1
|
Li B, Jiang T, Wang J, Ge H, Zhang Y, Li T, Wang C, Wang W. Cuprorivaite microspheres inhibit cuproptosis and oxidative stress in osteoarthritis via Wnt/β-catenin pathway. Mater Today Bio 2024; 29:101300. [PMID: 39469313 PMCID: PMC11513804 DOI: 10.1016/j.mtbio.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
This study aims to evaluate the therapeutic potential of cuprorivaite microspheres for osteoarthritis (OA), in particular, potential molecular mechanisms were investigated. The microspheres were developed from Ca(NO3)2•4H2O, Cu(NO3)2•3H2O, and silica gel, and further therapeutic effects were tested in vitro on mouse primary chondrocytes treated with interleukin-1β (IL-1β) to mimic OA, and in vivo on OA mice induced via anterior cruciate ligament transection (ACLT) surgery. The microspheres were shown to mitigate IL-1β-induced apoptotic, inflammatory, oxidative stress and cuproptosis markers while enhancing cell viability and extracellular matrix (ECM) components in chondrocytes. Moreover, the microspheres ameliorated histopathological damage, reduced inflammatory, oxidative stress and cuproptosis markers, and enhanced ECM biomarker levels in OA mice, implicating their role in suppressing cuproptosis and oxidative stress. The aforementioned effects of the cuprorivaite microspheres were demonstrated by using SKL2001, an agonist of the Wnt/β-catenin pathway. The results suggest cuprorivaite microspheres as a promising intervention for OA and cartilage regeneration, highlighting their therapeutic effects on cellular and molecular levels.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Hongping Ge
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yaqi Zhang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tong Li
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Tian K, He X, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Lan Z, Zhao X, Fen G, Hai Q, Xue D, Jin Q. Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis. Mol Cell Biol 2024; 44:411-428. [PMID: 39169784 PMCID: PMC11485870 DOI: 10.1080/10985549.2024.2385633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Collapse
Affiliation(s)
- Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaoxin He
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yajing Su
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhidong Lu
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhirong Chen
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Liang Zhang
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Peng Li
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xin Zhao
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Gangning Fen
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qinqin Hai
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qunhua Jin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| |
Collapse
|
3
|
Pan X, Cheng M, Li D, Liu Z, Yao Q, Jiang W, Zhang X, Hao J. The association between IGF-1 levels and four types of osteoarthritis: a bidirectional and two-step mendelian randomization study. Front Genet 2024; 15:1366138. [PMID: 39050250 PMCID: PMC11266086 DOI: 10.3389/fgene.2024.1366138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background Insulin-like Growth Factor-1 (IGF-1) plays a crucial role in the growth and metabolic functions of various tissues and cells in the body. Recently, there has been increased attention to the association between IGF-1 and osteoarthritis (OA). However, there is controversy in current research regarding the correlation between IGF-1 levels and OA. Furthermore, the specific manner in which Body Mass Index (BMI), a key risk factor for OA, mediates the impact of IGF-1 levels on OA remains unclear. Object This study aimed to investigate the bidirectional causal link between IGF-1 levels and OA in four body regions, and to explore how BMI influences the impact of IGF-1 on these types of OA. Method Two-sample Mendelian Randomization (MR) and its combined forms were utilized to investigate the bidirectional relationship between IGF-1 levels and four types of OA, as well as the mediating role of BMI in the impact of IGF-1 levels on OA. Data from various Genome-Wide Association Studies (GWAS) and multiple analytical methods, including inverse variance weighted, MR-Egger regression, and weighted median were utilized. Sensitivity analyses, such as MR-Egger intercept, Cochran Q test, leave-one-out, and MR-PRESSO, were conducted to ensure the robustness of the results. Results Higher IGF-1 levels are correlated with an increased risk for knee (OR, 1.07; 95% CI, 1.01-1.03; p = 1.49e-01; q = 9.86e-03), hip (OR, 1.13; 95% CI, 1.06-1.20; p = 7.61e-05; q = 7.44e-05), and hand OA (OR, 1.09; 95% CI, 1.01-1.17; p = 1.88e-02; q = 1.15e-02), but not spine OA but not spine OA (OR, 1.05; 95% CI, 0.99-1.10; p = 9.20e-02; q = 5.52e-02). Different types of OA do not affect IGF-1 levels. BMI mediates the increase in OA risk associated with higher IGF-1, including indirect spine OA risk through BMI. Conclusion The study elucidates the bidirectional causality between IGF-1 levels and OA in various body parts, highlighting BMI's mediating role in the impact of IGF-1 levels on OA. This provides valuable insights for OA prevention, diagnosis, and treatment strategies. Future research will expand our study to include a broader spectrum of ethnicities and explore the underlying mechanisms involved.
Collapse
Affiliation(s)
- Xiaohan Pan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Minghuang Cheng
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Dongxu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zeyu Liu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qi Yao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xiaojun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang Z, Yu P, Bai L. Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4. Mol Biotechnol 2024; 66:1174-1187. [PMID: 38206529 DOI: 10.1007/s12033-023-01019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Circular RNA (circRNA) influences on the pathological process of osteoarthritis (OA) and may be a potential marker for disease diagnosis. The study was to scrutinize the association of circ_0045474 with OA. Clinical samples of OA patients were collected, and 12 circRNAs derived from KPNA2 gene were examined. CHON-001 cells were stimulated with IL-1β to construct an OA chondrocyte model. miR-485-3p, transcription factor 4 (TCF4) and circ_0045474, type II procollagen (COL2A1), and human collagenase-3 (MMP13) were tested. Furthermore, cell activities were analyzed. The relationship between miR-485-3p, TCF4, and circ_0045474 was determined. The role of circ_0045474 in vivo was further confirmed by constructing an OA mouse model by anterior cruciate ligament transection. circ_0045474 expression was elevated in OA patients. Suppressing circ_0045474 restrained IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis. Circ_0045474 competitively combined with miR-485-3p, while TCF4 was the target of miR-485-3p. Circ_0045474 modulated IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis via miR-485-3p/TCF4 axis. Suppressing circ 0045474 was effective to alleviate OA in mice. Silenced circ_0045474 suppresses OA progression in vitro and vivo via miR-485-3p/TCF4 axis. In short, circ_0045474 can be considered a novel therapeutic target for OA.
Collapse
Affiliation(s)
- ZhenXing Zhang
- Department of Orthopaedics II, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - PingHua Yu
- Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - LinGang Bai
- Trauma Center, The Second People's Hospital of Lianyungang, No.41, Hailian East Road, Xinpu District, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
5
|
Zhou Q, Liu J, Xin L, Hu Y, Qi Y. The Diagnostic Features of Peripheral Blood Biomarkers in Identifying Osteoarthritis Individuals: Machine Learning Strategies and Clinical Evidence. Curr Comput Aided Drug Des 2024; 20:928-942. [PMID: 37594094 DOI: 10.2174/1573409920666230818092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND People with osteoarthritis place a huge burden on society. Early diagnosis is essential to prevent disease progression and to select the best treatment strategy more effectively. In this study, the aim was to examine the diagnostic features and clinical value of peripheral blood biomarkers for osteoarthritis. OBJECTIVE The goal of this project was to investigate the diagnostic features of peripheral blood and immune cell infiltration in osteoarthritis (OA). METHODS Two eligible datasets (GSE63359 and GSE48556) were obtained from the GEO database to discern differentially expressed genes (DEGs). The machine learning strategy was employed to filtrate diagnostic biomarkers for OA. Additional verification was implemented by collecting clinical samples of OA. The CIBERSORT website estimated relative subsets of RNA transcripts to evaluate the immune-inflammatory states of OA. The link between specific DEGs and clinical immune-inflammatory markers was found by correlation analysis. RESULTS Overall, 67 robust DEGs were identified. The nuclear receptor subfamily 2 group C member 2 (NR2C2), transcription factor 4 (TCF4), stromal antigen 1 (STAG1), and interleukin 18 receptor accessory protein (IL18RAP) were identified as effective diagnostic markers of OA in peripheral blood. All four diagnostic markers showed significant increases in expression in OA. Analysis of immune cell infiltration revealed that macrophages are involved in the occurrence of OA. Candidate diagnostic markers were correlated with clinical immune-inflammatory indicators of OA patients. CONCLUSION We highlight that DEGs associated with immune inflammation (NR2C2, TCF4, STAG1, and IL18RAP) may be potential biomarkers for peripheral blood in OA, which are also associated with clinical immune-inflammatory indicators.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Ling Xin
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yuedi Hu
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yajun Qi
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
6
|
Abstract
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Qi-ling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
郑 祥, 高 颂, 尤 浩, 王 浩, 高 彦, 王 金, 李 嘉, 李 玲. [Electroacupuncture improves motor function of rats with osteoarthritis by alleviating joint inflammation through the Wnt-7B/β-catenin signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:590-596. [PMID: 37202195 PMCID: PMC10202793 DOI: 10.12122/j.issn.1673-4254.2023.04.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To investigate the effect of electroacupuncture on osteoarthritis in rats and explore the possible mechanism. METHODS Thirty SD rats were randomly divided into osteoarthritis model group, electro-acupuncture group and control group (n=10), and in the former two groups, early osteoarthritis was induced using a modified DMM surgical modeling method. After successful modeling, the rats in the electro-acupuncture group were treated with electro-acupuncture at bilateral "Housanli" and "Anterior knee point". Behavioral tests of the rats were performed and scored using the LequesneMG scale. Subchondral bone degeneration was observed in each group, and serum levels of IL-1β, ADAMTS-7, MMP-3 and COMP were measured using ELISA. The mRNA and protein expressions of IL-1β, Wnt-7B, β-catenin, ADAMTS-7, and MMP-3 in the cartilage tissue of the knee joints were detected using RT-PCR and Western blotting. RESULTS In behavioral tests, the rats in the model and electroacupuncture groups had significantly higher LequesneMG scores after modeling than those in the control group (P < 0.05). After 20 days of treatment, LequesneMG scores were significantly lowered in rats in the electroacupuncture as compared with the model rats (P < 0.05). Imaging examination revealed obvious subchondral bone damage in both the electroacupuncture group and the model group, but the damages were significantly milder with former group. Compared with the model rats, the rats receiving electroacupuncture had significantly lower serum levels of IL-1β, ADAMTS-7, MMP-3 and COMP (P < 0.05) with also lower expressions of IL-1β, Wnt-7B, β-catenin, ADAMTS-7 and MMP-3 in the cartilage tissues at both the mRNA and protein levels (P < 0.05). CONCLUSION Electroacupuncture can alleviate joint pain and improve subchondral bone damage in rats with osteoarthritis by reducing IL-1β levels in the joint cartilage tissue and serum to alleviate joint inflammation and by reducing such cytokines as ADAMTS-7 and MMP-3 via regulating the Wnt-7B/β-catenin signaling pathway.
Collapse
Affiliation(s)
- 祥 郑
- 河北省承德医学院,河北 承德 067000Chengde Medical College, Chengde 067000, China
| | - 颂爱 高
- 河北省承德医学院,河北 承德 067000Chengde Medical College, Chengde 067000, China
| | - 浩 尤
- 河北省承德医学院,河北 承德 067000Chengde Medical College, Chengde 067000, China
| | - 浩琦 王
- 河北省承德医学院附属医院中医科,河北 承德 067000Department of Traditional Chinese Medicine, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - 彦平 高
- 南方医科大学第三附属医院中医骨伤科,广东 广州 510630Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 金丽 王
- 河北省承德医学院,河北 承德 067000Chengde Medical College, Chengde 067000, China
| | - 嘉 李
- 广东省人民医院风湿免疫科,广东省医学科学院,广东 广州 510080Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 玲 李
- 广东省人民医院风湿免疫科,广东省医学科学院,广东 广州 510080Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
8
|
Dilley JE, Bello MA, Roman N, McKinley T, Sankar U. Post-traumatic osteoarthritis: A review of pathogenic mechanisms and novel targets for mitigation. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
9
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
10
|
Jin H, Jiang N, Xu W, Zhang Z, Yang Y, Zhang J, Xu H. Effect of flavonoids from Rhizoma Drynariae on osteoporosis rats and osteocytes. Biomed Pharmacother 2022; 153:113379. [DOI: 10.1016/j.biopha.2022.113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022] Open
|
11
|
Yang X, Liang X, Guo H, Ma L, Jian L, Zhao X, Wang J, Yang L, Meng Z, Jin Q. β2-Adrenergic receptor expression in subchondral bone of patients with varus knee osteoarthritis. Open Med (Wars) 2022; 17:1031-1044. [PMID: 35794997 PMCID: PMC9175016 DOI: 10.1515/med-2022-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
An important causative factor in osteoarthritis (OA) is the abnormal mechanical stress-induced bone remodeling of the subchondral bone. β2-adrenergic receptor (Adrb2) plays a major role in mechanical stresses that induce bone remodeling. The medial tibial plateau (MTP) and lateral tibial plateau (LTP) of patients with varus Knee osteoarthritis (KO) bear different mechanical stresses. The present study aimed to investigate the expression of Adrb2 in medial tibial plateau subchondral bone (MTPSB) and lateral tibial plateau subchondral bone (LTPSB) in patients with varus KO. A total of 30 tibial plateau samples from patients undergoing total knee arthroplasty for varus KO and MTPSB and LTPSB were studied. Statistical analysis was performed using paired sample t-tests. Safranin O-Fast Green staining and Micro-computed tomography showed significant differences in the bone structure between MTPSB and LTPSB. Tartrate-resistant acid phosphatase (TRAP)-positive cell density in MTPSB was higher than that in LTPSB. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and Western blot analysis revealed that compared to LTPSB, the levels of Adrb2, tyrosine hydroxylase (TH), and osteocalcin increased significantly in MTPSB. Double-labeling immunofluorescence showed Adrb2 was present in the majority of TRAP-positive multinuclear cells of the MTPSB. The expression of Adrb2 and TH was significantly higher in MTPSB than in LTPSB, confirming the involvement of these molecules in the development of OA.
Collapse
Affiliation(s)
- Xiaochun Yang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xuegang Liang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Haohui Guo
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Long Ma
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Li Jian
- Department of Pathology, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xin Zhao
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Jian Wang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Lvlin Yang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Zhiqiang Meng
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Qunhua Jin
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| |
Collapse
|
12
|
QIN L, GUO C, ZHAO R, WANG T, WANG J, GUO Y, ZHANG W, HU T, CHEN X, ZHANG Q, ZHANG D, XU Y. Acupotomy inhibits aberrant formation of subchondral bone through regulating osteoprotegerin/receptor activator of nuclear factor-κB ligand pathway in rabbits with knee osteoarthritis induced by modified Videman method. J TRADIT CHIN MED 2022; 42:389-399. [PMID: 35610008 PMCID: PMC9924767 DOI: 10.19852/j.cnki.jtcm.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the effects of acupotomy on inhibiting abnormal formation of subchondral bone in rabbits with knee osteoarthritis (KOA). METHODS A total of 24 New Zealand rabbits were randomly divided into four groups of 6 rabbits each [control, model, electroacupuncture (EA) and acupotomy]. Eighteen KOA model rabbits were established using a modified Videman method. Rabbits in EA and acupotomy groups received the intervention for 3 weeks. Then, the cartilage and subchondral bone unit were obtained and the histomorphological changes were recorded. Osteo-protegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in subchondral bone were evaluated by Western blotting, real-time polymerase chain reaction and immunohistochemistry. RESULTS Compared with the model group, both the acupotomy and EA groups showed a significant decrease in the Lequesne index (both 0.01) and Mankin score ( 0.01, < 0.05). In addition, both EA and acupotomy groups had a higher expression of total articular cartilage (TAC) ( 0.05, < 0.01) and lower expression of articular calcified cartilage (ACC)/TAC ( 0.05, < 0.05) compared with the model group. The thickness of the subchondral bone plate in EA and acupotomy groups were decreased (both 0.01) compared to the model group. Moreover, trabecular bone volume (BV/TV), protein and relative expression of OPG and the ratio of OPG/RANKL in the subchondral bone of acupotomy group were decreased statistically significant, while these parameters were not significantly changed in the EA group compared with the model group. CONCLUSIONS In the rabbit model of KOA, acupotomy inhibits aberrant formation of subchondral bone by suppressing OPG/RANKL ratio as a potential therapy for KOA.
Collapse
Affiliation(s)
- Luxue QIN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changqing GUO
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
- Prof. GUO Changqing, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China. ,Telephone: +86-10-64286687
| | - Ruili ZHAO
- 2 the First People's Hospital of Dongcheng District, Beijing 100050, China
| | - Tong WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junmei WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan GUO
- 3 Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Wei ZHANG
- 4 the Third Affiliated Hospital of Beijing Universality of Chinese Medicine, Beijing 100029, China
| | - Tingyao HU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xilin CHEN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dian ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue XU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
13
|
Lee JH, Cho JH, Lee DG. Sclerostin Concentration and Bone Biomarker Trends in Patients with Spinal Cord Injury: A Prospective Study. Healthcare (Basel) 2022; 10:healthcare10060983. [PMID: 35742035 PMCID: PMC9222769 DOI: 10.3390/healthcare10060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with spinal cord injury (SCI) experience a high osteoporosis incidence, which increases fracture risk. Recently, a sclerostin antibody was introduced as a target biomarker to treat osteoporosis. We aimed to determine the serum concentration of sclerostin and factors affecting its concentration over time. This was a prospective cross-sectional study. The inclusion criteria were (1) SCI patients with a grade 3 modified functional ambulatory category score (FAC—patients requiring firm continuous support) and (2) patients whose injury occurred >1 month ago. The exclusion criterion was a history of osteoporosis medication administration within 6 months. The collected data included bone biomarkers (carboxy-terminal collagen crosslinks (CTX), procollagen type 1 intact N-terminal propeptide, and sclerostin), clinical data (FAC, lower extremity motor score), body mass index, SCI duration, and hip bone mineral density (BMD). This study recruited 62 patients with SCI. Sclerostin levels significantly correlated with age, CTX level, and hip BMD. SCI duration was negatively correlated with sclerostin levels. Lower extremity motor scores were not significantly correlated with sclerostin levels. The acute SCI state showed a higher sclerostin level than the chronic SCI state. Sclerostin showed a significant relationship with CTX. In conclusion, age and BMD affect sclerostin concentration in patients with SCI.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Laboratory Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jang Hyuk Cho
- Department of Rehabilitation Medicine, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu 42601, Korea;
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-3829
| |
Collapse
|
14
|
Kelly SP, Ramkumar DB, Peacock ZS, Newman ET, Venrick C, Lozano-Calderon SA, Raskin KA, Chebib I, Schwab JH. Sclerostin immunohistochemical staining in surgically treated giant cell tumor of bone. J Surg Oncol 2022; 126:571-576. [PMID: 35446992 DOI: 10.1002/jso.26903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Giant cell tumor of bone (GCTB) is a destructive lesion with a high potential for recurrence. RANK-ligand targeted therapy has provided promising, yet mixed results. Sclerostin (SOST) inhibition results in a net anabolic response and is currently used in the treatment of osteoporosis. The application to GCTB is unknown. OBJECTIVES We sought to determine if GCTB stained for SOST on immunohistochemistry and correlate its expression with predictor variables. METHODS All patients at a single institution undergoing surgery for GCTB between 1993 and 2008 with a minimum of 6 months follow-up were included. Primary outcomes included the presence of SOST staining, secondary outcomes included the correlation of patient and tumor-specific predictor variables. RESULTS SOST antibody staining of any cell type was present in 47 of 48 cases (97.9%). Positivity of the stromal cells was present in 39 of 48 cases (81.3%) and was associated with radiographic aggressiveness (p = 0.023), symptomatic presentation (p = 0.032), prior surgery (p = 0.005), and patient age (p = 0.034). Positivity of giant cells was present in 41 of 48 cases (85.4%) and was not significant with predictive factors. CONCLUSIONS Sclerostin staining in GCTB is a novel finding and warrants further research to define the role of sclerostin as a prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Sean P Kelly
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Dipak B Ramkumar
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zachary S Peacock
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erik T Newman
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Connor Venrick
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | | | - Kevin A Raskin
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Zhao X, Ma L, Guo H, Wang J, Zhang S, Yang X, Yang L, Jin Q. Osteoclasts secrete leukemia inhibitory factor to promote abnormal bone remodeling of subchondral bone in osteoarthritis. BMC Musculoskelet Disord 2022; 23:87. [PMID: 35078447 PMCID: PMC8790929 DOI: 10.1186/s12891-021-04886-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic degenerative joint disease. At present, there is no effective treatment to check the progression of osteoarthritis. Osteochondral units are considered to be one of the most important structures affecting the occurrence and development of osteoarthritis. Osteoclasts mediate an increase in abnormal bone remodeling in subchondral bone in the early stage of osteoarthritis. Here, alendronate (ALN) that inhibit osteoclasts was used to study the regulatory effect of osteoclast-derived leukemia inhibitory factor (LIF) on early abnormal bone remodeling. METHODS This study involved 10-week-old wild-type female C57BL/6 mice and female SOST knockout (KO) mice that were divided into the sham, vehicle, ALN, and SOST KO groups. RESULTS The expression of LIF was found to decrease by inhibiting osteoclasts, and the histological OA score suggested that the degeneration of articular cartilage was attenuated. Additionally, micro-CT showed that osteoclasts inhibited in the early stage of OA could maintain the microstructure of the subchondral bone. The parameters of bone volume fraction (BV/TV), subchondral bone plate thickness (SBP.Th), and trabecular separation (Tb.Sp) of the treated group were better than those of the vehicle group. CONCLUSIONS These results suggested that downregulating the expression of sclerostin in osteocytes by secreting LIF from osteoclasts, activate the Wnt/β-catenin signaling pathway, and promote abnormal bone remodeling in OA. Therefore, clastokine LIF might be a potential molecular target to promote abnormal bone remodeling in early OA.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Long Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Haohui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Jian Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Xiaochun Yang
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Lvlin Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China.
| |
Collapse
|
16
|
Convill JG, Tawy GF, Freemont AJ, Biant LC. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1511S-1531S. [PMID: 32680434 PMCID: PMC8808945 DOI: 10.1177/1947603520941239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Biomarkers in osteoarthritis (OA) could serve as objective clinical indicators for various disease parameters, and act as surrogate endpoints in clinical trials for disease-modifying drugs. The aim of this systematic review was to produce a comprehensive list of candidate molecular biomarkers for knee OA after the 2013 ESCEO review and discern whether any have been studied in sufficient detail for use in clinical settings. DESIGN MEDLINE and Embase databases were searched between August 2013 and May 2018 using the keywords "knee osteoarthritis," "osteoarthritis," and "biomarker." Studies were screened by title, abstract, and full text. Human studies on knee OA that were published in the English language were included. Excluded were studies on genetic/imaging/cellular markers, studies on participants with secondary OA, and publications that were review/abstract-only. Study quality and bias were assessed. Statistically significant data regarding the relationship between a biomarker and a disease parameter were extracted. RESULTS A total of 80 studies were included in the final review and 89 statistically significant individual molecular biomarkers were identified. C-telopeptide of type II collagen (CTXII) was shown to predict progression of knee OA in urine and serum in multiple studies. Synovial fluid vascular endothelial growth factor concentration was reported by 2 studies to be predictive of knee OA progression. CONCLUSION Despite the clear need for biomarkers of OA, the lack of coordination in current research has led to incompatible results. As such, there is yet to be a suitable biomarker to be used in a clinical setting.
Collapse
Affiliation(s)
- James G Convill
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwenllian F Tawy
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anthony J Freemont
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leela C Biant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Sclerostin Immunohistochemical Staining in Aggressive Maxillofacial Giant Cell Lesions: Initial Results and Potential Therapeutic Target. J Craniofac Surg 2021; 33:790-793. [PMID: 34753866 DOI: 10.1097/scs.0000000000008344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Maxillofacial (MF) giant cell lesions (GCLs) are benign, often locally aggressive lesions with potential for recurrence. Systemic treatments have included interferon alpha, calcitonin, bisphosphonates, and denosumab. Sclerostin (SOST) is typically thought to be a negative regulator of bone metabolism and anti-SOST agents have been used to treat osteoporosis; however, its role in central giant cell granuloma is unknown. The purpose of this study was to evaluate the expression of SOST in MF GCLs. MATERIALS AND METHODS This was a retrospective study of patients with MF GCLs treated at a single institution between 1993 and 2008 with a minimum follow-up of 6 months. Representative tissue was used to create a tissue microarray and SOST immunohistochemical (IHC) staining and grading was performed. The primary outcomes were IHC staining of the stromal cells and giant cells. The secondary outcomes included correlation of IHC staining and patient predictor variables including clinically benign and aggressive lesions. All analyses were completed using univariate statistical tests. RESULTS A total of 37 subjects were included (29 clinically aggressive and 8 clinically benign). Sclerostin staining was present in 30 of 37 subjects (81%). Of these, 22 (60%) had stromal cell staining and 28 (76%) had giant cell staining. The presence or absence of staining, of either cell type, was not associated with aggressiveness, presence of clinical symptoms, tumor size, previous interferon therapy, previous surgery, or the race or age of the patient. DISCUSSION Maxillofacial GCLs have an overall high level of SOST staining; however, the role of SOST in treatment and prognosis is unknown and warrants further study.
Collapse
|
18
|
Hartley A, Gregson CL, Paternoster L, Tobias JH. Osteoarthritis: Insights Offered by the Study of Bone Mass Genetics. Curr Osteoporos Rep 2021; 19:115-122. [PMID: 33538965 PMCID: PMC8016765 DOI: 10.1007/s11914-021-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. RECENT FINDINGS We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.
Collapse
Affiliation(s)
- A Hartley
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - C L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - L Paternoster
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - J H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
19
|
miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-κB signaling pathway. Biosci Rep 2021; 40:224888. [PMID: 32432314 PMCID: PMC7295621 DOI: 10.1042/bsr20200466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: To explore the regulatory mechanism of miR-137 and transcription factor 4 (TCF4) in the progression of osteoarthritis (OA). Patients and Methods: The expressions of miR-137 and TCF4 were detected in OA cartilage tissue, chondrocytes and OA rat cartilage tissue. miR-137 and TCF4 were up-regulated or down-regulated and transfected into chondrocytes and OA rat cartilage tissue. The gene expression, protein level, cell proliferation, apoptosis and inflammatory factors were detected, respectively. LPS and anterior cruciate ligament transection (ACLT) on the right knee were used to induce chondrocyte inflammation and establish rat OA model, respectively. Results: miR-137 was low expressed in cartilage tissue of OA group, while TCF4 expression and protein level were significantly higher, showing significant negative correlation. In LPS group, chondrocyte activity was significantly inhibited, cell apoptosis ability was significantly enhanced, and the levels of inflammatory factors TNF-α, IL-1β, IL-6 were significantly increased. However, the above results were significantly improved after the up-regulation of miR-137 or down-regulation of TCF4. Double luciferase report revealed that miR-137 and TCF4 had targeted relationship. LPS induced activation of AMPK/NF-κB pathway and higher level of apoptosis. AMPK/NF-κB pathway inhibitor C could inhibit activation of this pathway, and up-regulation of miR-137 or down-regulation of TCF4 could significantly weaken the regulation of LPS on the pathway and apoptosis. Analysis of OA rat model showed that over-expression of miR-137 could inhibit up-regulation of inflammatory factors and activation of AMPK/NF-κB pathway. Conclusion: miR-137 targets the inhibition of TCF4 to reverse the progression of OA through the AMPK/NF-κB signaling pathway.
Collapse
|
20
|
Xi P, Zhang CL, Wu SY, Liu L, Li WJ, Li YM. CircRNA circ-IQGAP1 Knockdown Alleviates Interleukin-1β-Induced Osteoarthritis Progression via Targeting miR-671-5p/TCF4. Orthop Surg 2021; 13:1036-1046. [PMID: 33675175 PMCID: PMC8126892 DOI: 10.1111/os.12923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To explore the function of circular RNA IQ motif‐containing GTPase‐activating protein 1 (circ‐IQGAP1) in interleukin (IL)‐1β‐induced osteoarthritis (OA) model and to explore whether circ‐IQGAP1 can modulate microRNA‐671‐5p (miR‐671‐5p) and transcription factor 4 (TCF4) to regulate chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. Methods The cartilage tissues were collected from 32 OA patients or normal subjects. Human chondrocyte CHON‐001 cells were challenged via different doses of IL‐1β for 24 hours. CHON‐001 cells were transfected with circ‐IQGAP1 overexpression vector, TCF4 overexpression vector, small interfering RNA (siRNA) for circ‐IQGAP1, miR‐671‐5p mimic, miR‐671‐5p inhibitor or corresponding negative controls. Circ‐IQGAP1, miR‐671‐5p and TCF4 abundances in cartilage tissues or CHON‐001 cells were examined via quantitative reverse transcription polymerase chain reaction (qRT‐PCR) or western blot. Cell viability was investigated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT). Cell apoptosis was measured by flow cytometry. The inflammatory injury was analyzed by the secretion levels of inflammatory cytokines (IL‐6, IL‐8 and tumor necrosis factor‐α [TNF‐α]) by enzyme‐linked immunosorbent assay (ELISA). The extracellular matrix degradation was evaluated by expression of aggrecan and matrix metalloproteinase 13 (MMP13) via western blot. The target relationship of miR‐671‐5p and circ‐IQGAP1 or TCF4 was analyzed via dual‐luciferase reporter and RNA immunoprecipitation (RIP) analyses. Results Circ‐IQGAP1 abundance was enhanced in the cartilage tissues from OA patients compared with normal subjects (n = 32), and its expression was increased in CHON‐001 cells after treatment of IL‐1β in a dose‐dependent pattern. MiR‐671‐5p expression was decreased in the cartilage tissues from OA patients (n = 32) and IL‐1β‐challenged CHON‐001 cells. MiR‐671‐5p expression was negatively associated with circ‐IQGAP1 level in OA patients. Circ‐IQGAP1 silence mitigated IL‐1β‐caused chondrocyte viability reduction, apoptosis promotion, secretion of inflammatory cytokine (IL‐6, IL‐8 and TNF‐α), and extracellular matrix degradation (reduction of aggrecan and increase of MMP13). MiR‐671‐5p was targeted and inhibited via circ‐IQGAP1. MiR‐671‐5p knockdown attenuated the influence of circ‐IQGAP1 interference on IL‐1β‐caused chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. TCF4 was targeted via miR‐671‐5p, and TCF4 expression was increased in the cartilage tissues from OA patients (n = 32) and IL‐1β‐challenged CHON‐001 cells. TCF4 abundance in OA patients was negatively correlated with miR‐671‐5p expression. MiR‐671‐5p overexpression alleviated IL‐1β‐mediated chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation via decreasing TCF4 expression. Circ‐IQGAP1 silence reduced TCF4 expression via regulating miR‐671‐5p in IL‐1β‐challenged CHON‐001 cells. Conclusion Circ‐IQGAP1 knockdown attenuated IL‐1β‐caused chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. Circ‐IQGAP1 could regulate miR‐671‐5p/TCF4 axis to modulate IL‐1β‐caused chondrocyte damage. Circ‐IQGAP1 might act as a new target for the treatment of OA.
Collapse
Affiliation(s)
- Peng Xi
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Cai-Lin Zhang
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Shi-Yan Wu
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Lei Liu
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Wen-Ju Li
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Yi-Mei Li
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Aili D, Wu T, Gu Y, Chen Z, Wang W. Knockdown of long non-coding RNA KCNQ1OT1 suppresses the progression of osteoarthritis by mediating the miR-211-5p/TCF4 axis in vitro. Exp Ther Med 2021; 21:455. [PMID: 33747189 DOI: 10.3892/etm.2021.9886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
Numerous studies have reported the critical roles of long non-coding RNAs (lncRNAs) in the regulation of osteoarthritis (OA) development. The present study aimed to assess the function and regulatory mechanism of a lncRNA, KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), in OA in vitro. C28/I2 cells were treated with lipopolysaccharide (LPS) to generate an in vitro OA model. The relative expression levels of KCNQ1OT1, microRNA (miR)-211-5p and transcription factor 4 (TCF4) were determined via reverse transcription-quantitative polymerase chain reaction. The associations between KCNQ1OT1, miR-211-5p and TCF4 were confirmed using a dual-luciferase reporter assay. Furthermore, cell viability was assessed using the MTT assay. Inflammatory cytokine levels were measured using ELISA. The protein expression levels of matrix metalloproteinase-3/13, collagen II/X and TCF4 were detected by western blotting. KCNQ1OT1 and TCF4 were highly expressed in the cartilage tissues of patients with OA and C28/I2 cells treated with LPS (OA cells), whereas miR-211-5p was downregulated concomitantly in OA tissues and cells. Knockdown of KCNQ1OT1 stimulated cell viability, and suppressed the inflammation and degradation of the extracellular matrix (ECM) in OA cells. In addition, overexpression of miR-211-5p stimulated cell viability, and inhibited inflammation and degradation of the ECM in OA cells. Notably, miR-211-5p was revealed to be the target of, and was negatively regulated by, KCNQ1OT1. TCF4 was targeted and negatively modulated by miR-211-5p. Transfection of cells with the miR-211-5p inhibitor or pcDNA-TCF4 reversed the suppressive effects of short hairpin RNA (sh)-KCNQ1OT1 on inflammation and ECM degradation, as well as the promotive effect of sh-KCNQ1OT1 on viability in OA in vitro. Therefore, KCNQ1OT1 may regulate the miR-211-5p/TCF4 axis to ameliorate OA in vitro.
Collapse
Affiliation(s)
- Dilihumaer Aili
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Tong Wu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Gu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ziyuan Chen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
22
|
Bailey KN, Nguyen J, Yee CS, Dole NS, Dang A, Alliston T. Mechanosensitive Control of Articular Cartilage and Subchondral Bone Homeostasis in Mice Requires Osteocytic Transforming Growth Factor β Signaling. Arthritis Rheumatol 2021; 73:414-425. [PMID: 33022131 DOI: 10.1002/art.41548] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Transforming growth factor β (TGFβ) signaling plays a complex tissue-specific and nonlinear role in osteoarthritis (OA). This study was conducted to determine the osteocytic contributions of TGFβ signaling to OA. METHODS To identify the role of osteocytic TGFβ signaling in joint homeostasis, we used 16-week-old male mice (n = 9-11 per group) and female mice (n = 7-11 per group) with an osteocyte-intrinsic ablation of TGFβ receptor type II (TβRIIocy-/- mice) and assessed defects in cartilage degeneration, subchondral bone plate (SBP) thickness, and SBP sclerostin expression. To further investigate these mechanisms in 16-week-old male mice, we perturbed joint homeostasis by subjecting 8-week-old mice to medial meniscal/ligamentous injury (MLI), which preferentially disrupts the mechanical environment of the medial joint to induce OA. RESULTS In all contexts, independent of sex, genotype, or medial or lateral joint compartment, increased SBP thickness and SBP sclerostin expression were spatially associated with cartilage degeneration. Male TβRIIocy-/- mice, but not female TβRIIocy-/- mice, had increased cartilage degeneration, increased SBP thickness, and higher levels of SBP sclerostin compared with control mice (all P < 0.05), demonstrating that the role of osteocytic TGFβ signaling on joint homeostasis is sexually dimorphic. With changes in joint mechanics following injury, control mice had increased SBP thickness, subchondral bone volume, and SBP sclerostin expression (all P < 0.05). TβRIIocy-/- mice, however, were insensitive to subchondral bone changes with injury, suggesting that mechanosensation at the SBP requires osteocytic TGFβ signaling. CONCLUSION Our results provide new evidence that osteocytic TGFβ signaling is required for a mechanosensitive response to injury, and that osteocytes control SBP homeostasis to maintain cartilage health, identifying osteocytic TGFβ signaling as a novel therapeutic target for OA.
Collapse
Affiliation(s)
| | - Jeffrey Nguyen
- University of California, San Francisco, and California State University, Long Beach
| | | | | | - Alexis Dang
- University of California, San Francisco and San Francisco VAMC, San Francisco, California
| | | |
Collapse
|
23
|
Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med 2021; 47:22. [PMID: 33448319 PMCID: PMC7846423 DOI: 10.3892/ijmm.2021.4855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate whether dihydroartemisinin (DHA) alleviates osteoarthritis (OA) in a mouse model of OA. Ten-week-old female C57BL/6j mice were used to establish OA models by anterior cruciate ligament transection (ACLT) and ovariectomized (OVX). DHA was then used to treat the OA in the ACLT and OVX mice. Safranin O-fast green staining and Osteoarthritis Research Society International (OARSI)-modified Mankin scores were used to grade articular cartilage degeneration. Expression of metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF) in the articular cartilage and leukemia inhibitory factor (LIF), sclerostin, and β-catenin in the subchondral bone were analyzed by immunohistochemistry. Expression of RANKL and CD31 were detected by immunofluorescence. Micro-computed tomography was used to ascertain alterations in the microarchitecture of the subchondral bone. The results demonstrated that DHA decreased MMP-13 and VEGF expression in the articular cartilage. DHA decreased OARSI scores and reduced articular cartilage degeneration. In addition, DHA reduced abnormal subchondral bone remodeling, as demonstrated by a reduction in trabecular separation (Tb.Sp), increased bone volume fractions (BV/TV), as well as bone mineral densities (BMD) compared with the ACLT+vehicle group and the OVX+vehicle group. Furthermore, DHA decreased the inhibition of sclerostin through reduction of LIF secretion by osteoclasts and, hence, attenuated aberrant bone remodeling and inhibited angiogenesis in subchondral bone, further reducing the progression of OA. The present study demonstrated that DHA attenuated OA by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone, which may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Long Ma
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Zhao
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yibin Liu
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaochun Yang
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
24
|
He Z, Li H, Han X, Zhou F, Du J, Yang Y, Xu Q, Zhang S, Zhang S, Zhao N, Yan M, Yu Z. Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone 2020; 141:115573. [PMID: 32768686 DOI: 10.1016/j.bone.2020.115573] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/29/2023]
Abstract
Moderate exercise can alleviate symptoms of osteoarthritis (OA) such as pain, stiffness, and joint deformities that are associated with progressive cartilaginous degeneration, osteophyte formation, subchondral bone changes, and synovial inflammation. Irisin is an exercise-related myokine that reportedly plays a crucial role in bone remodeling. However, its role in OA remains unknown. This study aimed to determine whether irisin can attenuate OA progression and the mechanism of its therapeutic effect. Three-month-old male C57BL/6J mice were randomized to groups that underwent sham operation, and anterior cruciate ligament transection (ACLT) intraperitoneally injected with vehicle or irisin in vivo. Apoptosis was induced by stretching murine osteocyte-like MLO-Y4 cells in vitro. Irisin reduced wear, maintained the proportion of hyaline cartilage, a more complete cartilage structure, and lower Osteoarthritis Research Society International (OARSI) scores at 4 weeks after ACLT. Irisin reduced the expression of matrix metalloproteinase (MMP)-13 in cartilage and caspase 3 in the subchondral bone. Irisin exerted rescue effects in microstructural parameters of subchondral trabecular bone including bone volume fraction (BV/TV), trabecular number (Tb.N), connection density (Conn. D), and the structure model index (SMI) compared with ACLT-vehicle group. Bone histomorphometry showed that irisin increased subchondral bone remodeling. The decreasing ratio (%) of the eroded surface (ES/BS) was reversed by irisin in the ACLT+vehicle group. Staining with tartrate-resistant acid phosphatase showed a decreased number of osteoclasts. Irisin significantly increased the proliferation of osteocytes, protected them from apoptosis, and maintained cellular activity by regulating the expression of Bax, Bcl-2, and osteoprotegerin/receptor activator of nuclear factor (NF)-kB-ligand (OPG/Rankl). Irisin activated serine/threonine-selective protein kinases (Erk) and p38 signaling, and its anti-apoptosis function depended on the Erk signaling pathway. Irisin attenuated OA progression by decreasing osteocyte apoptosis and improving the microarchitecture of subchondral bone. Activation of the Erk pathway by irisin plays an important role in reducing osteocyte apoptosis in vitro.
Collapse
Affiliation(s)
- Zihao He
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xuequan Han
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jingke Du
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qi Xu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
25
|
Dai G, Xiao H, Liao J, Zhou N, Zhao C, Xu W, Xu W, Liang X, Huang W. Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int J Mol Med 2020; 46:167-178. [PMID: 32319543 PMCID: PMC7255453 DOI: 10.3892/ijmm.2020.4576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Subchondral sclerosis is considered the main characteristic of advanced osteoarthritis, in which bone remodeling mediated by transforming growth factor β (TGFβ) signaling plays an indispensable role in the metabolism. Osteocytes have been identified as pivotal regulators of bone metabolism, due to their mechanosensing and endocrine function. Therefore, the aim of the present study was to investigate the association between osteocyte TGFβ signal and subchondral sclerosis. Knee tibia plateau samples were collected from osteoarthritic patients and divided into three groups: The full cartilage, partial cartilage and full defect groups. Next, changes in osteocyte TGFβ signaling and subchondral bone structure underlying various types of cartilage erosion were detected. Bone mineral density (BMD) assay, histology [hematoxylin and eosin, Safranin‑O/Fast green, and tartrate resistant acid phosphatase (TRAP) staining], and reverse transcription‑quantitative PCR mainly detected structural alterations, osteogenic and osteoclastic activity in the cartilage and subchondral bone. The activation of the TGFβ signaling pathway in the subchondral bone was detected by immunohistochemistry and western blotting. The association between osteocyte TGFβ and the regulation of bone metabolism was analyzed by correlation analysis, and further proven in vitro. It was confirmed that the BMD of the subchondral bone increased and underwent sclerosis in the partial cartilage and full defect groups. Additional observation included the thinning of the area of calcified cartilage, in which a bone island formed locally, with subchondral bone plate thickening and increased trabecular bone volume. TRAP staining suggested an increase in bone resorption in subchondral underlying areas of the partial cartilage and full defect groups. Immunohistochemistry results confirmed the activation of osteocyte TGFβ in subchondral underlying areas with severe cartilage erosion. Moreover, osteocyte phosphorylated‑Smad2/3 was positively correlated with subchondral BMD, alkaline phosphatase and osteopontin mRNA expression, but it was negatively correlated with TRAP+ cells. Furthermore, it was confirmed in vitro that osteocyte TGFβ signaling could regulate the osteogenic and osteoclastic activity of the mesenchymal stem cells. This study illustrated that osteocyte TGFβ signaling is positively associated with the remodeling of subchondral bone in advanced osteoarthritis and provides a preliminary theoretical basis for further investigations of the role and mechanism of osteocyte TGFβ in subchondral of osteoarthritis.
Collapse
Affiliation(s)
- Guangming Dai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haozhuo Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junyi Liao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjuan Xu
- Institute of Life and Science Research, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xi Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
Ellegaard M, Bieler T, Beyer N, Kjaer M, Jørgensen NR. The effect of 4 months exercise training on systemic biomarkers of cartilage and bone turnover in hip osteoarthritis patients. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Maria Ellegaard
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
| | - Theresa Bieler
- Department of Physical & Occupational Therapy Bispebjerg and Frederiksberg Hospital, University of Copenhagen Copenhagen Denmark
| | - Nina Beyer
- Institute for Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen Bispebjerg and Frederiksberg Hospital, University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Niklas R. Jørgensen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
- University of Southern Denmark Odense Denmark
| |
Collapse
|
27
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
28
|
Conditional deletion of E11/podoplanin in bone protects against load-induced osteoarthritis. BMC Musculoskelet Disord 2019; 20:344. [PMID: 31351471 PMCID: PMC6661085 DOI: 10.1186/s12891-019-2731-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/19/2019] [Indexed: 12/23/2022] Open
Abstract
Background Subchondral bone (SCB) thickening is one of the earliest detectable changes in osteoarthritic joints and is considered a potential trigger for subsequent articular cartilage degeneration. In this manuscript, we examine whether disruption to the SCB osteocyte network contributes to the initiation and pathogenesis of osteoarthritis. Methods We examined expression patterns of the glycoprotein E11/podoplanin by immunohistochemical labelling in murine, human and canine osteoarthritis models. We also examined the effects of twice-weekly administration of Bortezomib, a proteasome inhibitor which stabilises osteocyte E11 levels, to C57/BL6 wild-type male mice (1 mg/kg/day) for 8 weeks after surgical destabilisation of the medial meniscus. By inducing osteoarthritis-like changes in the right knee joint of 12-week-old male E11 hypomorphic mice (and corresponding controls) using a post-traumatic joint loading model, we also investigated whether a bone-specific E11 deletion in mice increases joint vulnerability to osteoarthritis. Articular cartilage degradation and osteophyte formation were assessed by histology and in line with the OARSI grading system. Results Our studies reveal increased E11 expression in osteocytes of human and canine osteoarthritic SCB. We found that Bortezomib administration had no effect on surgically-induced osteoarthritis, potentially due to a lack of the expected stabilisation of E11 in the SCB. We also found, in concordance with our previous work, wild-type mice exhibited significant load-induced articular cartilage lesions on the lateral femoral condyle (p < 0.01) and osteophyte formation. In contrast, E11 hypomorphic mice did not develop osteophytes or any corresponding articular lesions. Conclusions Overall, these data suggest that an intact osteocyte network in the SCB contributes to the development of mechanically-driven osteoarthritis. Further, the data presented here indicate that the molecular pathways that preserve the osteocyte network, such as those driven by E11, may be targeted to limit osteoarthritis pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12891-019-2731-9) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
|
30
|
Mendoza L, Franck T, Lejeune JP, Caudron I, Detilleux J, Deliège B, Serteyn D. Is Sclerostin Glycoprotein a Suitable Biomarker for Equine Osteochondrosis? J Equine Vet Sci 2019; 64:27-33. [PMID: 30973148 DOI: 10.1016/j.jevs.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Osteochondrosis (OC) disease appears to be multifactorial in origin, including skeletal growth rates, nutrition, endocrinological factors, exercise, biomechanics, and other environmental factors. Endocrinological and metabolic factors seem to have an important role in the pathogeny of OC like the Wnt signaling pathway. One of the regulators in the Wnt signaling pathway is the sclerostin glycoprotein. The aim of this study was to investigate the sclerostin blood concentration according to the evolution of the disease, the environment, and the age but also its use as a possible biomarker for OC disease. Relation between age and sclerostin concentrations was calculated by a linear regression. A relation was found between age and sclerostin concentrations, but also a significant relation between age and the sclerostin concentrations was observed for two subgroups (OC affected and healthy). Evolution of the disease related to the sclerostin concentration was assessed with two logistic regressions (risk of developing OC and recovery of existing lesions), but not any significance was found. In conclusion, these results show that, despite the possible link of sclerostin with the OC pathogenesis through the Wnt pathway, circulating levels of this glycoprotein shall not be used as a biomarker for the disease. Besides, more studies are needed to fully understand the functions of sclerostin in the equine specie since it may play an important role in bone homeostasis.
Collapse
Affiliation(s)
- Luis Mendoza
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium.
| | - Thierry Franck
- Centre for Oxygen Research and Development-CORD, Liège, Belgium
| | - Jean-Philippe Lejeune
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium
| | | | - Johann Detilleux
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium
| | | | - Didier Serteyn
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium
| |
Collapse
|
31
|
Watt FE. Osteoarthritis biomarkers: year in review. Osteoarthritis Cartilage 2018; 26:312-318. [PMID: 29107060 DOI: 10.1016/j.joca.2017.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To summarise important findings from biomarker studies relevant to osteoarthritis (OA), published between April 2016 and March 2017; to consider these findings in the context of new discoveries and technologies, and clinical and scientific need in OA. DESIGN Studies were selected by PubMed search, conducted between 01/04/2016 and 01/03/2017. MeSH terms [biomarker] AND [OA] were used; the search was restricted to Human, English language and Full Text Available publications, which yielded 50 eligible publications. Any biomarker was considered, including non-proteins and other clinical measurements. RESULTS Three main areas are overviewed: 1) Studies examining highly validated biomarkers, in the FNIH OA Biomarkers Consortium and elsewhere, particularly their ongoing application and validation. Control reference intervals, work on predictive validity and other longitudinal studies examining prognostic value of biomarkers in large cohorts are reviewed. 2) Novel studies relating to biomarkers of inflammation are discussed, including complement, the performance of markers of so-called 'cold inflammation' and results from clinical trials including biomarkers. 3) Discovery studies, including whole blood RNA, proteomics and metabolomics are reviewed, with an emphasis on new technologies. CONCLUSIONS Discovery, characterisation and qualification of various biomarkers is ongoing; several novel protein and non-protein candidate biomarkers have been reported this year. Biomarkers provide us with an opportunity to better diagnose and stratify the disease, via established panels or new discovery approaches. Improving quality of sampling and testing, and measuring large numbers of markers simultaneously in large cohorts would seem likely to identify new clinically applicable biomarkers, which are still much needed in this disease.
Collapse
Affiliation(s)
- F E Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
32
|
Jia H, Ma X, Wei Y, Tong W, Tower RJ, Chandra A, Wang L, Sun Z, Yang Z, Badar F, Zhang K, Tseng WJ, Kramer I, Kneissel M, Xia Y, Liu XS, Wang JHC, Han L, Enomoto-Iwamoto M, Qin L. Loading-Induced Reduction in Sclerostin as a Mechanism of Subchondral Bone Plate Sclerosis in Mouse Knee Joints During Late-Stage Osteoarthritis. Arthritis Rheumatol 2017; 70:230-241. [PMID: 29024567 DOI: 10.1002/art.40351] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To establish an unbiased, 3-dimensional (3-D) approach that quantifies subchondral bone plate (SBP) changes in mouse joints, and to investigate the mechanism that mediates SBP sclerosis at a late stage of osteoarthritis (OA). METHODS A new micro-computed tomography (micro-CT) protocol was developed to characterize the entire thickness of the SBP in the distal femur of a normal mouse knee. Four mouse models of severe joint OA were generated: cartilage-specific Egfr-knockout (Egfr-CKO) mice at 2 months after surgical destabilization of the medial meniscus (DMM), Egfr-CKO mice with aging-related spontaneous OA, wild-type (WT) mice at 10 months after DMM, and WT mice at 14 weeks after DMM plus hemisectomy of the meniscus (DMMH) surgery. As an additional model, mice with knockout of the sclerostin gene (Sost-KO) were subjected to DMMH surgery. Knee joints were examined by micro-CT, histology, and immunohistochemical analyses. RESULTS Examination of the mouse distal femur by 3-D micro-CT revealed a positive correlation between SBP thickness and the loading status in normal knees. In all 4 mouse models of late-stage OA, SBP sclerosis was restricted to the areas under severely eroded articular cartilage. This was accompanied by elevated bone formation at the bone marrow side of the SBP and a drastic reduction in the levels of sclerostin in osteocytes within the SBP. Unlike in WT mice, no further increase in the thickness of the SBP was observed in response to DMMH in Sost-KO mice. CONCLUSION Since focal stress on the SBP underlying sites of cartilage damage increases during late stages of OA, these findings establish mechanical loading-induced attenuation of sclerostin expression and elevation of bone formation along the SBP surface as the major mechanisms characterizing subchondral bone phenotypes associated with severe late-stage OA in mice.
Collapse
Affiliation(s)
- Haoruo Jia
- University of Pennsylvania, Philadelphia, and The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Xiaoyuan Ma
- Shandong University Qilu Hospital, Jinan, China, and University of Pennsylvania, Philadelphia
| | - Yulong Wei
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tong
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Robert J Tower
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Abhishek Chandra
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Luqiang Wang
- Shandong University Qilu Hospital, Jinan, China, and University of Pennsylvania, Philadelphia
| | - Zeyang Sun
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaochun Yang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Kairui Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Ju Tseng
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Yang Xia
- Oakland University, Rochester, Michigan
| | - X Sherry Liu
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - James H C Wang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Han
- Drexel University, Philadelphia, Pennsylvania
| | - Motomi Enomoto-Iwamoto
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Maryland, Baltimore
| | - Ling Qin
- University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Zhou S, Ge Y, Li Y, Bao Z, Yao C, Teng H, Jiang Q. Accelerated development of instability-induced osteoarthritis in transgenic mice overexpressing SOST. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10830-10840. [PMID: 31966426 PMCID: PMC6965855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/08/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Sclerostin (SOST), acting as a Wnt antagonist, has been shown to play a key role in regulating bone homestasis, and has also been linked to osteoarthritis (OA) development. Here, we investigated whether overexpressing SOST could affect OA development after destabilization of the medial meniscus (DMM) using SOST transgenic (Tg) mice. METHODS Bone and cartilage phenotypes of SOST Tg mice at 10 weeks of age were investigated by dual x-ray absorptiometry (DXA) and histology. Subsequently, 10-week-old SOST Tg mice and their wild-type (WT) littermates were subjected to DMM or sham surgery. Knee joints were isolated to evaluate the cartilage damage and the subchondral bone plate thickness at 2 and 8 weeks post-surgery. The changes of chondrocyte anabolic and catabolic responses after IL-1β or TNFα stimulation, β-catenin signaling and apoptosis were also measured. RESULTS Ten-week-old SOST Tg mice were identical to their WT littermate males except that they displayed digit abnormalities and osteopenic, whereas more severe OA was observed in SOST Tg mice at 2 and 8 weeks post-DMM. In addition, DMM resulted in significantly greater subchondral bone changes compared with sham surgery in SOST Tg mice at 8 weeks post-surgery. The accelerated OA in SOST Tg mice may be associated with reduced β-catenin signaling and increased chondrocyte apoptosis. CONCLUSION Overexpressing SOST led to accelerated development of instability-induced OA. Our data further highlight that cartilage homeostasis requires finely tuned Wnt signaling.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Yuxiang Ge
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Yixuan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Zhengyuan Bao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower of Clinical Medicine, Nanjing Medical UniversityNanjing, China
| | - Chen Yao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower of Clinical Medicine, Nanjing Medical UniversityNanjing, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing, Jiangsu, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing, Jiangsu, China
| |
Collapse
|
34
|
McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis 2017; 9:263-270. [PMID: 28974988 DOI: 10.1177/1759720x17726744] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
Sclerostin is an osteocyte-derived glycoprotein that inhibits Wnt/β-catenin signaling and activation of osteoblast function, thereby inhibiting bone formation. It plays a vital role in the regulation of skeletal growth. In adults, sclerostin secretion is modulated by skeletal loading (increased secretion with immobilization; less with weight bearing) and by hormonal/cytokine actions on the osteocyte. Sclerostin deficiency syndromes in humans and animals are characterized by high bone mass of normal quality. In animal models of osteoporosis, inhibition of sclerostin by monoclonal antibodies induces osteoblast activity and new bone formation, normalizing bone mass and improving bone architecture and strength. In recently completed clinical trials, anti-sclerostin antibody therapy results in marked increases in bone mineral density and rapid and substantial reduction in fracture risk. This review will focus on these recent studies and anticipate the role of anti-sclerostin therapy in the management of patients with osteoporosis.
Collapse
Affiliation(s)
- Michael R McClung
- Institute for Health and Ageing, Australian Catholic University, Melbourne, VIC Oregon Osteoporosis Center, 2881 NW Cumberland Road, Portland, OR 97210, USA
| |
Collapse
|
35
|
Huang JY, Guo D. [SOST knockdown promotes differentiation of osteoblasts MG63 and mesenchymal stem cells C3H10 in an in vitro model of bone metastasis of breast cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1035-1039. [PMID: 28801282 PMCID: PMC6765733 DOI: 10.3969/j.issn.1673-4254.2017.08.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate whether SOST is involved in breast cancer MDA-MB-231 cells-induced suppression of differentiation of osteoblast MG63 cells and mesenchymal stem C3H10 cells. METHODS SOST-specific small interfering RNA (siRNA) was transfected into breast cancer MDA-MB-231 cells, and the interfering efficiency was verified by RT-PCR. The supernatants were collected from MDA-MB-231 cells in routine culture, cells transfected with SOST siRNA via adenovirus, and cells transfected with empty adenoviral vectors and added in MG63 or C3H10 cell cultures. The changes in the expressions of OPG, OCN, OPN and IBSP in MG63 and C3H10 cells were detected using quantitative real-time PCR, and ALP activity was detected with ALP reading and ALP staining with the cells cultured in routine culture medium and cells in osteogenic induction medium as the negative and positive controls. RESULTS The adenovirus Ad-siSOST effectively knocked down the expression of SOST in MDA-MB-231 cells. MG63 cells and C3H10 cells cultured in osteogenic medium showed significantly upregulated expressions of the osteoblast markers OPG, OPN, OCN and IBSP (P<0.01), while co-culture with the supernatant of MDA-MB-231 cells obviously reduced the expressions of the osteoblast markers (P<0.01); the expression of the markers increased again in MG63 and C3H10 cells after treatment with the supernatant of MDA-MB-231 cells transfected with ad-siSOST (P<0.01). ALP activity in MG63 and C3H10 cells exhibited a similar pattern of variations in response to the treatments (P<0.01). CONCLUSION In the in vitro model of bone metastasis of breast cancer, the differentiation of MG63 or C3H10 cells is suppressed, which can be partly reversed by knocking down the expression of SOST in the bone metastasis microenvironment.
Collapse
Affiliation(s)
- Jia-Yi Huang
- 1Department of Pathophysiology, 2Research Center of Molecular Medicine and Cancer, Chongqing Medical University, Chongqing 400016, China.E-mail:
| | | |
Collapse
|
36
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
37
|
Theologis T, Efstathopoulos N, Nikolaou V, Charikopoulos I, Papapavlos I, Kokkoris P, Papatheodorou A, Nasiri-Ansari N, Kassi E. Association between serum and synovial fluid Dickkopf-1 levels with radiographic severity in primary knee osteoarthritis patients. Clin Rheumatol 2017; 36:1865-1872. [PMID: 28451870 DOI: 10.1007/s10067-017-3640-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
Primary knee osteoarthritis (OA) contributes to disability among middle-aged and elderly people. Dickkopf-1 (Dkk-1) and sclerostin are inhibitors of Wnt/β-catenin signaling pathway implicated in regulation of cartilage homeostasis and bone formation, respectively. We aim to investigate the association between the serum(s) and synovial fluid (SF) Dkk-1 and sclerostin levels and disease severity in patients with primary knee OA. Forty patients aged 56-87 years with primary knee OA and 20 healthy individuals were recruited. Weight-bearing anteroposterior radiographs of the affected knee were used to determine the disease severity according to Kellgren and Lawrence criteria. Dkk-1 and sclerostin levels in serum and SF were measured by ELISA. SF Dkk-1 levels were significantly higher in the OA, compared to control group (180 ± 182 vs 128 ± 330 pg/ml, p < 0.001). However, OA patients did not differ significantly regarding the sDkk-1 concentrations compared to healthy controls (1289.8 pg/ml vs 1214.1, respectively, p = 0.630). SF Dkk-1 levels in Kellgren and Lawrence (KL) grade 4 were significantly elevated compared to those of KL grades 2 and 3 (1.97 vs 2.23 pg/ml, p = 0.017, log transformed because data were not normally distributed), whereas sDkk-1 levels between those groups demonstrated marginally statistically significant difference (1111.8 vs 1415.9 pg/ml, p = 0.057). SFSclerostin and sSclerostin levels did not have any significant difference between the OA and control groups. SF Dkk-1 levels are positively related to the severity of joint damage in knee OA. Sclerostin levels failed to substantiate an association to knee OA progression. Dkk-1 could play a potential role in the degenerative process of OA. Thus, DKK-1 may emerge as a promising future therapeutic manipulation of OA.
Collapse
Affiliation(s)
- Thomas Theologis
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Nikolaos Efstathopoulos
- 2nd Department of Trauma and Orthopedics, National and Kapodistrian University of Athens, 2-4 Agias Olgas Str, 14233, Nea Ionia, Athens, Greece
| | - Vasileios Nikolaou
- 2nd Department of Trauma and Orthopedics, National and Kapodistrian University of Athens, 2-4 Agias Olgas Str, 14233, Nea Ionia, Athens, Greece
| | - Ioannis Charikopoulos
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Ioannis Papapavlos
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Panayiotis Kokkoris
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Athanasios Papatheodorou
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece.
| |
Collapse
|
38
|
Sang W, Jiang Y, Cheng B, Ma J, Zhu L, Lu H, Wang C. [Expression of Sclerostin in medial and lateral subchondral bone of the varus osteoarthritic knee plateau]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:295-299. [PMID: 29806257 DOI: 10.7507/1002-1892.201610082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To study the expression difference of Sclerostin in the medial and lateral subchondral bone of the varus osteoarthritic knee plateau. Methods The tibial plateau was obtained from 20 patients with varus knee osteoarthritis receiving total knee arthroplasty from March to October 2015. There were 8 males and 12 females with an average age of 67.8 years (range, 61-78 years). The mean course of osteoarthritis was 3.2 years (range, 2-5 years). Before operation, the varus angle was 12.0-25.5° (mean, 17.6°) on the X-ray film. Five cases were rated as grade III and 15 cases as grade IV according to Kellgren-Lawrance classification. Micro-CT scan was performed on the medial and lateral subchondral bone to compare the changes of bone structure; bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), structure model index (SMI), and the trabecular separation (Tb.Sp) were measured. Immunohistochemistry and real-time fluorescent quantitative PCR were used to test the expressions of Sclerostin protein and sost gene. Results Micro-CT showed that BV/TV, Tb.N, and Tb.Th significantly increased in the medial subchondral bone when compared with the lateral part ( P<0.05), but SMI and Tb.Sp significantly reduced ( P<0.05). Real-time fluorescent quantitative PCR detection showed that sost gene expression level in the medial subchondral bone (1.000) was significantly lower than that in the lateral part (4.157±2.790) ( t=2.371, P=0.040). The percentage of Sclerostin positive cells in the lateral subchondral bone (52.00%±0.19%) was significantly higher than that in the medial subchondral bone (7.20%±0.04%) ( t=5.094, P=0.005). Conclusion Sclerostin plays an important role in the subchondral bone remodeling of the varus osteoarthritic knee. And the low expression of Sclerostin may be an important factor to promote bone remodeling and aggravate knee deformity.
Collapse
Affiliation(s)
- Weilin Sang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Yafei Jiang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Biao Cheng
- Department of Orthopedics, Clinical Medical School, The Affiliated Shanghai No.10 People's Hospital, Nanjing Medical University, Shanghai, 200072,
| | - Jinzhong Ma
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Libo Zhu
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Haiming Lu
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Cong Wang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| |
Collapse
|