1
|
Tan R, Ou S, Kang T, Wu W, Xiong L, Zhu T, Zhang L. Altered serum metabolome associated with vascular calcification developed from CKD and the critical pathways. Front Cardiovasc Med 2023; 10:1114528. [PMID: 37113701 PMCID: PMC10126378 DOI: 10.3389/fcvm.2023.1114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Vascular calcification (VC) is more likely to be detected in the chronic kidney disease (CKD) population. The mechanism of VC development from CKD is different from that for simple VC and has always been a major research area. The aim of this study was to detect alterations in the metabolome during development of VC in CKD and to identify the critical metabolic pathways and metabolites involved in its pathogenesis. Methods Rats in the model group were given an adenine gavage combined with a high-phosphorus diet to imitate VC in CKD. The aorta calcium content was measured and used to divide the model group into a VC group and non-vascular calcification group (non-VC group). The control group was fed a normal rat diet and given a saline gavage. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to determine the altered serum metabolome in the control, VC, and non-VC groups. The identified metabolites were mapped into the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg/) for pathway and network analyses. Result There were 14 metabolites that changed significantly in the VC group, with three metabolic pathways playing critical roles in the pathogenesis of VC in CKD: steroid hormone biosynthesis; valine, leucine and isoleucine biosynthesis; and pantothenate and CoA biosynthesis. Conclusion Our results indicated changes in the expression of steroid sulfatase and estrogen sulfotransferase, and down-regulation of the in situ synthesis of estrogens in the VC group. In conclusion, the serum metabolome alters significantly during the pathogenesis of VC in CKD. The key pathways, metabolites, and enzymes we identified are worth further study and may become a promising therapeutic target for the treatment of VC in CKD.
Collapse
Affiliation(s)
- Ruyu Tan
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nephrology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Santao Ou
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, China
- Correspondence: Santao Ou
| | - Ting Kang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Weihua Wu
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, China
| | - Lin Xiong
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tingting Zhu
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liling Zhang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Bispo DC, Jesus CSH, Correia M, Ferreira F, Bonifazio G, Goodfellow BJ, Oliveira MB, Mano JF, Gil AM. NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal Stem Cells. J Proteome Res 2022; 21:654-670. [PMID: 35061379 PMCID: PMC9776527 DOI: 10.1021/acs.jproteome.1c00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Article presents, for the first time to our knowledge, an untargeted nuclear magnetic resonance (NMR) metabolomic characterization of the polar intracellular metabolic adaptations of human adipose-derived mesenchymal stem cells during osteogenic differentiation. The use of mesenchymal stem cells (MSCs) for bone regeneration is a promising alternative to conventional bone grafts, and untargeted metabolomics may unveil novel metabolic information on the osteogenic differentiation of MSCs, allowing their behavior to be understood and monitored/guided toward effective therapies. Our results unveiled statistically relevant changes in the levels of just over 30 identified metabolites, illustrating a highly dynamic process with significant variations throughout the whole 21-day period of osteogenic differentiation, mainly involving amino acid metabolism and protein synthesis; energy metabolism and the roles of glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation; cell membrane metabolism; nucleotide metabolism (including the specific involvement of O-glycosylation intermediates and NAD+); and metabolic players in protective antioxidative mechanisms (such as glutathione and specific amino acids). Different metabolic stages are proposed and are supported by putative biochemical explanations for the metabolite changes observed. This work lays the groundwork for the use of untargeted NMR metabolomics to find potential metabolic markers of osteogenic differentiation efficacy.
Collapse
Affiliation(s)
- Daniela
S. C. Bispo
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina S. H. Jesus
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Marlene Correia
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa Ferreira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Giulia Bonifazio
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,Department
of Biotechnology Lazzaro Spallanzani, University
of Pavia, Corso Str.
Nuova, 65, 27100 Pavia PV, Italy
| | - Brian J. Goodfellow
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana B. Oliveira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,
| |
Collapse
|
3
|
Bispo DSC, Jesus CSH, Marques IMC, Romek KM, Oliveira MB, Mano JF, Gil AM. Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Rev Rep 2021; 17:2003-2024. [PMID: 34131883 DOI: 10.1007/s12015-021-10193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
This review describes the use of metabolomics to study stem cell (SC) characteristics and function, excluding SCs in cancer research, suited to a fully dedicated text. The interest in employing metabolomics in SC research has consistently grown and emphasis is, here, given to developments reported in the past five years. This text informs on the existing methodologies and their complementarity regarding the information provided, comprising untargeted/targeted approaches, which couple mass spectrometry or nuclear magnetic resonance spectroscopy with multivariate analysis (and, in some cases, pathway analysis and integration with other omics), and more specific analytical approaches, namely isotope tracing to highlight particular metabolic pathways, or in tandem microscopic strategies to pinpoint characteristics within a single cell. The bulk of this review covers the existing applications in various aspects of mesenchymal SC behavior, followed by pluripotent and neural SCs, with a few reports addressing other SC types. Some of the central ideas investigated comprise the metabolic/biological impacts of different tissue/donor sources and differentiation conditions, including the importance of considering 3D culture environments, mechanical cues and/or media enrichment to guide differentiation into specific lineages. Metabolomic analysis has considered cell endometabolomes and exometabolomes (fingerprinting and footprinting, respectively), having measured both lipid species and polar metabolites involved in a variety of metabolic pathways. This review clearly demonstrates the current enticing promise of metabolomics in significantly contributing towards a deeper knowledge on SC behavior, and the discovery of new biomarkers of SC function with potential translation to in vivo clinical practice.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Inês M C Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Katarzyna M Romek
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|