1
|
Guo H, Hu Z, Yang X, Yuan Z, Wang M, Chen C, Xie L, Gao Y, Li W, Bai Y, Lin C. Smad4 regulates TGF-β1-mediated hedgehog activation to promote epithelial-to-mesenchymal transition in pancreatic cancer cells by suppressing Gli1 activity. Comput Struct Biotechnol J 2024; 23:1189-1200. [PMID: 38525105 PMCID: PMC10957521 DOI: 10.1016/j.csbj.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive and metastatic gastrointestinal tumor with a poor prognosis. Persistent activation of the TGF-β/Smad signaling induces PC cell (PCC) invasion and infiltration via epithelial-to-mesenchymal transition (EMT). Hedgehog signaling is a crucial pathway for the development of PC via the transcription factors Gli1/2/3. This study aimed to investigate the underlying molecular mechanisms of action of hedgehog activation in TGF-β1-triggered EMT in PCCs (PANC-1 and BxPc-3). In addition, overexpression and shRNA techniques were used to evaluate the role of Smad4 in TGF-β1-treated PCCs. Our data showed that TGF-β1 promoted PCC invasion and infiltration via Smad2/3-dependent EMT. Hedgehog-Gli signaling axis in PCCs was activated upon TGF-β1 stimulation. Inhibition of hedgehog with cyclopamine effectively antagonized TGF-β1-induced EMT, thereby suggesting that the hedgehog signaling may act as a downstream cascade signaling of TGF-β1. As a key protein that assists the nuclear translocation of Smad2/3, Smad4 was highly expressed in PANC-1 cells, but not in BxPc-3 cells. Conversely, Gli1 expression was low in PANC-1 cells, but high in BxPc-3 cells. Furthermore, knockdown of Smad4 in PANC-1 cells by shRNA inhibited TGF-β1-mediated EMT and collagen deposition. Overexpression of Smad4 did not affect TGF-β1-mediated EMT due to the lack of significant increase in nuclear expression of Smad4. Importantly, Gli1 activity was upregulated by Smad4 knockdown in PANC-1 cells and downregulated by Smad4 overexpression in BxPc-3 cells, indicating that Gli1 may be a negative target protein downstream of Smad4. Thus, Smad4 regulates TGF-β1-mediated hedgehog activation to promote EMT in PCCs by suppressing Gli1 activity.
Collapse
Affiliation(s)
- Hangcheng Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Sichuan Mianyang 404 Hospital, Mianyang 621000, China
| | - Zujian Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Ziwei Yuan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Mengsi Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chaoyue Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Lili Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanyuan Gao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Wangjian Li
- Department of Urology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Medicine and Health Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
4
|
Tang S, Xu B, Pang H, Xiao L, Mei Q, He X. Ozonated Water Inhibits Hepatocellular Carcinoma Invasion and Metastasis by Regulating the HMGB1/NF-κB/STAT3 Signaling Pathway. J Hepatocell Carcinoma 2023; 10:203-215. [PMID: 36798740 PMCID: PMC9926998 DOI: 10.2147/jhc.s394074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. High-mobility group box 1 (HMGB1), a highly conserved chromosome protein, is considered as a potential therapeutic target and novel biomarker because of its regulation in the proliferation and metastasis of HCC. Ozone has been shown to be beneficial in the treatment of cancer. The objective of this study was to explore the effects and molecular mechanism of ozonated water on the proliferation, migration, and invasion of BEL7402 HCC cells. Materials and Methods We assessed cell proliferation using a CCK-8 assay kit and flow cytometry; we performed wound healing and transwell assays to evaluate the effects of ozonated water treatment on cell invasion and migration. We determined reactive oxygen species (ROS) values by flow cytometry and used ELISAs to detect cytokines HMGB1, IL-6, and TNF-α. In addition, we assessed mRNA and protein cytokine expressions using RT-qPCR and Western blot. Results Ozonated water decreased the viability of the HCC cells; the IC50 of ozonated water at 24 h was approximately 1.5 μg/mL. Compared with control groups, ozone treated cells revealed reduced mobility on wound healing assays and decreased invasion in transwell assays. HMGB1, IL-6, and TNF-α cytokines were found at lower levels in ozone treated cells than in control cells. Ozonated water-induced ROS accumulation. Likewise, the expressions of phosphorylated nuclear factor Kappa B (NF-κB), p65, NF-κB, P-STAT3, IL-6, JAK2, Slug, Twist, vimentin, MMP-2, MMP-9, and HMGB1 were decreased in the treated cells. Conclusion Our findings suggest that ozonated water inhibits the proliferation, invasion, and metastasis of HCC cells via regulation of the HMGB1/NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shuiying Tang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bihong Xu
- Interventional Radiology and Pathology, Nanfang Hospital, Department of Pathology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Huajin Pang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Lijun Xiao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Quelin Mei
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Correspondence: Xiaofeng He, Email
| |
Collapse
|
5
|
Guan Y, Quan D, Chen K, Kang L, Yang D, Wu H, Yan M, Wu S, Lv L, Zhang G. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154246. [PMID: 36274411 DOI: 10.1016/j.phymed.2022.154246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most chronic kidney diseases (CKDs) develop to end-stage renal disease (ESRD), which is characterized by fibrosis and permanent tissue and function loss. As a result, better and more effective remedies are essential. Kaempferol (KAE) is a common flavonoid extracted from plants. It can control the progression of kidney fibrosis and the epithelial-to-mesenchymal transition (EMT) of the renal tubular system. PURPOSE We aim to investigate the effect of KAE therapy on extracellular matrix deposition and stimulation of EMT in vitro and in vivo to elucidate the treatment mechanisms regulating these effects. STUDY DESIGN Chronic hypertension-induced kidney fibrosis was studied in spontaneously hypertensive rats with chronic kidney disease. Biochemical analysis, histological staining, and the expression level of relative proteins were used to assess the effect of KAE on renal function and fibrosis. The direct impact of KAE on proliferation and migration was evaluated using human renal tubular epithelial cells (HK-2) induced by transforming growth factor-β1 (TGF-β1), which can then induce EMT. The molecular mechanism of KAE was verified using co-IP assay and immunofluorescence. RESULTS KAE could reduce blood pressure and decrease the extracellular matrix (ECM) components (including collagen I and collagen Ш), TGF-β1, and α-SMA in the kidneys of hypertension-induced rats with chronic kidney disease. Moreover, in HK-2 cell treated with TGF-β1, KAE administration significantly suppressed proliferation, migration, and EMT via increasing the expression of E-cadherin, while reducing the N-cadherin and α-SMA. Sufu was exceedingly repressed in HK-2 cells treated with TGF-β1. KAE inhibited the activation of Shh and Gli through increasing the expression of Sufu, thereby blocking the nuclear translocation of Gli1 in vitro. CONCLUSION KAE ameliorated kidney fibrosis and EMT by inhibiting the sonic hedgehog signaling pathway, thereby to attenuate the pathological progression of hypertensive kidney fibrosis.
Collapse
Affiliation(s)
- Yiqing Guan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Dongling Quan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Kai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Liangqi Kang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Danni Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Huanxian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Mengqiu Yan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Shaoyu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
| | - Guohua Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
6
|
Li Y, Zhang L, Xiong W, Gao X, Xiong Y, Sun W. A Molecular Mechanism Study to Reveal Hirudin's Downregulation to PI3K/AKT Signaling Pathway through Decreasing PDGFR β in Renal Fibrosis Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5481552. [PMID: 36119923 PMCID: PMC9473867 DOI: 10.1155/2022/5481552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) is identified as a widespread chronic progressive disease jeopardizing public health which characterized by gradually loss of renal function. However, there is no efficient therapy to prevail over this disease. Our study was attempting to reveal hirudin's regulation to renal fibrosis as well as the molecular mechanism. We built renal fibrosis models on both cell and animal levels, which were subsequently given with hirudin disposal; then, we performed the transwell assay to estimate the cells' migration and had our detection to relevant proteins with western blot and immunofluorescence. Finally, we commenced both the identification and the determination to the hirudin targeted proteins and its downstream signaling pathways with the methods of network pharmacology. And the results turned out that when it was compared with the model group, the group with hirudin addition came with the suppression in the migration of renal tubular epithelial cells NRK-52E and with a conspicuous decline in the expressions of fibronectin, N-cadherin, vimentin, TGF-β, and snail. After that, we predicted that there were 17 hirudin target points mainly involving in the PI3K-AKT signaling pathway. Our outcomes of the animal level demonstrated that the conditions of interstitial fibrosis, severe tubular dilatation or atrophy, inflammatory cell infiltration, and massive accumulation of interstitial collagen in the model group were withdrawn after the addition of hirudin. In addition, p-PDGFRβ, p-PI3K, and p-AKT protein expressions were significantly reduced, and the PI3K/AKT pathway was downregulated after hirudin treatment in the model group of NRK-52E cells and animals. Therefore, we had our conclusion that hirudin is capable of suppressing the PI3K-AKT signaling pathway as well as the EMT by decreasing PDGFRβ phosphorylation.
Collapse
Affiliation(s)
- Ying Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Weijian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Xuan Gao
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yanying Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Wei Sun
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), 210029, China
| |
Collapse
|
7
|
Inhibitory Effects of Rhein on Renal Interstitial Fibrosis via the SHH-Gli1 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4398265. [PMID: 35966731 PMCID: PMC9374561 DOI: 10.1155/2022/4398265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Background. Rhein is the main extract of Rheum palmatum L., which has been proved to improve the renal function of chronic kidney disease, but its mechanism is not clear. Therefore, this experiment explored the potential pharmacological effect of rhein on renal interstitial fibrosis rats. Methods. This study explores the potential pharmacological action of rhein. In this work, we investigate the potential pharmacological action of rhein in unilateral urethral obstruction (UUO) rats. Thirty Sprague Dawley rats were randomly divided into three groups: sham, UUO, and rhein (rhein-treated UUO rats) groups. The left ureters of the UUO group rats were exposed and bluntly dissected. The rhein group rats were administered an intragastric gavage of rhein (2 mg·kg−1·d−1) for 14 d. Kidney function-related indicators were monitored in these rats, while indexes of pathologic aspects were determined histologically. The expression of α-SMA, TGF-β1, SHH, Gli1, and Snail was quantified using real-time polymerase chain reaction and western blotting. The NRK-49F cells were incubated with and without SHH (100 ng·ml−1) for 48 hours. The SHH-activated NRK-49F cells were incubated with cyclopamine (CNP, 20 umol L−1) or rhein (1 ng·ml−1). The Gli1 and Snail mRNA and protein level were detected. Results. In the in vivo experiment, the results exhibited that UUO caused renal pathological damages. However, these changes could be significantly reversed by the administration of rhein. Compared with the untreated UUO group, the rhein group showed reduced kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia, and abnormal deposition of extracellular matrix. Rhein reduced the RNA and protein expression of SHH, Gli1, and Snail of the UUO rats. In the in vitro experiment, CNP or rhein treatment decreased the expression of Gli1 and Snail on mRNA and protein levels in SHH-induced NRK-49F cells, suggesting that CNP or rhein suppresses SHH-induced NRK-49F activation. Taken together, these results demonstrated that rhein suppresses SHH-Gli1-Snail signal pathway activation, with potential implications for the treatment of renal fibrosis. Conclusions. Treatment with rhein remarkably ameliorated renal interstitial fibrosis in UUO rats by regulating the SHH-Gli1-Snail signal pathway.
Collapse
|
8
|
Fu H, Gu YH, Tan J, Yang YN, Wang GH. CircACTR2 in macrophages promotes renal fibrosis by activating macrophage inflammation and epithelial-mesenchymal transition of renal tubular epithelial cells. Cell Mol Life Sci 2022; 79:253. [PMID: 35449370 PMCID: PMC11072867 DOI: 10.1007/s00018-022-04247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
The crosstalk between macrophages and tubular epithelial cells (TECs) actively regulates the progression of renal fibrosis. In the present study, we revealed the significance of circular RNA ACTR2 (circACTR2) in regulating macrophage inflammation, epithelial-mesenchymal transition (EMT) of TECs, and the development of renal fibrosis. Our results showed UUO-induced renal fibrosis was associated with increased inflammation and EMT, hypertrophy of contralateral kidney, up-regulations of circACTR2 and NLRP3, and the down-regulation of miR-561. CircACTR2 sufficiently and essentially promoted the activation of NLRP3 inflammasome, pyroptosis, and inflammation in macrophages, and through paracrine effect, stimulated EMT and fibrosis of TECs. Mechanistically, circACTR2 sponged miR-561 and up-regulated NLRP3 expression level to induce the secretion of IL-1β. In TECs, IL-1β induced renal fibrosis via up-regulating fascin-1. Knocking down circACTR2 or elevating miR-561 potently alleviated renal fibrosis in vivo. In summary, circACTR2, by sponging miR-561, activated NLRP3 inflammasome, promoted macrophage inflammation, and stimulated macrophage-induced EMT and fibrosis of TECs. Knocking down circACTR2 and overexpressing miR-561 may, thus, benefit the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yong-Hong Gu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Juan Tan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Ye-Ning Yang
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Guo-Hui Wang
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, No 138, Tongzipo Road, Yuelu, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Shen-Shuai-Ling Formulation Attenuates Renal Interstitial Fibrosis in Chronic Kidney Disease by Regulating SHH-Gli1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3754985. [PMID: 35190746 PMCID: PMC8858066 DOI: 10.1155/2022/3754985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022]
Abstract
Background Shen-Shuai-Ling Formulation (SSLF) has apparent effects on improving renal function, delaying the progression of chronic kidney disease (CKD). Methods Fifty male SD rats were randomly divided into 5 groups: Sham group, Model group, SSLF group, CPN group, and C + S group. The morphological changes and the collagen fibers of the rat kidneys were observed by HE staining. The expression of α-SMA, Col I, SHH, Gli1, and snail1 was detected by Western blot and qPCR. Then, the cells were divided into the control group, SHH group, and SHH + SSLF serum group. Results Compared with the Model group, the fibrosis in SSLF, CPN, and C + S groups was significantly alleviated. And, compared with those in the Model group, the expression of α-SMA, Col I, SHH, Gli1, Snail in SSLF, CPN, and C + S groups decreased remarkably. Conclusions SSLF remarkably improves renal function and alleviates renal interstitial fibrosis in UUO rats.
Collapse
|
10
|
[Transforming growth factor-β1 induces transformation of rat meningeal fibroblasts into myofibroblasts by upregulating Shh signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:250-255. [PMID: 35365450 PMCID: PMC8983365 DOI: 10.12122/j.issn.1673-4254.2022.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effect of TGF-β1 on Shh signaling pathway during the transformation of meningeal fibroblasts into myofibroblasts. METHODS Primary meningeal fibroblasts were isolated from neonatal (24 h) SD rats and purified using type Ⅳ collagenase. The isolated cells were treated with 10 ng/mL TGF-β1 alone or in combination with 20 μmol/L SB-431542 (a TGF-β1 receptor inhibitor) for 72 h, and the changes in proliferation and migration abilities of the fibroblasts were assessed with CCK-8 assay and cell scratch test. The expression of fibronectin (Fn) was detected with immunofluorescence assay, and Western blotting was performed to examine the expressions of Fn, α-SMA and Shh protein in the cells; the expression of Shh mRNA was detected with real-time fluorescence quantitative PCR. RESULTS TGF-β1 treatment obviously enhanced the proliferation and migration of primary meningeal fibroblasts (P < 0.05), and promoted the transformation of meningeal fibroblasts into myofibroblasts and the secretion of Fn (P < 0.05). TGF-β1 treatment also upregulated the expression of Shh at both protein and mRNA levels (P < 0.05). Treatment with SB-431542 partially blocked the effect of TGF-β1 on the transformation of meningeal fibroblasts (P < 0.05). CONCLUSION TGF-β1 can induce the transformation of meningeal fibroblasts into myofibroblasts by up-regulating Shh expression in Sonic Hedgehog signaling pathway.
Collapse
|
11
|
Junga A, Siņicins I, Pētersons A, Pilmane M. Evaluation of PGP 9.5, NGFR, TGFβ1, FGFR1, MMP-2, AT2R2, SHH, and TUNEL in Primary Obstructive Megaureter Tissue. J Histochem Cytochem 2022; 70:139-149. [PMID: 34915763 PMCID: PMC8777373 DOI: 10.1369/00221554211063515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary obstructive megaureter (POM) morphogenesis is not fully known. The aim of the study was to evaluate the appearance of different factors that might take part in the pathogenesis of POM. Megaureter tissues of 14 children were stained with hematoxylin and eosin as well as with immunohistochemistry for protein gene product 9.5, nerve growth factor receptor, transforming growth factor beta 1 (TGFβ1), fibroblast growth factor receptor 1 (FGFR1), matrix metalloproteinase 2 (MMP-2), angiotensin 2 receptor type 2, and sonic hedgehog (SHH) protein. Apoptosis was detected by terminal dUTP nick-end labeling reaction. POM tissues revealed transitional epithelium with scattered vacuolization, submucosa with inflammatory cells, and focally vacuolized and chaotically organized muscle layers. Apoptosis, appearance of MMP-2, FGFR1, and SHH prevailed, but TGFβ1 positive cell number was lower in patients. Correlation between MMP-2 in epithelium and endothelium, FGFR1 and MMP-2 in epithelium, and TGFβ1 in epithelium and connective tissue in patients was detected. POM morphopathogenesis involves an apoptotic cell death of epithelium and smooth muscle as well as tissue degradation in epithelium and connective tissue of the ureter wall. The decrease of tissue growth through diminished TGFβ1 expression and stimulation of FGFR1 and MMP-2 suggests a disbalance of tissue remodelation in the megaureter wall.
Collapse
Affiliation(s)
- Anna Junga
- Anna Junga, Institute of Anatomy and
Anthropology, Riga Stradins University, Kronvalda bulv 9, Riga LV-1010, Latvia.
E-mail:
| | - Ivo Siņicins
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| | - Aigars Pētersons
- Department of Children Surgery, Riga Stradins
University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| |
Collapse
|
12
|
Guo Y, Xiao Y, Guo H, Zhu H, Chen D, Wang J, Deng J, Lan J, Liu X, Zhang Q, Bai Y. The anti-dysenteric drug fraxetin enhances anti-tumor efficacy of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation. Aging (Albany NY) 2021; 13:18545-18563. [PMID: 34320467 PMCID: PMC8351699 DOI: 10.18632/aging.203301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Fraxetin, a natural product isolated and purified from the bark of Fraxinus bungeana A.DC., has anti-inflammatory, analgesic, and anti-dysenteric activities. This study aimed to investigate the anti-tumor effects of fraxetin in pancreatic ductal adenocarcinoma (PDA). The effects of fraxetin on the malignant biological behavior of PDA were evaluated. Besides, the effects of fraxetin on the sensitivity of PCCs to gemcitabine, angiogenesis, the epithelial-mesenchymal transition (EMT), glucose metabolism, reactive oxygen species (ROS), and STAT3 activity were analyzed. By reversing the EMT, fraxetin suppressed proliferation, invasion, and migration, and induced mitochondrial-dependent apoptosis in PCCs. Also, treatment with fraxetin inhibited PDA growth and metastasis in nude mouse models. Furthermore, fraxetin made PCCs more sensitive to the chemotherapy drug gemcitabine. Mechanically, fraxetin treatment suppressed oncogenic KRAS-triggered STAT3 activation in PCCs and PDA tissues. Fraxetin shows significant interactions with STAT3 Src Homology 2 (SH2) domain residues, thereby preventing its homo-dimer formation, which then blocks the activation of downstream signal pathways. The anti-tumor activity of fraxetin in PDA was functionally rescued by a STAT3 activator colivelin. As a result, fraxetin hindered hypoxia-induced angiogenesis by decreasing HIF-1α and VEGFA expression, controlled glucose metabolism by reducing GLUT1 expression, inhibited the EMT by blocking the Slug-E-cadherin axis, and drove ROS-mediated apoptosis by regulating the STAT3-Ref1 axis. In conclusion, fraxetin enhances the anti-tumor activity of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dong Chen
- The Sixth People’s Hospital of Wenzhou City, Wenzhou 325000, China
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Lan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Center for Health Assessment, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiyu Zhang
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
14
|
The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch Biochem Biophys 2020; 698:108743. [PMID: 33382998 DOI: 10.1016/j.abb.2020.108743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
Collapse
|
15
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
16
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
17
|
Tang S, Wang Y, Xie G, Li W, Chen Y, Liang J, Liu P, Song F, Zhou J. Regulation of Ptch1 by miR-342-5p and FoxO3 Induced Autophagy Involved in Renal Fibrosis. Front Bioeng Biotechnol 2020; 8:583318. [PMID: 33251198 PMCID: PMC7673434 DOI: 10.3389/fbioe.2020.583318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of renal fibrosis (RF) is not well understood. Here, we performed an integrative database analysis of miRNAs and mRNAs to discover the major regulatory pathway in RF. Putative miRNAs and mRNAs involved in RF in unilateral ureteral obstruction (UUO) model mice were extracted and analyzed using the Gene Expression Omnibus (GEO) database. The bioinformatics analysis suggested that Ptch1 expression is regulated by miR-342-5p and FoxO3. Then real-time PCR, Western blot, Fluorescence in situ hybridization were done to confirm the hypothesis. Sixty-three differentially expressed miRNAs (DE-miRNAs) in GSE118340, 141 DE-miRNAs in GSE42716, and 183 DE-mRNAs in GSE69101 were identified. Various bioinformatic analyses revealed miR-342-5p as a strong candidate regulator in RF. We also predicted that miR-342-5p targets Ptch1 and that FoxO3 is the transcription factor of Ptch1. We also observed that TGF-β1 upregulated the expression of miR-342-5p and inhibited the expression of FoxO3 and Ptch1 in TCMK-1 cells. Furthermore, downregulation of miR-342-5p reversed the inhibitory effect of TGF-β1 on the expression of Ptch1 in TCMK-1 cells, while downregulation of FoxO3 promoted the inhibitory effect of TGF-β1 on the expression of Ptch1. Additionally, downregulation of Ptch1 increased TGF-β1-induced autophagy, as evidenced by an increase in the number of GFP-LC3 puncta and the increased protein expression of SOSTM1/p62 and LC3II/LC3I. Our findings showed that Ptch1 expression is negatively regulated by miR-342-5p and positively regulated by FoxO3, and downregulation of Ptch1 induced autophagy in TGF-β1-stimulated TCMK-1 cells. These findings will further our understanding of the molecular mechanisms of RF and provide useful novel therapeutic targets for RF.
Collapse
|
18
|
Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020; 11:569322. [PMID: 33041867 PMCID: PMC7522479 DOI: 10.3389/fphys.2020.569322] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is described as the process in which injured renal tubular epithelial cells undergo a phenotype change, acquiring mesenchymal characteristics and morphing into fibroblasts. Initially, it was widely thought of as a critical mechanism of fibrogenesis underlying chronic kidney disease. However, evidence that renal tubular epithelial cells can cross the basement membrane and become fibroblasts in the renal interstitium is rare, leading to debate about the existence of EMT. Recent research has demonstrated that after injury, renal tubular epithelial cells acquire mesenchymal characteristics and the ability to produce a variety of profibrotic factors and cytokines, but remain attached to the basement membrane. On this basis, a new concept of “partial epithelial-mesenchymal transition (pEMT)” was proposed to explain the contribution of renal epithelial cells to renal fibrogenesis. In this review, we discuss the concept of pEMT and the most recent findings related to this process, including cell cycle arrest, metabolic alternation of epithelial cells, infiltration of immune cells, epigenetic regulation as well as the novel signaling pathways that mediate this disturbed epithelial-mesenchymal communication. A deeper understanding of the role and the mechanism of pEMT may help in developing novel therapies to prevent and halt fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
19
|
Xu Y, Wang J, Ding H. Regulation of epithelial-mesenchymal transition via sonic hedgehog/glioma-associated oncogene homolog 1 signaling pathway in peritoneal mesothelial cells. Cell Biol Int 2020; 44:1691-1700. [PMID: 32298032 DOI: 10.1002/cbin.11363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (Shh) signaling regulating epithelial-mesenchymal transition (EMT) in cultured rat peritoneal mesothelial cells (PMCs) remains an under-investigated topic. The current study aimed to elucidate the role of Shh signaling in the regulation of EMT in PMCs to attenuate peritoneal injury, with the view of enhancing the efficacy of peritoneal dialysis (PD). PMCs were initially extracted from male Wistar rats using pancreatic enzyme digestion. The expression of Shh and glioma-associated oncogene homolog (Gli1) was quantitatively analyzed using the reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Migration of PMCs was determined using Transwell assay. The expression of Shh, Gli1, and EMT markers including α-smooth muscle actin (α-SMA), fibronectin, collagen I, snail1, and E-cadherin was examined by RT-qPCR, western blot analysis, and immunofluorescence respectively. High glucose induction was identified to promote cell migration and increase the expression of Shh and Gli1 in a dose- and time-dependent manner in rat PMCs. Cyclopamine (CPN) was observed to block the Shh signaling induced by high glucose, accompanied by cell migration inhibition, decreased expression of α-SMA, fibronectin, collagen I and snail1 as well as increased expression of E-cadherin. Altogether, overexpression of Gli1 by transfected Gli1 plasmid promotes cell migration and upregulates α-SMA, fibronectin, Snail1, and collagen I expression, while downregulating E-cadherin expression. Shh/Gli1 signaling is important in mediating EMT in rat PMCs, which provides a potential novel therapeutic approach for clinical investigation on renal failure treatment.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Wang
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ding
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Ren D, Luo J, Li Y, Zhang J, Yang J, Liu J, Zhang X, Cheng N, Xin H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153163. [PMID: 31901891 DOI: 10.1016/j.phymed.2019.153163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Renal interstitial fibrosis is a common pathway through which chronic kidney disease progresses to end-stage renal disease. There are currently no effective drugs available to treat kidney fibrosis, so traditional medicine is likely to be a candidate. The therapeutic potential of saikosaponin B2 (SSB2), a biologically active ingredient of Radix Bupleuri, on renal fibrosis has not been reported. METHODS A unilateral ureteral obstruction (UUO) model was conducted to induce renal interstitial fibrosis in mice. SSB2's effect was valuated by histological staining and exploring the changes in expression of relative proteins and mRNAs. A conditional medium containing sonic hedgehog variant protein stimulating normal rat kidney interstitial fibroblast cells (NRK-49F) was used in an in vitro model to determine the possible mechanism. The molecular target of SSB2 was verified using several mutation plasmids. RESULTS SSB2 administration reduced kidney injury and alleviated interstitial fibrosis by decreasing excessive accumulation of extracellular matrix components in UUO mice. It could also reduce the expression of α-SMA, fibronectin and Gli1, a crucial molecule of the hedgehog (Hh) signaling pathway both in vivo and in vitro. In NIH-3T3 cells simulated by conditional medium containing sonic hedgehog variant protein, SSB2 showed the ability to decrease the expression of Gli1 and Ptch1 mRNA. Using a dual-luciferase reporter assay, SSB2 suppressed the Gli-luciferase reporter activity in NIH-3T3 cells, and the IC50 was 0.49 μM, but had no effect on the TNF-α/NF-κB and Wnt/β-catenin signaling pathways, indicating the inhibition selectivity on the Hh signaling pathway. Furthermore, SSB2 failed to inhibit the Hh pathway activity evoked by ectopic expression of Gli2ΔN and Smo D473H, suggesting that SSB2 might potentially act on smoothened receptors. CONCLUSION SSB2 could attenuate renal fibrosis and decrease fibroblast activation by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Dadui Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jia Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiahong Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
21
|
Liu X, Sun N, Mo N, Lu S, Song E, Ren C, Li Z. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct 2019; 10:3782-3797. [PMID: 31180394 DOI: 10.1039/c9fo00373h] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quercetin is the most ubiquitous flavonoid in fruits, herbs, vegetables and products made from them. It shows the potential to inhibit the progression of kidney fibrosis and the epithelial to mesenchymal transition (EMT) of the renal tubular system, but the molecular mechanism behind this is still not known. In our study, we explored the effect of quercetin treatment on extracellular matrix (ECM) deposition and stimulation of the EMT in vitro and in vivo and tried to deduce the mechanisms regulating these effects. In rats having unilateral ureter obstruction (UUO), quercetin treatment significantly prevented renal function decline. Quercetin reduced the TGF-β1 expression and inhibited the epithelial cell to mesenchymal cell phenotypic switch, as well as ECM deposition in rats with UUO. In cultured epithelial cells of the renal tubular region (NRK-52E), quercetin markedly ameliorated the EMT and ECM synthesis induced by TGF-β1. Activation of the Hedgehog pathway was closely related to EMT induction. Quercetin effectively suppressed the hyperactive Hedgehog pathway in NRK-52E cells treated with TGF-β1 and in kidney obstructed rats, which reduced the EMT, ECM deposition and cellular proliferation. Moreover, we examined certain transcriptional factors (slug, snail, ZEB-1 and twist) that govern the E-cadherin expression at the level of transcription. The results unveiled that the four transcriptional factors were highly repressed in NRK-52E cells treated with TGF-β1 and also in obstructed kidneys by quercetin-mediated inhibition. Therefore, these outcomes indicate that quercetin could alleviate fibrosis and the EMT in vitro and in vivo by inhibiting the activation of Hedgehog signaling and could act as a therapeutic agent for patients having several kinds of renal fibrotic diseases.
Collapse
Affiliation(s)
- Xianghua Liu
- Scientific Research and Experiment Center, Henan University of Chinese Medicine, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhou D, Fu H, Han Y, Zhang L, Liu S, Lin L, Stolz DB, Liu Y. Sonic hedgehog connects podocyte injury to mesangial activation and glomerulosclerosis. JCI Insight 2019; 4:130515. [PMID: 31647783 PMCID: PMC6948867 DOI: 10.1172/jci.insight.130515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 01/11/2023] Open
Abstract
Glomerular disease is characterized by proteinuria and glomerulosclerosis, two pathologic features caused by podocyte injury and mesangial cell activation, respectively. However, whether these two events are linked remains elusive. Here, we report that sonic hedgehog (Shh) is the mediator that connects podocyte damage to mesangial activation and glomerulosclerosis. Shh was induced in glomerular podocytes in various models of proteinuric chronic kidney diseases (CKD). However, mesangial cells in the glomeruli, but not podocytes, responded to hedgehog ligand. In vitro, Shh was induced in podocytes after injury and selectively promoted mesangial cell activation and proliferation. In a miniorgan culture of isolated glomeruli, Shh promoted mesangial activation but did not affect the integrity of podocytes. Podocyte-specific ablation of Shh in vivo exhibited no effect on proteinuria after adriamycin injection but hampered mesangial activation and glomerulosclerosis. Consistently, pharmacologic blockade of Shh signaling decoupled proteinuria from glomerulosclerosis. In humans, Shh was upregulated in glomerular podocytes in patients with CKD and its circulating level was associated with glomerulosclerosis but not proteinuria. These studies demonstrate that Shh mechanistically links podocyte injury to mesangial activation in the pathogenesis of glomerular diseases. Our findings also illustrate a crucial role for podocyte-mesangial communication in connecting proteinuria to glomerulosclerosis.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Han
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Shijia Liu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun Signal 2019; 17:145. [PMID: 31718671 PMCID: PMC6849313 DOI: 10.1186/s12964-019-0455-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Notch1 signalling is a stem-cell-related pathway that is essential for embryonic development, tissue regeneration and organogenesis. However, the role of Notch1 in the formation of myofibroblasts and fibrosis in kidneys following injury remains unknown. Methods The activity of Notch1 signalling was evaluated in fibrotic kidneys in CKD patients and in ureteral obstructive models in vivo and in cultured fibroblasts and TECs in vitro. In addition, the crosstalk of Notch1 with TGF-β1/Smad2/3 signalling was also investigated. Results Notch1 activity was elevated in fibrotic kidneys of rat models and patients with chronic kidney disease (CKD). Further study revealed that epithelial and interstitial Notch1 activity correlated with an α-SMA-positive myofibroblastic phenotype. In vitro, injury stimulated epithelial Notch1 activation and epithelial-mesenchymal transition (EMT), resulting in matrix deposition in tubular epithelial cells (TECs). Additionally, interstitial Notch1 activation in association with fibroblast-myofibroblast differentiation (FMD) in fibroblasts mediated a myofibroblastic phenotype. These TGF-β1/Smad2/3-dependent phenotypic transitions were abolished by Notch1 knockdown or a specific antagonist, DAPT, and were exacerbated by Notch1 overexpression or an activator Jagged-1-Fc chimaera protein. Interestingly, as a major driving force behind the EMT and FMD, TGF-β1, also induced epithelial and interstitial Notch1 activity, indicating that TGF-β1 may engage in crosstalk with Notch1 signalling to trigger fibrogenesis. Conclusion These findings suggest that epithelial and interstitial Notch1 activation in kidneys following injury contributes to the myofibroblastic phenotype and fibrosis through the EMT in TECs and to the FMD in fibroblasts by targeting downstream TGF-β1/Smad2/3 signalling.
Collapse
|
24
|
Abstract
Complex disease such as cancer is often caused by genetic mutations that eventually alter the signal flow in the intra-cellular signaling network and result in different cell fate. Therefore, it is crucial to identify control targets that can most effectively block such unwanted signal flow. For this purpose, systems biological analysis provides a useful framework, but mathematical modeling of complicated signaling networks requires massive time-series measurements of signaling protein activity levels for accurate estimation of kinetic parameter values or regulatory logics. Here, we present a novel method, called SFC (Signal Flow Control), for identifying control targets without the information of kinetic parameter values or regulatory logics. Our method requires only the structural information of a signaling network and is based on the topological estimation of signal flow through the network. SFC will be particularly useful for a large-scale signaling network to which parameter estimation or inference of regulatory logics is no longer applicable in practice. The identified control targets have significant implication in drug development as they can be putative drug targets.
Collapse
|
25
|
Zhuo H, Zhou D, Wang Y, Mo H, Yu Y, Liu Y. Sonic hedgehog selectively promotes lymphangiogenesis after kidney injury through noncanonical pathway. Am J Physiol Renal Physiol 2019; 317:F1022-F1033. [PMID: 31411078 DOI: 10.1152/ajprenal.00077.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kidney fibrosis is associated with an increased lymphangiogenesis, characterized by the formation and expansion of new lymphatic vessels. However, the trigger and underlying mechanism responsible for the growth of lymphatic vessels in diseased kidney remain poorly defined. Here, we report that tubule-derived sonic hedgehog (Shh) ligand is a novel lymphangiogenic factor that plays a crucial role in mediating lymphatic endothelial cell proliferation and expansion. Shh was induced in renal tubular epithelium in various models of fibrotic chronic kidney disease, and this was accompanied by an expansion of lymphatic vessels in adjacent areas. In vitro, Shh selectively promoted the proliferation of human dermal lymphatic endothelial cells (HDLECs) but not human umbilical vein endothelial cells, as assessed by cell counting, MTT assay, and bromodeoxyuridine incorporation. Shh also induced the expression of vascular endothelial growth factor receptor-3, cyclin D1, and proliferating cell nuclear antigen in HDLECs. Shh did not affect the expression of Gli1, the downstream target and readout of canonical hedgehog signaling, but activated ERK-1/2 in HDLECs. Inhibition of Smoothened with small-molecule inhibitor or blockade of ERK-1/2 activation abolished the lymphatic endothelial cell proliferation induced by Shh. In vivo, inhibition of Smoothened also repressed lymphangiogenesis and attenuated renal fibrosis. This study identifies Shh as a novel mitogen that selectively promotes lymphatic, but not vascular, endothelial cell proliferation and suggests that tubule-derived Shh plays an essential role in mediating lymphangiogenesis after kidney injury.
Collapse
Affiliation(s)
- Hui Zhuo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hongyan Mo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ying Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Lin X, Zhang Y, Pan Y, He S, Dai Y, Zhu B, Wei C, Xin L, Xu W, Xiang C, Zhang S. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2. Biol Reprod 2019; 98:480-490. [PMID: 29329377 DOI: 10.1093/biolre/ioy005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis, which ultimately leads to menstrual abnormalities, infertility, and recurrent miscarriages. The Shh/Gli2 pathway plays a critical role in tissue fibrogenesis and regeneration; Gli2 activation induces profibrogenic effects in various tissues, such as the liver and kidney. However, the role of Gli2 in endometrial fibrosis remains unknown. The purpose of this study was to test the hypothesis that activated Gli2 promotes endometrial fibrosis. Endometrial samples from moderate and severe IUA patients exhibited significantly enhanced expression of Gli2 compared with normal endometrial samples and mild IUA samples. Transfection with overactive Gli2 plasmids induced higher fibrosis-related protein expression, while blocking Gli2 signaling with cyclopamine caused the opposite effect in endometriotic stromal cells (ESCs), including inducing cell-cycle arrest. Menstrual-derived stem cell conditioned medium (MenSCs-CM) reduced endometrial fibrosis by reducing Gli2 protein levels and causing cell-cycle arrest in ESCs through granulocyte-colony stimulating factor (G-CSF). The effect was weakened after neutralization with a G-CSF antibody. Gli2 overexpression reduced the effects of MenSC-CM and G-CSF on fibrosis and cell-cycle progression in vitro. The antifibrotic effect of G-CSF was also observed in murine model. These findings demonstrate that Gli2 signaling promotes endometrial fibrosis, and the inhibition of Gli2 through MenSCs-secreted G-CSF may be of therapeutic value for managing endometrial fibrosis.
Collapse
Affiliation(s)
- Xiaona Lin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanling Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Shilin He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongdong Dai
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingqing Zhu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Cheng Wei
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Liaobing Xin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Wenzhi Xu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chunsheng Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW, Kim HS. Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2. Int J Mol Sci 2019; 20:ijms20071554. [PMID: 30925687 PMCID: PMC6479343 DOI: 10.3390/ijms20071554] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
p300/CBP-associated factor (PCAF), a histone acetyltransferase, is involved in many cellular processes such as differentiation, proliferation, apoptosis, and reaction to cell damage by modulating the activities of several genes and proteins through the acetylation of either the histones or transcription factors. Here, we examined a pathogenic role of PCAF and its potential as a novel therapeutic target in the progression of renal tubulointerstitial fibrosis induced by non-diabetic unilateral ureteral obstruction (UUO) in male C57BL/6 mice. Administration of garcinol, a PCAF inhibitor, reversed a UUO-induced increase in the renal expression of total PCAF and histone 3 lysine 9 acetylation and reduced positive areas of trichrome and α-smooth muscle actin and collagen content. Treatment with garcinol also decreased mRNA levels of transforming growth factor-β, matrix metalloproteinase (MMP)-2, MMP-9, and fibronectin. Furthermore, garcinol suppressed nuclear factor-κB (NF-κB) and pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6, whereas it preserved the nuclear expression of nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and levels of Nrf2-dependent antioxidants including heme oxygense-1, catalase, superoxide dismutase 1, and NAD(P)H:quinone oxidoreductase 1. These results suggest that the inhibition of inordinately enhanced PCAF could mitigate renal fibrosis by redressing aberrant balance between inflammatory signaling and antioxidant response through the modulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
28
|
Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis 2018; 9:1126. [PMID: 30425237 PMCID: PMC6233178 DOI: 10.1038/s41419-018-1157-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Renal fibrosis, especially tubulointerstitial fibrosis, is the inevitable outcome of all progressive chronic kidney diseases (CKDs) and exerts a great health burden worldwide. For a long time, interests in renal fibrosis have been concentrated on fibroblasts and myofibroblasts. However, in recent years, growing numbers of studies have focused on the role of tubular epithelial cells (TECs). TECs, rather than a victim or bystander, are probably a neglected mediator in renal fibrosis, responding to a variety of injuries. The maladaptive repair mechanisms of TECs may be the key point in this process. In this review, we will focus on the role of TECs in tubulointerstitial fibrosis. We will follow the fate of a tubular cell and depict the intracellular changes after injury. We will then discuss how the repair mechanism of tubular cells becomes maladaptive, and we will finally discuss the intercellular crosstalk in the interstitium that ultimately proceeds tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China
- Shanghai Medical College, Fudan University, 200032, Shanghai, P.R. China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China.
- Shanghai Key Laboratory of Organ Transplantation, 200032, Shanghai, P. R. China.
| |
Collapse
|
29
|
Wei Q, Liu Q, Ren C, Liu J, Cai W, Zhu M, Jin H, He M, Yu J. Effects of bradykinin on TGF‑β1‑induced epithelial‑mesenchymal transition in ARPE‑19 cells. Mol Med Rep 2018; 17:5878-5886. [PMID: 29436636 PMCID: PMC5866033 DOI: 10.3892/mmr.2018.8556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the effects of bradykinin (BK) on an epithelial-mesenchymal transition (EMT) model in retinal pigment epithelium (RPE) cells through exposure to transforming growth factor‑β1 (TGF‑β1). The aim was to improve the effect of BK on proliferative vitreoretinopathy (PVR) progression, and to find a novel method of clinical prevention and treatment for PVR. The morphology of ARPE‑19 cells was observed using an inverted phase‑contrast microscope. A Cell Counting Kit‑8 was used to assess the effects of TGF‑β1 on the proliferation of ARPE‑19 cells. Western blotting and immunofluorescence were used to detect the expression levels of the epithelial marker E‑cadherin, mesenchymal markers α‑smooth muscle actin (SMA) and vimentin, and phosphorylated (p) mothers against decapentaplegic homolog (Smad)3 and Smad7 of the TGF/Smad signaling pathway. Wound healing tests and Transwell assays were performed to detect cell migration ability. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was performed to detect the expression levels of pSmad3 and Smad7 in the TGF/Smad signaling pathway. The results revealed that the addition of 10 ng/ml TGF‑β1 resulted in the expression of factors associated with EMT in ARPE‑19 cells. BK decreased the expression levels of the mesenchymal markers α‑SMA and vimentin, and increased the expression of the epithelial marker E‑cadherin. BK decreased cell migration in TGF‑β1‑induced EMT. These effects were reversed by HOE‑140, a specific BK 2 receptor antagonist. BK significantly downregulated the expression of pSmad3 and upregulated the expression of Smad7 in TGF‑β1‑treated ARPE‑19 cells, and the protective alterations produced by BK were inhibited by HOE‑140. In conclusion, 10 ng/ml TGF‑β1 resulted in EMT in ARPE‑19 cells and BK served a negative role in TGF‑β1‑induced EMT. BK had effects in TGF‑β1‑induced EMT by upregulating the expression of Smad7 and downregulating the expression of pSmad3 in TGF‑β/Smad signaling pathway, indicating that BK may be a novel and effective therapy for PVR.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Qingyu Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Junling Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Mengmei He
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
30
|
Diabetes Aggravates Post-ischaemic Renal Fibrosis through Persistent Activation of TGF-β 1 and Shh Signalling. Sci Rep 2017; 7:16782. [PMID: 29196746 PMCID: PMC5711892 DOI: 10.1038/s41598-017-16977-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a risk factor for acute kidney injury (AKI) and chronic kidney disease (CKD). Diabetic patients are easy to progress to CKD after AKI. Currently, activation of fibrotic signalling including transforming growth factor-β1 (TGF-β1) is recognized as a key mechanism in CKD. Here, we investigated the influence of diabetes on CKD progression after AKI by using a unilateral renal ischaemia–reperfusion injury (IRI) model in diabetic mice. IRI induced extensive tubular injury, fibrosis and lymphocyte recruitment at 3 weeks after IRI, irrespective of diabetes. However, diabetes showed sustained tubular injury and markedly increased fibrosis and lymphocyte recruitment compared with non-diabetes at 5 week after IRI. The mRNAs and proteins related to TGF-β1 and sonic hedgehog (Shh) signalling were significantly higher in diabetic versus non-diabetic IRI kidneys. During the in vitro study, the hyperglycaemia induced the activation of TGF-β1 and Shh signalling and also increased profibrogenic phenotype change. However, hyperglycaemic control with insulin did not improve the progression of renal fibrosis and the activation of TGF-β1 and Shh signalling. In conclusion, diabetes promotes CKD progression of AKI via activation of the TGF-β1 and Shh signalling pathways, but insulin treatment was not enough for preventing the progression of renal fibrosis.
Collapse
|
31
|
|
32
|
Wang S, Wu L, Du L, Lu H, Chen B, Bai Y. Reduction in miRNA-125b-5p levels is associated with obstructive renal injury. Biomed Rep 2017; 6:449-454. [PMID: 28413644 DOI: 10.3892/br.2017.875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
Obstructive renal injury is a common disease that leads to progressive glomerulosclerosis, tubulointerstitial fibrosis and loss of renal function. MicroRNAs (miRNAs/miRs) are small non-coding molecules that may be involved in the progression of many renal diseases. The aim of the present study was to investigate the roles of miRNAs, including miR-125b, miR-326 and miR-324p, in obstructive renal injury. Blood samples were collected from 91 patients with ureteral obstruction and 76 controls to examine renal function. In addition, the levels of miR-125b, miR-326 and miR-324p in patients with ureteral obstruction and controls were determined by the reverse transcription-quantitative polymerase chain reaction. Furthermore, the relationship between miRNA levels and renal function was evaluated by the Mann-Whitney U test. Upregulated levels of serum creatinine (SCr) in patients with ureteral obstruction were observed, identifying the injury of renal function. Although the expression levels of miR-324-5p [1.003 (0.391-2.279) vs. 0.934 (0.579-1.539), P=0.300] and miR-326 [0.840 (0.180-2.020) vs. 0.949 (0.507-1.702), P=0.050] presented no significant difference, the levels of miR-125b-5p [0.755 (0.210-2.110) vs. 0.960 (0.390-1.770), P=0.002] in patients with ureteral obstruction were significantly lower than those in controls. These results indicated that there is a stronger correlation of miR-125b-5p with the occurrence of ureteral obstruction, especially for the female (P=0.0171) and elderly (P=0.0142). Furthermore, the levels of miR-125b-5p (r=-0.175, P=0.038) were closely associated with the serum levels of SCr, suggesting a key role of miR-125b-5p in renal dysfunction. Thus, these findings suggested that miR-125b-5p in patients with ureteral obstruction correlated with renal function, and may be a potential biomarker for obstructive renal injury.
Collapse
Affiliation(s)
- Silu Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lianfeng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Linyong Du
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yongheng Bai
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
Lan X, Wen H, Cheng K, Plagov A, Marashi Shoshtari SS, Malhotra A, Singhal PC. Hedgehog pathway plays a vital role in HIV-induced epithelial-mesenchymal transition of podocyte. Exp Cell Res 2017; 352:193-201. [PMID: 28159470 DOI: 10.1016/j.yexcr.2017.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
HIV-associated nephropathy (HIVAN) is characterized by heavy proteinuria, rapidly progressive renal failure, and distinct morphological features in the kidney. HIV-induced epithelial-mesenchymal transition (EMT) is critically important for the progression of kidney injury. In this study, we tested the role of hedgehog pathway in the HIV-induced EMT and fibrosis of kidney. We used the Tg26 mice, the abundantly used HIVAN mouse model, to investigate the activation of hedgehog pathway by HIV. Western blotting and real time PCR results showed that renal tissue expression of hedgehog pathway related molecules, including hedgehog homologous (Shh, Ihh, Dhh), PTCH, and Gli1, were increased in HIVAN (Tg26) mice; while immunofluorescent staining displayed localization PTCH expression in podocytes. For in vitro studies, we used recombinant sonic hedgehog (Shh) and HIV for their expression by podocytes. Both the methods activated the hedgehog pathway, enhanced the expression of EMT markers, and decreased impermeability. Overexpression of Gli1 by human podocytes also augmented their expression of EMT markers. On the other hand, the blockade of hedgehog pathway with Gant 58, a specific blocker for Gli1-induced transcription, dramatically decreased HIV-induced podocyte EMT and permeability. These results indicate that hedgehog pathway plays an important role in HIV-induced podocyte injury. The present study provides mechanistical insight into a new target for therapeutic strategy.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA.
| | - Hongxiu Wen
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA
| | - Kang Cheng
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA
| | - Andrei Plagov
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA
| | | | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA
| | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra Northwell Medical School, NY, USA.
| |
Collapse
|