBP-homologous protein, eukaryotic translation initiation factor 2A, and glucose-regulated protein 78 kDa, induced by ox-LDL was also reversed by metformin. Furthermore, ox-LDL-induced cytochrome c (cyto-c) release and mitochondrial membrane potential loss were inhibited by metformin. As lipid uptake in macrophages contributed to ER stress, cyto-c release and mitochondrial membrane potential loss, the mechanisms involved in metformin-inhibited macrophage lipid uptake were investigated. Expression of scavenger receptors, including scavenger receptor A, cluster of differentiation 36 and lectin-type oxidized LDL receptor 1 was examined in the presence or absence of metformin with ox-LDL treatment. Additionally, the upstream regulatory mechanism of scavenger receptors by metformin was also analyzed. In conclusion, metformin protects against ox-LDL-induced macrophage apoptosis and inhibits macrophage lipid uptake.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jingsong Cheng
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenyu Xu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shenghuang Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
15
|
Jian D, Dai B, Hu X, Yao Q, Zheng C, Zhu J. ox-LDL increases microRNA-29a transcription through upregulating YY1 and STAT1 in macrophages. Cell Biol Int 2017; 41:1001-1011. [PMID: 28593745 DOI: 10.1002/cbin.10803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/04/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Dongdong Jian
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Bing Dai
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Xiaotong Hu
- Department of Intensive Care Unit; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Qiang Yao
- Department of Cardiology; Hangzhou Red Cross Hospital; Hangzhou Zhejiang 310003 P.R. China
| | - Chengfei Zheng
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Jianhua Zhu
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| |
Collapse
|
16
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|