1
|
de Graav GN, Udomkarnjananun S, Baan CC, Reinders MEJ, Roodnat JI, de Winter BCM, Hesselink DA. New Developments and Therapeutic Drug Monitoring Options in Costimulatory Blockade in Solid Organ Transplantation: A Systematic Critical Review. Ther Drug Monit 2024:00007691-990000000-00289. [PMID: 39570574 DOI: 10.1097/ftd.0000000000001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE In this review, the authors summarized the latest developments in costimulatory blockade to prevent rejection after solid organ transplantation (SOT) and discussed possibilities for future research and the need for therapeutic drug monitoring (TDM) of these agents. METHODS Studies about costimulatory blockers in SOT in humans or animal transplant models in the past decade (2014-2024) were systematically reviewed in PubMed, European Union clinical trials (EudraCT), and ClinicalTrials.gov. RESULTS Seventy-five registered clinical trials and 58 published articles were found on costimulation blockade of the CD28-CD80/86, CD40-CD40L, and OX40-OX40L pathways. Belatacept, an antagonist of the CD28-CD80/86 pathway, is the only approved costimulatory agent in SOT, hence accounting for most of the research. Other identified costimulatory blocking agents included abatacept and CD28 antagonists tegoprubart, dazodalibep, and TNX-1500. Although tegoprubart was unsuccessful in pancreas transplantation in nonhuman primates, trials in human kidney transplantation are underway. Dazodalibep trials faced recruitment challenges. TNX-1500 was unsuccessful in animal studies and is currently not pursued in humans. After discontinuation of iscalimab (CD40-CD154 pathway antagonist) in SOT, the alternatives, bleselumab and KPL404, showed promising results in kidney transplantation and cardiac xenotransplantation. Studies on secondary costimulatory pathway antagonists, such as OX40-OX40L, have only used animal models. Despite the low interindividual variability in pharmacokinetics (PK) in all studied agents, TDM could be useful for optimizing dosing in PK/pharmacodynamic (PD) studies. CONCLUSIONS The routine use of costimulation blockade in SOT is hindered by problems in efficacy compared with the standard of care. Costimulatory inhibitors could be combined in a calcineurin inhibitor-free regimen. Future PK/pharmacodynamic studies in costimulatory agents and personalized medicine could warrant TDM of these agents.
Collapse
Affiliation(s)
- Gretchen N de Graav
- Department of Internal Medicine, Division of Nephrology, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | - Suwasin Udomkarnjananun
- Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carla C Baan
- Transplant Laboratory & Research Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marlies E J Reinders
- Department of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; and
| | - Joke I Roodnat
- Department of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; and
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; and
| |
Collapse
|
2
|
Wang JF, Yang XX, Zhang J, Zheng Y, Zhang FQ, Shi XF, Wang YL. Immunomodulation of adipose-derived mesenchymal stem cells on peripheral blood mononuclear cells in colorectal cancer patients with COVID-19. World J Gastrointest Oncol 2024; 16:2113-2122. [PMID: 38764823 PMCID: PMC11099452 DOI: 10.4251/wjgo.v16.i5.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Accumulating evidence has shown that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective therapeutic approach for managing coronavirus disease 2019 (COVID-19); however, further elucidation is required to determine their underlying immunomodulatory effect on the mRNA expression of T helper cell-related transcription factors (TFs) and cytokine release in peripheral blood mononuclear cells (PBMCs). AIM To investigate the impact of ADSCs on the mRNA expression of TFs and cytokine release in PBMCs from colorectal cancer (CRC) patients with severe COVID-19 (CRC+ patients). METHODS PBMCs from CRC+ patients (PBMCs-C+) and age-matched CRC patients (PBMCs-C) were stimulated and cultured in the presence/absence of ADSCs. The mRNA levels of T-box TF TBX21 (T-bet), GATA binding protein 3 (GATA-3), RAR-related orphan receptor C (RORC), and forkhead box P3 (FoxP3) in the PBMCs were determined by reverse transcriptase-polymerase chain reaction. Culture supernatants were evaluated for levels of interferon gamma (IFN-γ), interleukin 4 (IL-4), IL-17A, and transforming growth factor beta 1 (TGF-β1) using an enzyme-linked immunosorbent assay. RESULTS Compared with PBMCs-C, PBMCs-C+ exhibited higher mRNA levels of T-bet and RORC, and increased levels of IFN-γ and IL-17A. Additionally, a significant decrease in FoxP3 mRNA and TGF-β1, as well as an increase in T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-β1 ratios were observed in PBMCs-C+. Furthermore, ADSCs significantly induced a functional regulatory T cell (Treg) subset, as evidenced by an increase in FoxP3 mRNA and TGF-β1 release levels. This was accompanied by a significant decrease in the mRNA levels of T-bet and RORC, release of IFN-γ and IL-17A, and T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-β1 ratios, compared with the PBMCs-C+alone. CONCLUSION The present in vitro studies showed that ADSCs contributed to the immunosuppressive effects on PBMCs-C+, favoring Treg responses. Thus, ADSC-based cell therapy could be a beneficial approach for patients with severe COVID-19 who fail to respond to conventional therapies.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiao-Xia Yang
- Department of Neurology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jian Zhang
- Prosthodontics Studio, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Yan Zheng
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fu-Qing Zhang
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiao-Feng Shi
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yu-Liang Wang
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
3
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Zhang Z, Yang X, Meng Q, Long Y, Shi X, Wang Y. Adipose tissue-derived mesenchymal stromal cells attenuate acute lung injury induced by trauma and haemorrhagic shock. Immunobiology 2023; 228:152765. [PMID: 38029515 DOI: 10.1016/j.imbio.2023.152765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have shown promising therapeutic options for acute lung injury (ALI) caused by multiple factors. Here, we evaluated the therapeutic potential of adipose tissue-derived mesenchymal stromal cells (ADSCs) in trauma and hemorrhagic shock (THS)-induced ALI. METHODS ALI model induced by THS was constructed by fractures plus abdominal trauma plus acute hemorrhage plus fluid resuscitation. The ADSCs group rats were generated by injecting 2 × 106 ADSCs at 0 and 1 h after THS. The sham, ALI, and ADSCs group rats were sacrificed at 24 h after resuscitation. The changes in lung histopathology, total protein in bronchoalveolar lavage fluid (BALF), mRNA expression of pro-inflammatory/anti-inflammatory cytokines, antioxidant, and anti-apoptotic indicator, and the activity of Toll-like receptor 4 (TLR4) signaling in lung tissues were evaluated. RESULTS Administration of the ADSCs reversed ALI induced by THS, including lung histopathological changes/scores, and BALF total protein concentration. Additionally, ADSCs therapy also significantly down-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, and IL-6, up-regulated mRNA expression of anti-inflammatory IL-10, anti-apoptotic molecule Bcl-2, and anti-oxidative molecule HO-1 in THS rats. Furthermore, ADSCs suppressed the expression of TLR4 in lung tissue. CONCLUSION Our data show that ADSCs administration can exert therapeutic effects on THS-induced ALI in rats and may provide beneficial in preventative strategies for ALI.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaoxia Yang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Qinghong Meng
- Department of Clinical Laboratory Medicine, Eco-city Hospital of Tianjin Fifth Central Hospital, Tianjin 300467, China
| | - Yiyin Long
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Xiaofeng Shi
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Yuliang Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|
5
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
7
|
Storti G, Favi E, Albanesi F, Kim BS, Cervelli V. Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:11188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Francesca Albanesi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| |
Collapse
|
8
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
9
|
Chen X, Wang F, Huang Z, Wu Y, Geng J, Wang Y. Clinical applications of mesenchymal stromal cell-based therapies for pulmonary diseases: An Update and Concise Review. Int J Med Sci 2021; 18:2849-2870. [PMID: 34220313 PMCID: PMC8241779 DOI: 10.7150/ijms.59218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/09/2021] [Indexed: 12/15/2022] Open
Abstract
Lung disorders are a leading cause of morbidity and death worldwide. For many disease conditions, no effective and curative treatment options are available. Mesenchymal stromal cell (MSC)-based therapy is one of the cutting-edge topics in medical research today. It offers a novel and promising therapeutic option for various acute and chronic lung diseases due to its potent and broad-ranging immunomodulatory activities, bacterial clearance, tissue regeneration, and proangiogenic and antifibrotic properties, which rely on both cell-to-cell contact and paracrine mechanisms. This review covers the sources and therapeutic potential of MSCs. In particular, a total of 110 MSC-based clinical applications, either completed clinical trials with safety and early efficacy results reported or ongoing worldwide clinical trials of pulmonary diseases, are systematically summarized following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, including acute/viral pulmonary disease, community-acquired pneumonia (CAP), chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), interstitial lung diseases (ILD), chronic pulmonary fibrosis, bronchiolitis obliterans syndrome (BOS) and lung cancer. The results of recent clinical studies suggest that MSCs are a promising therapeutic approach for the treatment of lung diseases. Nevertheless, large-scale clinical trials and evaluation of long-term effects are necessary in further studies.
Collapse
Affiliation(s)
- Xiaobo Chen
- Unicell Life Science Development Co., Ltd, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiwei Huang
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Wu
- Department of Clinical Laboratory Medicine, Tianjin TEDA Hospital, Tianjin, China
| | - Jie Geng
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
10
|
Injectable hydrogel delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhao L, Hu C, Han F, Cai F, Wang J, Chen J. Preconditioning is an effective strategy for improving the efficiency of mesenchymal stem cells in kidney transplantation. Stem Cell Res Ther 2020; 11:197. [PMID: 32448356 PMCID: PMC7245776 DOI: 10.1186/s13287-020-01721-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The inevitable side effects caused by lifelong immunosuppressive agents in kidney transplantation patients spurred the exploration of novel immunosuppressive strategies with definite curative effects and minimal adverse effects. Mesenchymal stem cells (MSCs) have become a promising candidate due to their role in modulating the immune system. Encouraging results obtained from experimental models have promoted the translation of this strategy into clinical settings. However, the demonstration of only marginal or transient benefits by several recent clinical controlled studies has made physicians hesitant to adopt the routine utilization of this procedure in clinical settings. Impaired MSC function after infusion in vivo was thought to be the main reason for their limited effects. For this reason, some preconditioning methods were developed. In this review, we aim to outline the current understanding of the preconditioning methods being explored as a strategy to improve the therapeutic effects of MSCs in kidney transplantation and promote its clinical translation.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Da Sacco S, Perin L, Sedrakyan S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 2018. [PMID: 28620747 DOI: 10.1007/s00467-017-3711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA.
| |
Collapse
|
13
|
Adipose-derived cellular therapies in solid organ and vascularized-composite allotransplantation. Curr Opin Organ Transplant 2018; 22:490-498. [PMID: 28873074 DOI: 10.1097/mot.0000000000000452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Controlling acute allograft rejection following vascularized composite allotransplantation requires strict adherence to courses of systemic immunosuppression. Discovering new methods to modulate the alloreactive immune response is essential for widespread application of vascularized composite allotransplantation. Here, we discuss how adipose-derived cellular therapies represent novel treatment options for immune modulation and tolerance induction in vascularized composite allotransplantation. RECENT FINDINGS Adipose-derived mesenchymal stromal cells are cultured from autologous or allogeneic adipose tissue and possess immunomodulatory qualities capable of prolonging allograft survival in animal models of vascularized composite allotransplantation. Similar immunosuppressive and immunomodulatory effects have been observed with noncultured adipose stromal-vascular-fraction-derived therapies, albeit publication of in-vivo stromal vascular fraction cell modulation in transplantation models is lacking. However, both stromal vascular fraction and adipose derived mesenchymal stem cell therapies have the potential to effectively modulate acute allograft rejection via recruitment and induction of regulatory immune cells. SUMMARY To date, most reports focus on adipose derived mesenchymal stem cells for immune modulation in transplantation despite their phenotypic plasticity and reliance upon culture expansion. Along with the capacity for immune modulation, the supplemental wound healing and vasculogenic properties of stromal vascular fraction, which are not shared by adipose derived mesenchymal stem cells, hint at the profound therapeutic impact stromal vascular fraction-derived treatments could have on controlling acute allograft rejection and tolerance induction in vascularized composite allotransplantation. Ongoing projects in the next few years will help design the best applications of these well tolerated and effective treatments that should reduce the risk/benefit ratio and allow more patients access to vascularized composite allotransplantation therapy.
Collapse
|
14
|
Van Pham P, Nguyen HT, Vu NB. Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products. STEM CELL DRUGS - A NEW GENERATION OF BIOPHARMACEUTICALS 2018. [DOI: 10.1007/978-3-319-99328-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Manzoli V, Colter DC, Dhanaraj S, Fornoni A, Ricordi C, Pileggi A, Tomei AA. Engineering human renal epithelial cells for transplantation in regenerative medicine. Med Eng Phys 2017; 48:3-13. [DOI: 10.1016/j.medengphy.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Accepted: 03/26/2017] [Indexed: 12/16/2022]
|
16
|
Gao W, Zhang L, Zhang Y, Sun C, Chen X, Wang Y. Adipose-derived mesenchymal stem cells promote liver regeneration and suppress rejection in small-for-size liver allograft. Transpl Immunol 2017; 45:1-7. [PMID: 28778713 DOI: 10.1016/j.trim.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) possess a liver regeneration capacity and immunosuppressive activity and hold promise in autologous cell-based technology. This study aimed to determine whether autologous ADSCs can improve outcomes in the rat reduced size liver transplantation model. Allogeneic 50% orthotopic liver transplantation followed by administration of autologous ADSCs delivered into the portal vein system was conducted in LEW donor rats and BN recipient rats with phosphate buffered solution (PBS) infusion used as the control. Liver grafts and recipient serum were obtained. We assessed histopathology, regeneration, apoptosis, serum liver enzymes, serum cytokines, and circulating regulatory T cells (Tregs) on postoperative day (POD) 7 and 14. It was found that ADSCs significantly reduced acute rejection and improved the allograft's survival times (median, 24days). Liver function, as assessed by the levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, as well as liver apoptosis was significantly alleviated in the ADSC group compared with the control group. In addition, ADSC therapy markedly promoted the expression of PCNA in the allograft. Furthermore, levels of interleukin (IL)-10 and transforming growth factor (TGF)-β1 were significantly elevated, whereas those of IL-2 and IL-17 levels were significantly reduced in the ADSC group when compared to the control group. Moreover, flow cytometry analysis revealed that peripheral Tregs had been significantly increased by the infusion of ADSCs. These results demonstrate that implanted autologous ADSCs improve allogeneic reduced size liver allograft outcomes by attenuating acute rejection and reducing inflammatory responses, as well as enhancing liver regeneration.
Collapse
Affiliation(s)
- Wei Gao
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Luzhou Zhang
- Department of Hepatobiliary Surgery, People's Hospital of Zhucheng City, Shandong 262200, China
| | - Yanyan Zhang
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1170, CNRS GDR 3697 Micronit, 94805 Villejuif, France; Institut Gustave Roussy, Univ Paris-Sud, Université Paris Saclay, 94805 Villejuif, France
| | - Chao Sun
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd., Tianjin 300384, China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|
17
|
Jin Y, Yang L, Zhang Y, Gao W, Yao Z, Song Y, Wang Y. Effects of age on biological and functional characterization of adipose-derived stem cells from patients with end-stage liver disease. Mol Med Rep 2017; 16:3510-3518. [DOI: 10.3892/mmr.2017.6967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
|
18
|
Zhang Y, Meng Q, Zhang Y, Chen X, Wang Y. Adipose-derived mesenchymal stem cells suppress of acute rejection in small bowel transplantation. Saudi J Gastroenterol 2017; 23:323-329. [PMID: 29205184 PMCID: PMC5738793 DOI: 10.4103/sjg.sjg_122_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Adipose-derived mesenchymal stem cells (ADSCs) possess immunosuppressive activity and hold promise in autologous cell-based therapies. The aim of this study was to determine whether autologous ADSCs can improve outcomes in the rat small bowel transplantation (SBT) model. MATERIALS AND METHODS Allogeneic SBT followed by implantation of autologous ADSCs through the penile vein was conducted in Brown-Norway (BN) donor rats with Lewis (LEW) recipient rats infused with phosphate buffered solution as the control. Allograft and recipient peripheral blood were obtained. We assessed histopathology, apoptosis, cytokines, and regulatory T cells (Tregs). One-way analysis of variance was applied to assess the significance of the data. RESULTS It was found that ADSCs significantly reduced acute rejection and improved the allograft's survival rate. In addition, there were significantly fewer apoptotic cells in allograft mucosae in the ADSC group in comparison with the control group. Furthermore, levels of interleukin (IL)-10 and transforming growth factor-β1 were significantly elevated, whereas those of IL-2 and IL-17 levels were significantly reduced in the ADSC group when compared to the control group. Moreover, flow cytometry analysis revealed that there were significantly more peripheral Tregs after the infusion of ADSCs. CONCLUSIONS These results demonstrate that implanted autologous ADSCs improve allogeneic small bowel allograft outcomes by attenuating the acute rejection and reducing inflammatory responses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Qinghong Meng
- Department of Clinical Laboratory Medicine, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanyan Zhang
- Institut National de la Santé et de la Recherche Médicale (INSERM), Micronit, France,Institut Gustave Roussy, Univ Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd, Tianjin, People's Republic of China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, People's Republic of China,Tianjin First Central Hospital, Tianjin, People's Republic of China,Address for correspondence: Dr. Yuliang Wang, Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, People's Republic of China. E-mail:
| |
Collapse
|