1
|
Pietrobono D, Russo L, Bertilacchi MS, Marchetti L, Martini C, Giacomelli C, Trincavelli ML. Extracellular adenosine oppositely regulates the purinome machinery in glioblastoma and mesenchymal stem cells. IUBMB Life 2024; 76:1234-1251. [PMID: 39134088 PMCID: PMC11580377 DOI: 10.1002/iub.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.
Collapse
Affiliation(s)
| | - Lara Russo
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | | | | |
Collapse
|
2
|
Vuerich M, Nguyen DH, Ferrari D, Longhi MS. Adenosine-mediated immune responses in inflammatory bowel disease. Front Cell Dev Biol 2024; 12:1429736. [PMID: 39188525 PMCID: PMC11345147 DOI: 10.3389/fcell.2024.1429736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Du Hanh Nguyen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Zou F, Wei J, Zhuang J, Liu Y, Tan J, Huang X, Liu T. Moderate expression of CD39 in GPC3-CAR-T cells shows high efficacy against hepatocellular carcinoma. Front Med 2024; 18:708-720. [PMID: 38833102 DOI: 10.1007/s11684-024-1071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 06/06/2024]
Abstract
CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.
Collapse
Affiliation(s)
- Fan Zou
- Guangdong Cardiovsacular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, 510080, China
| | - Jialiang Wei
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jialang Zhuang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, 518055, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518055, China
| | - Yafang Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Department of Laboratory Medicine/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jizhou Tan
- Department of Stomatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xianzhang Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Department of Laboratory Medicine/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Ting Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Department of Laboratory Medicine/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Zhang T, Fu W, Liu D, He Y, Wang J, Ma T. ADENOSINE INFLUENCES FOXP3 EXPRESSION OF T REGS VIA THE A2AR/CREB PATHWAY IN A MOUSE MODEL OF SEPSIS. Shock 2024; 61:924-933. [PMID: 38010286 DOI: 10.1097/shk.0000000000002281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT The adenosine concentration and forkhead box protein (Foxp3) expression in T regulatory cells (T regs ) are increased during sepsis. However, the mechanism by which adenosine induces Foxp3 expression is incompletely understood. A cecal ligation and puncture (CLP) model was constructed using C57BL/J mice. The plasma adenosine concentration and Foxp3 expression in splenic T regs were increased consistently for 15 days after sepsis onset. Analysis of the mean fluorescence intensity of Foxp3 and adenosine concentration in the same mice revealed a linear correlation. In the CLP model, adenosine 2a receptor (A2aR) blockade inhibited Foxp3 expression in T regs . In vitro activation of A2aR promoted Foxp3 expression in T regs and facilitated secretion of extracellular vesicles. Transcriptome sequencing revealed that A2aR blockade led to changes in cyclic adenosine monophosphate response element-binding protein (CREB) transcription in T regs in our sepsis model. Use of adenosine or A2aR agonists promoted CREB expression, CREB phosphorylation at S133, T reg expression of Foxp3, and enhanced inhibition of proliferation of cluster of differentiation (CD)4+ lymphocytes. A2aR blockade or inhibition of CREB expression inhibited Foxp3 expression in T regs . In the CLP model, use of CREB inhibitors could inhibit Foxp3 expression and reduce the bacterial load. In summary, adenosine in sepsis promotes CREB phosphorylation via A2aR which, in turn, upregulates Foxp3 expression in T regs .
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
5
|
Rong Y, Tang MZ, Liu SH, Li XF, Cai H. Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer. World J Gastrointest Oncol 2024; 16:436-457. [PMID: 38425388 PMCID: PMC10900145 DOI: 10.4251/wjgo.v16.i2.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM To investigate the disease relevance of COVID-19 in liver cancer. METHODS Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
6
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
7
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
8
|
Wang Y, Shen Z, Mo S, Dai L, Song B, Gu W, Ding X, Zhang X. Construction and validation of a novel ten miRNA-pair based signature for the prognosis of clear cell renal cell carcinoma. Transl Oncol 2022; 25:101519. [PMID: 35998436 PMCID: PMC9421317 DOI: 10.1016/j.tranon.2022.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most predominate pathological subtype of renal cell carcinoma, causing a recurrence or metastasis rate as high as 20% to 40% after operation, for which effective prognostic signature is urgently needed. METHODS The mRNA and miRNA profiles of ccRCC specimens were collected from the Cancer Genome Atlas. MiRNA-pair risk score (miPRS) for each miRNA pair was generated as a signature and validated by univariate and multivariate Cox proportional hazards regression analysis. Functional enrichment was performed, and immune cells infiltration, as well as tumor mutation burden (TMB), and immunophenoscore (IPS) were evaluated between high and low miPRS groups. Target gene-prediction and differentially expressed gene-analysis were performed based on databases of miRDB, miRTarBase, and TargetScan. Multivariate Cox proportional hazards regression analysis was adopted to establish the prognostic model and Kaplan-Meier survival analysis was performed. FINDINGS A novel 10 miRNA-pair based signature was established. Area under the time-dependent receiver operating curve proved the performance of the signature in the training, validation, and testing cohorts. Higher TMB, as well as the higher CTLA4-negative PD1-negative IPS, were discovered in high miPRS patients. A prognostic model was built based on miPRS (1 year-, 5 year-, 10 year- ROC-AUC=0.92, 0.84, 0.82, respectively). INTERPRETATION The model based on miPRS is a novel and valid tool for predicting the prognosis of ccRCC. FUNDING This study was supported by research grants from the China National Natural Scientific Foundation (81903972, 82002018, and 82170752) and Shanghai Sailing Program (19YF1406700 and 20YF1406000).
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Leijie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Biao Song
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Zhao Y, Zhang H, Zhang Y, Fang Z, Xu C. Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats. ACS Chem Neurosci 2022; 13:2298-2308. [PMID: 35838172 DOI: 10.1021/acschemneuro.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Handi Zhang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Yinnan Zhang
- Rehabilitation Division, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Zeman Fang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Chongtao Xu
- Shantou University Mental Health Center, Shantou 515041, Guangdong, P. R. China
| |
Collapse
|
10
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|
11
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
12
|
Cui XH, Peng QJ, Li RZ, Lyu XJ, Zhu CF, Qin XH. Cell division cycle associated 8: A novel diagnostic and prognostic biomarker for hepatocellular carcinoma. J Cell Mol Med 2021; 25:11097-11112. [PMID: 34741389 PMCID: PMC8650035 DOI: 10.1111/jcmm.17032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan‐Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription‐quantitative polymerase chain reaction (qRT‐PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK‐8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan‐Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e‐05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression‐free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Han Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Ju Peng
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ren-Zhi Li
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xia-Jie Lyu
- Weifang Medical University, Weifang, Shandong, China
| | - Chun-Fu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xi-Hu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Is the regulation by miRNAs of NTPDase1 and ecto-5'-nucleotidase genes involved with the different profiles of breast cancer subtypes? Purinergic Signal 2021; 18:123-133. [PMID: 34741235 DOI: 10.1007/s11302-021-09824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.
Collapse
|
14
|
Zhu Y, Zhuang Z, Wu Q, Lin S, Zhao N, Zhang Q, Xie L, Yu S. CD39/CD73/A2a Adenosine Metabolic Pathway: Targets for Moxibustion in Treating DSS-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:661-676. [PMID: 33683190 DOI: 10.1142/s0192415x21500300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.
Collapse
Affiliation(s)
- Yuanbing Zhu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Zhiqi Zhuang
- People's Hospital of Pengzhou, Pengzhou, Sichuan 611930, P. R. China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - Sirui Lin
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Na Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Qun Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Lushuang Xie
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Shuguang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| |
Collapse
|
15
|
Wang D, Wang J, Zheng X. Genes and pathways of regulatory T cells regulated by adenosine A2A receptor: A bioinformatics study. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1999861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jingyi Wang
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xi Zheng
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
17
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
18
|
Jeske SS, Theodoraki MN, Boelke E, Laban S, Brunner C, Rotter N, Jackson EK, Hoffmann TK, Schuler PJ. Adenosine production in mesenchymal stromal cells in relation to their developmental status. HNO 2020; 68:87-93. [PMID: 31915882 DOI: 10.1007/s00106-019-00805-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are multipotent progenitor cells found in the tumor microenvironment. They have an innate and regulatory immune activity, and they are able to produce immunosuppressive adenosine (ADO) via their ectonucleotidases CD39 and CD73. The present study explores ADO metabolism of MSC in relation to their developmental status. METHODS We analyzed MSC (n = 6), chondrogenic progenitor cells (CPC, n = 8), and chondrocytes (n = 8) for surface markers by flow cytometry. The ability to hydrolyze ATP and to produce ADO was tested by luminescence assays and mass spectrometry. RESULTS Significant differences in the surface marker expression of MSC, CPC, and chondrocytes were seen. While the expression of CD73 was observed to be the same on all cell types, the expression of the ectonucleotidase CD39 was significantly increased on MSC. Consequently, production of ADO was most abundant in MSC as compared with chondrocytes and CPC. CONCLUSION Mesenchymal stromal cells are potent producers of ADO and are, therefore, able to increase immunosuppression. As MSC differentiate into chondrocytes, they lose this ability and may take on other functions.
Collapse
Affiliation(s)
- S S Jeske
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - M N Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - E Boelke
- Department of Radiotherapy and Radiooncology, Heinrich Heine University, Düsseldorf, Germany
| | - S Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - C Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - N Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Mannheim University Medical Center, Mannheim, Germany
| | - E K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T K Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - P J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
| |
Collapse
|
19
|
Chambers AM, Matosevic S. Immunometabolic Dysfunction of Natural Killer Cells Mediated by the Hypoxia-CD73 Axis in Solid Tumors. Front Mol Biosci 2019; 6:60. [PMID: 31396523 PMCID: PMC6668567 DOI: 10.3389/fmolb.2019.00060] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
NK cell infiltration into solid tumors is often low and is largely represented by the poorly-cytotoxic CD56bright subset. Numerous studies have demonstrated that CD73, overexpressed under conditions of hypoxia, is involved in a variety of physiological processes, while its overexpression has been correlated with tumor invasiveness, metastasis and poorer patient survival in many cancers. Hypoxia itself favors aggressive glycolytic fueling of cancer cells, in turn driving reprogramming of NK cell metabolism. In addition, the hypoxia-driven activity of CD73 immunometabolically impairs NK cells in tumors, due to its catalytic role in the generation of the highly immunosuppressive metabolite adenosine. Adenosinergic signaling was shown to alter NK cell metabolic programs, leading to tumor-promoting environments characterized by NK cell dysfunction. Despite the demonstrated role of NK cell responses in the context of CD73 targeting, the engagement of NK cells in the setting of hypoxia/CD73 signaling has not been extensively studied or exploited. Here, we discuss available evidence on the role of hypoxic signaling on CD73-mediated activity, and how this relates to the immunometabolic responses of NK cells, with a particular focus on the therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Rather MA, Dutta S, Guttula PK, Dhandare BC, Yusufzai SI, Zafar MI. Structural analysis, molecular docking and molecular dynamics simulations of G-protein-coupled receptor (kisspeptin) in fish. J Biomol Struct Dyn 2019; 38:2422-2439. [DOI: 10.1080/07391102.2019.1633407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohd Ashraf Rather
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Shirgaon, Rantagiri, Maharasthra, India
| | - Subhajit Dutta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Bhushan C. Dhandare
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Shirgaon, Rantagiri, Maharasthra, India
| | - S. I. Yusufzai
- Department of Aquaculture, College of Fisheries Science, JAU, Veraval, India
| | - Mehar Imran Zafar
- Department of Bioinformatics, Virtual University of Lahore, Lahore, Pakistan
| |
Collapse
|
21
|
Merighi S, Battistello E, Giacomelli L, Varani K, Vincenzi F, Borea PA, Gessi S. Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opin Ther Targets 2019; 23:669-678. [DOI: 10.1080/14728222.2019.1630380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Luca Giacomelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Physical exercise prevents memory impairment in an animal model of hypertension through modulation of CD39 and CD73 activities and A2A receptor expression. J Hypertens 2019; 37:135-143. [DOI: 10.1097/hjh.0000000000001845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Assis MS, Soares AC, Sousa DN, Eudes-Filho J, Faro LRF, Carneiro FP, Silva MV, Motoyama AB, Souza GMR, Marchiori S, Lima NT, Boëchat-Barros R, Ferreira VM. Effects of Caffeine on Behavioural and Cognitive Deficits in Rats. Basic Clin Pharmacol Toxicol 2018; 123:435-442. [DOI: 10.1111/bcpt.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa S. Assis
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Aluízio C. Soares
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Dircilei N. Sousa
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - João Eudes-Filho
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Lilian Rosana F. Faro
- Department of Functional Biology and Health Sciences; Faculty of Biology; University of Vigo; Vigo Spain
| | - Fabiana P. Carneiro
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Mônica V. Silva
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Andrea B. Motoyama
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Greice Maria R. Souza
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Stéphanie Marchiori
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Nadyelle T. Lima
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Raphael Boëchat-Barros
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Vania M. Ferreira
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| |
Collapse
|
24
|
Lu X, Xue L, Sun W, Ye J, Zhu Z, Mei H. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database. Mol Med Rep 2017; 17:3042-3054. [PMID: 29257295 PMCID: PMC5783525 DOI: 10.3892/mmr.2017.8258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a life-threatening condition in which an uncontrolled inflammatory host response is triggered. The exact pathogenesis of sepsis remains unclear. The aim of the present study was to identify key genes that may aid in the diagnosis and treatment of sepsis. mRNA expression data from blood samples taken from patients with sepsis and healthy individuals was downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) between the two groups were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network construction, was performed to investigate the function of the identified DEGs. Furthermore, for validation of these results, the expression levels of several DEGs were analyzed by reverse transcription quantitative-polymerase chain reaction (RT-qPCR) in three patients with sepsis and three healthy blood samples to support the results obtained from the bioinformatics analysis. Receiver operating characteristic analyses were also used to analyze the diagnostic ability of the identified DEGs for sepsis. The results demonstrated that a total of 4,402 DEGs, including 1,960 upregulated and 2,442 downregulated genes, were identified between patients with sepsis and healthy individuals. KEGG pathway analysis revealed that 39 DEGs were significantly enriched in toll-like receptor signaling pathways. The top 20 upregulated and downregulated DEGs were used to construct the PPI network. Hub genes with high degrees, including interleukin 1 receptor-associated kinase 3 (IRAK3), S100 calcium-binding protein (S100)A8, angiotensin II receptor-associated protein (AGTRAP) and S100A9, were demonstrated to be associated sepsis. Furthermore, RT-qPCR results demonstrated that IRAK3, adrenomedullin (ADM), arachidonate 5-lipoxygenase (ALOX5), matrix metallopeptidase 9 (MMP9) and S100A8 were significantly upregulated, while ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) was upregulated but not significantly, in blood samples from patients with sepsis compared with healthy individuals, which was consistent with bioinformatics analysis results. Therefore, AGTRAP, IRAK3, ADM, ALOX5, MMP9, S100A8 and ENTPD1 were identified to have potential diagnostic value in sepsis. In conclusion, dysregulated levels of the AGTRAP, IRAK3, ADM, ALOX5, MMP9, S100A8 and ENTPD1 genes may be involved in sepsis pathophysiology and may be utilized as potential diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Lu
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lu Xue
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Wenbin Sun
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jilu Ye
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiyun Zhu
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Haifeng Mei
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|