1
|
Tweij TAR, Al-Issa MA, Hamed M, Khaleq MAA, Jasim A, R Hadi N. PRETREATMENT WITH ERYTHROPOIETIN ALLEVIATES THE RENAL DAMAGE INDUCED BY ISCHEMIA REPERFUSION VIA REPRESSION OF INFLAMMATORY RESPONSE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:2939-2947. [PMID: 36723307 DOI: 10.36740/wlek202212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: This study aimed to examine the anti-inflammatory, and antiapoptotic effects of erythropoietin against kidney injury inducted by ischemia reperfusion in experimental model. PATIENTS AND METHODS Materials and methods: 20 male Sprague Dawley rats were randomly divided into 4 equal groups: sham (subject to median laparotomy only), control (subject to 30 minutes ischemia and 2hours reperfusion), vehicle (injected by distilled water and subjected to the same procedure of ischemia reperfusion), erythropoietin group (as in vehicle group but the rats pretreated with 1000 U/kg of erythropoietin). The left kidney and blood specimen were collected. The blood utilized to assess serum creatinine. While kidneys utilized to assessed MCP-1, TLR2, and caspase-3 in addition to histopathological evaluation. RESULTS Results: Control and vehicle samples showed that a significant elevation in serum creatinine, TLR2, caspase-3, and MCP-1 as compared with sham group. The histological eval¬uation showed a significant rise in kidney injury scores. Kidneys and blood samples of erythropoietin pretreated rats established histopathological and functional improvement as evidenced via reduced kidney injury scores in addition to the reduction in serum creatinine, as well as there were a significant diminished in caspase-3, MCP-1, and TLR2 levels when compared with control and vehicle groups. CONCLUSION Conclusions: Erythropoietin has renoprotective effect against ischemia and reperfusion, which achieved by decrease the inflammatory response as well as antiapoptotic effect.
Collapse
Affiliation(s)
- Thu-Alfeqar R Tweij
- DEPARTMENT OF BASIC SCIENCE, FACULTY OF DENTISTRY, UNIVERSITY OF KUFA, AL NAJAF AL-ASHRAF, IRAQ
| | - Maryam A Al-Issa
- FACULTY OF PHARMACY, JABIR IBN HAYYAN MEDICAL UNIVERSITY, AL NAJAF AL-ASHRAF, IRAQ
| | - Manar Hamed
- DEPARTMENT OF BASIC SCIENCE, FACULTY OF DENTISTRY, UNIVERSITY OF KUFA, AL NAJAF AL-ASHRAF, IRAQ
| | | | - Abdullah Jasim
- DEPARTMENT OF INTERNAL MEDICINE, COLLEGE OF MEDICINE, IRAQIA UNIVERSITY, BAGHDAD, IRAQ
| | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, AL NAJAF AL-ASHRAF, IRAQ
| |
Collapse
|
2
|
Deficiency of mindin reduces renal injury after ischemia reperfusion. Mol Med 2022; 28:152. [PMID: 36510147 PMCID: PMC9743537 DOI: 10.1186/s10020-022-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute renal injury (AKI) secondary to ischemia reperfusion (IR) injury continues to be a significant perioperative problem and there is no effective treatment. Mindin belongs to the mindin/F-spondin family and involves in inflammation, proliferation, and cell apoptosis. Previous studies have explored the biological functions of mindin in liver and brain ischemic injury, but its role in AKI is unknown. METHOD To investigate whether mindin has a pathogenic role, mindin knockout (KO) and wild-type (WT) mice were used to establish renal IR model. After 30 min of ischemia and 24 h of reperfusion, renal histology, serum creatinine, and inflammatory response were examined to assess kidney injury. In vitro, proinflammatory factors and inflammatory signaling pathways were measured in mindin overexpression or knockdown and vector cells after hypoxia/reoxygenation (HR). RESULTS Following IR, the kidney mindin level was increased in WT mice and deletion of mindin provided significant protection for mice against IR-induced renal injury as manifested by attenuated the elevation of serum creatinine and blood urea nitrogen along with less severity for histological alterations. Mindin deficiency significantly suppressed inflammatory cell infiltration, TNF-α and MCP-1 production following renal IR injury. Mechanistic studies revealed that mindin deficiency inhibits TLR4/JNK/NF-κB signaling activation. In vitro, the expression levels of TNF-α and MCP-1 were increased in mindin overexpression cells compared with vector cells following HR. Moreover, TLR4/JNK/NF-κB signaling activation was elevated in the mindin overexpression cells in response to HR stimulation while mindin knockdown inhibited the activation of TLR4/JNK/ NF-κB signaling after HR in vitro. Further study showed that mindin protein interacted directly with TLR4 protein. And more, mindin protein was confirmed to be expressed massively in renal tubule tissues of human hydronephrosis patients. CONCLUSION These data demonstrate that mindin is a critical modulator of renal IR injury through regulating inflammatory responses. TLR4/JNK/NF-κB signaling most likely mediates the biological function of mindin in this model of renal ischemia.
Collapse
|
3
|
Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced Neuropathic Pain Exhibits Different Molecular Mechanisms in the Mouse Spinal Cord Via Bioinformatics Analysis Based on RNA Sequencing. J Neuroimmune Pharmacol 2022; 17:553-575. [PMID: 35059976 DOI: 10.1007/s11481-021-10044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), remains one of the most diverse crucial health and development challenges around the world. People infected with HIV constitute a large patient population, and a significant number of them experience neuropathic pain. To study the key mechanisms that mediate HIV-induced neuropathic pain (HNP), we established an HNP mouse model via intrathecal injection of the HIV-1 envelope glycoprotein gp120. The L3~L5 spinal cord was isolated on postoperative days 1/12 (POD1/12), 1 (POD1), and 14 (POD14) for RNA sequencing to investigate the gene expression profiles of the initiation, transition, and maintenance stages of HNP. A total of 1682, 430, and 413 differentially expressed genes were obtained in POD1/12, POD1, and POD14, respectively, and their similarity was low. Bioinformatics analysis confirmed that POD1/12, POD1, and POD14 exhibited different biological processes and signaling pathways. Inflammation, oxidative damage, apoptosis, and inflammation-related signaling pathways were enriched on POD1/12. Inflammation, chemokine activity, and downstream signaling regulated by proinflammatory cytokines, such as the MTOR signaling pathway, were enriched on POD1, while downregulation of ion channel activity, mitochondrial damage, endocytosis, MAPK and neurotrophic signaling pathways developed on POD14. Additionally, we screened key genes and candidate genes, which were verified at the transcriptional and translational levels. Our results suggest that the initiation and maintenance of HNP are regulated by different molecular mechanisms. Therefore, our research may yield a fresh and deeper understanding of the mechanisms underlying HNP, providing accurate molecular targets for HNP therapy.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Meng F, Chen Q, Gu S, Cui R, Ma Q, Cao R, Zhao M. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren Fail 2022; 44:672-681. [PMID: 35416113 PMCID: PMC9009919 DOI: 10.1080/0886022x.2022.2032746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNA (circRNA) is involved in the process of acute kidney injury (AKI), but only a few circRNAs have been reported. In the study, we investigated a new circRNA and its association with AKI. Methods An AKI model was established in Sprague-Dawley rats, followed by serum creatinine and urea nitrogen tests measured by a biochemical analyzer. The pathological changes and apoptosis in the renal tissue were detected by Hematoxylin and Eosin, and TUNEL staining. Then, circRNA expression in AKI was determined by quantitative real-time-PCR (qRT-PCR). NRK-52E cells were induced with hypoxia/reoxygenation (H/R) as in vitro models and the circ-Snrk level was tested by qRT-PCR. The effects of circ-Snrk in H/R-induced NRK-52E cells were assessed by flow cytometry, western blot, and enzyme-linked immunosorbent assay. Finally, RNA sequencing and western blot analysis were used to validate the mRNA profile and pathways involved in circ-Snrk knockdown in H/R-induced NRK-52E. Results A reliable AKI rat model and H/R cell model were established. qRT-PCR demonstrated that circ-Snrk level was upregulated in AKI left kidney tissue and NRK-52E cells with H/R treatment. Circ-Snrk knockdown inhibited apoptosis of NRK-52E cells and secretion of inflammatory factors (IL-6 and TNF-α). RNA sequencing showed that the mRNA profile changed after inhibition of circ-Snrk and differential expression of mRNA mainly enriched various signaling pathways, including MAPK signaling pathway. Furthermore, western blot indicated that circ-Snrk knockdown could inhibit the activation of p-JNK and p-38 transcription factors. Conclusions Circ-Snrk is involved in AKI development and associated with the MAPK signaling pathway in AKI.
Collapse
Affiliation(s)
- Fanhang Meng
- Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyuan Chen
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Gu
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiwen Cui
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Ma
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ronghua Cao
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
El-Maadawy WH, Hassan M, Hafiz E, Badawy MH, Eldahshan S, AbuSeada A, El-Shazly MAM, Ghareeb MA. Co-treatment with Esculin and erythropoietin protects against renal ischemia-reperfusion injury via P2X7 receptor inhibition and PI3K/Akt activation. Sci Rep 2022; 12:6239. [PMID: 35422072 PMCID: PMC9010483 DOI: 10.1038/s41598-022-09970-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia/reperfusion (RI/R) is a critical clinical outcome with slightly reported improvement in mortality and morbidity. Effective therapies are still crucially required. Accordingly, the therapeutic effects of esculin (ESC, LCESI-MS/MS-isolated compound from Vachellia farnesiana flowers extract, with reported P2X7 receptor inhibitor activity) alone and in combination with erythropoietin (EPO) were investigated against RI/R injury and the possible underlying mechanisms were delineated. ESC and EPO were administered for 7 days and 30 min prior to RI, respectively. Twenty-four hour following reperfusion, blood and kidney samples were collected. Results revealed that pretreatment with either ESC or EPO reduced serum nephrotoxicity indices, renal oxidative stress, inflammatory, and apoptosis markers. They also ameliorated the renal histopathological injury on both endothelial and tubular epithelial levels. Notably, ESC markedly inhibited P2X7 receptors and NLRP3 inflammasome signaling (downregulated NLRP3 and Caspase-1 gene expressions), whereas EPO significantly upregulated PI3K and Akt gene expressions, also p-PI3K and p-Akt levels in renal tissues. ESC, for the first time, demonstrated effective protection against RI/R-injury and its combination with EPO exerted maximal renoprotection when compared to each monotherapy, thereby representing an effective therapeutic approach via inhibiting oxidative stress, inflammation, renal tubular and endothelial injury, apoptosis, and P2X7 receptors expression, and activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt.
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mohamed H Badawy
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Samir Eldahshan
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - AbdulRahman AbuSeada
- Anesthesia Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Maha A M El-Shazly
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| |
Collapse
|
6
|
Human Endothelial Progenitor Cells Protect the Kidney against Ischemia-Reperfusion Injury via the NLRP3 Inflammasome in Mice. Int J Mol Sci 2022; 23:ijms23031546. [PMID: 35163466 PMCID: PMC8835871 DOI: 10.3390/ijms23031546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and progression to chronic kidney disease (CKD). However, no effective therapeutic intervention has been established for ischemic AKI. Endothelial progenitor cells (EPCs) have major roles in the maintenance of vascular integrity and the repair of endothelial damage; they also serve as therapeutic agents in various kidney diseases. Thus, we examined whether EPCs have a renoprotective effect in an IRI mouse model. Mice were assigned to sham, EPC, IRI-only, and EPC-treated IRI groups. EPCs originating from human peripheral blood were cultured. The EPCs were administered 5 min before reperfusion, and all mice were killed 72 h after IRI. Blood urea nitrogen, serum creatinine, and tissue injury were significantly increased in IRI mice; EPCs significantly improved the manifestations of IRI. Apoptotic cell death and oxidative stress were significantly reduced in EPC-treated IRI mice. Administration of EPCs decreased the expression levels of NLRP3, cleaved caspase-1, p-NF-κB, and p-p38. Furthermore, the expression levels of F4/80, ICAM-1, RORγt, and IL-17RA were significantly reduced in EPC-treated IRI mice. Finally, the levels of EMT-associated factors (TGF-β, α-SMA, Snail, and Twist) were significantly reduced in EPC-treated IRI mice. This study shows that inflammasome-mediated inflammation accompanied by immune modulation and fibrosis is a potential target of EPCs as a treatment for IRI-induced AKI and the prevention of progression to CKD.
Collapse
|
7
|
Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:ijms222011188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia–reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
|
8
|
The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22147682. [PMID: 34299300 PMCID: PMC8307237 DOI: 10.3390/ijms22147682] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.
Collapse
|
9
|
Renal Tubular Epithelial TRPA1 Acts as An Oxidative Stress Sensor to Mediate Ischemia-Reperfusion-Induced Kidney Injury through MAPKs/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22052309. [PMID: 33669091 PMCID: PMC7956664 DOI: 10.3390/ijms22052309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2'-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1-/- mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.
Collapse
|
10
|
Qin LY, Lin X, Liu J, Dong R, Yuan J, Zha Y. The combination of vitamin D3 and erythropoietin alleviates acute kidney injury induced by ischemia-reperfusion via inhibiting inflammation and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:167-174. [PMID: 33953855 PMCID: PMC8061330 DOI: 10.22038/ijbms.2020.51384.11661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/12/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Acute renal ischemia may cause acute renal dysfunction due to lack of blood supply; the manifestations are renal tubular cell apoptosis, infiltration of macrophages, and microvascular destruction. Many studies have shown that erythropoietin (EPO) and vitamin D3 (VD3) can be used to prevent or treat renal ischemia-reperfusion (I/R) injury, and VD3 may interact with EPO. In the present study, the effects of the combination of VD3 and EPO in I/R acute kidney injury were studied. MATERIALS AND METHODS Rats were divided into 5 groups: sham-operated (SHAM), AKI without treatment (AKI-control), AKI treatment with VD3(AKI+VD3), AKI treatment with EPO(AKI+EPO), AKI treatment with VD3 and EPO(AKI+VD3+EPO). The effects of the combination of VD3 and EPO on AKI were assessed by histologic, inflammation, and apoptosis studies. RESULTS The degree of damage in renal tissue was significantly reduced in VD3, EPO, and combined groups. Combination therapy with VD3 and EPO markedly improved Creatinine clearance rate (CCr). The combined treatment group showed the lowest F4/80+ and CD68+ expressions. The expression of Bcl-2 in the combined treatment group was higher than those in VD3 group and the EPO group, while Bax's expression goes in the opposite direction. CONCLUSION This provides further evidence that VD3 and EPO have beneficial effects in I/R injury via anti-inflammatory and anti-apoptosis pathways. The synergistic protective effect of VD3 and EPO is of profound significance in the development of new strategies for the prevention and treatment of acute kidney injury (AKI).
Collapse
Affiliation(s)
- Long-yan Qin
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Juan Liu
- Department of Operating Room, The First Affiliated Hospital of Guizhou University of traditional Chinese medicine, Guiyang, Guizhou, 550001, P.R. China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| |
Collapse
|
11
|
Zhang J, Luo X, Huang C, Pei Z, Xiao H, Luo X, Huang S, Chang Y. Erythropoietin prevents LPS-induced preterm birth and increases offspring survival. Am J Reprod Immunol 2020; 84:e13283. [PMID: 32506750 PMCID: PMC7507205 DOI: 10.1111/aji.13283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that infections might play a significant and potentially preventable cause of premature birth. This work assessed the effects of erythropoietin (EPO) in a murine model of inflammation-associated preterm delivery, which mimics central features of preterm infections in humans. METHOD OF STUDY BALB/c mice were injected i.p. with 20 000 IU/kg EPO or normal saline twice on gestational day (GD) 15, with a 3 hours time interval between injections. An hour after the first EPO or normal saline injection, all mice received two injections of 50 μg/kg LPS, also given 3 hours apart. RESULTS EPO significantly prevented preterm labor and increased offspring survival in an LPS induced preterm delivery model. EPO prevented LPS-induced leukocyte infiltration into the placenta. Moreover, EPO inhibited the expression of pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α) in maternal serum and amniotic fluid. EPO also prevented LPS-induced increase in placental prostaglandin (PG)E2 and uterine inducible nitric oxide synthase (iNOS) production, while decreasing nuclear factor kappa-B (NF-κβ) activity in the myometrium. EPO also increased the gene expression of placental programmed cell death ligand 1 (PD-L1) in LPS-treated mice. CONCLUSIONS Our results suggest that EPO could be a potential novel therapeutic strategy to tackle infection-related preterm labor.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Xianqiong Luo
- Department of PediatricsGuangdong Women and Children HospitalGuangzhouChina
| | - Caicai Huang
- Department of ObstetricsGuangdong Women and Children HospitalGuangzhouChina
| | - Zheng Pei
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Huimei Xiao
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Xingang Luo
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Shuangmiao Huang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Yanqun Chang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| |
Collapse
|
12
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
13
|
Altun G, Cakiroglu Y, Pulathan Z, Yulug E, Mentese A. Renoprotective potential of exogen erythropoietin on experimental ruptured abdominal aortic aneurysm model: An animal study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:271-276. [PMID: 32405372 PMCID: PMC7211356 DOI: 10.22038/ijbms.2019.36215.8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective(s): The aim of this study is to investigate the renoprotective effect of erythropoietin (EPO) on hypovolemic shock and ischemia/reperfusion (IR) injury on kidneys as end-organs in an experimentally-created ruptured abdominal aortic aneurysm (rAAA) model. Materials and Methods: Thirty anesthetized Sprague-Dawley male rats were randomized to sham ((Sh n:6) (Sh+EPO n:6)) or shock and I/R groups ((S/IR n:9) (S/IR+EPO n:9)). Additional surgical procedure except aortic exploration was not performed on Sh and Sh+EPO groups. 60 min of shock, 60 min of ischemia, and 120 min of reperfusion were applied on S/IR and S/IR+EPO groups. In the S/IR and S/IR+EPO groups, hemorrhagic shock, lower torso ischemia, and reperfusion were created. At the end of the shock period, saline solutions were separately and equally administered to Sh and S/IR groups, whereas 2000 U/kg EPO was intraperitoneally administered to Sh+EPO and S/IR+EPO groups. At the end of the experimental study, some biochemical and histological parameters were studied in serum and kidney tissues. Results: Biochemical parameters were all significantly increased in the S/IR group compared with the Sh group. These parameters were not statistically significantly different between S/IR+EPO and Sh+EPO groups. In histopathologic examination, EPO prevented high-grade injury. Conclusion: Our data indicate that EPO may have a renoprotective effect and reduce the systemic inflammatory response that resulted from shock and I/R in an experimental model of rAAA.
Collapse
Affiliation(s)
- Gokalp Altun
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yavuz Cakiroglu
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zerrin Pulathan
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
14
|
Erythropoietin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury via Inflammasome Suppression in Mice. Int J Mol Sci 2020; 21:ijms21103453. [PMID: 32414157 PMCID: PMC7278975 DOI: 10.3390/ijms21103453] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is the most common condition in hospitalized patients. As ischemia/reperfusion-induced AKI (IR-AKI) is as a major contributor to end-stage disease, an effective therapeutic intervention for IR-AKI is imperative. Erythropoietin (EPO) is a potent stimulator of erythroid progenitor cells and is significantly upregulated during hypoxia. Here, we investigated the renoprotective effects of EPO in an IR-AKI mouse model. Mice were assigned to sham, EPO only, and IR only groups, and the IR group was treated with EPO prior to injury. EPO was administered twice at 30 min prior to bilateral renal artery occlusion, and 5 min before reperfusion, with all mice sacrificed 24 h after IR-AKI. The serum was harvested for renal functional measurements. The kidneys were subjected to histological evaluation, and the biochemical changes associated with renal injury were assessed. EPO significantly attenuated the renal dysfunction associated with IR-AKI, as well as tissue injury. Apoptotic cell death and oxidative stress were significantly reduced in EPO-treated mice. Macrophage infiltration and expression of ICAM-1 and MCP-1 were also significantly reduced in EPO-treated mice. Furthermore, the expression of inflammasome-related factors (NLRP1, NLRP3, and caspase-1 cleavage), via the activation of the COX-2 and NF-B signaling pathways were significantly reduced following EPO treatment. To our knowledge, this is the first study to demonstrate that inflammasome-mediated inflammation might be a potential target of EPO as a treatment for ischemic AKI.
Collapse
|
15
|
Jiang Z, Chen Z, Hu L, Qiu L, Zhu L. Calreticulin Blockade Attenuates Murine Acute Lung Injury by Inducing Polarization of M2 Subtype Macrophages. Front Immunol 2020; 11:11. [PMID: 32082309 PMCID: PMC7002388 DOI: 10.3389/fimmu.2020.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Calreticulin (CALR) has anti-tumor effects by increasing dendritic cell maturation and tumor antigen presentation. However, whether CALR affects macrophages and modulates progression of acute respiratory distress syndrome/acute lung injury (ARDS/ALI) remains unknown. In this study, we discovered that CALR protein was highly expressed in the mice with LPS-induced ALI and CALR expression level was positively correlated to the severity of ALI. Commercial anti-CALR antibody (aCALR) can neutralize recombinant CALR (rCALR) and suppress the expression of TNF-alpha and IL-6 in the rCALR-treated macrophages. Blocking CALR activity by intraperitoneal (i.p.) administration of aCALR significantly suppressed ALI, accompanied with lower total cell counts, neutrophil and T cell infiltration in bronchoalveolar lavage (BAL) and lung tissues. The expression of CXCL15, IL-6, IL-1beta, TNF-alpha, and CALR were significantly reduced, in association with more polarization of Siglec F+CD206+M2 subtype macrophages in the aCALR-treated mice. Pre-depletion of circulating monocytes did not abolish the aCALR-mediated suppression of ALI. Further analysis in bone marrow-derived macrophages (BMDMs) showed that aCALR suppressed the expression of CD80, IL-6, IL-1beta, IL-18, NLRP3, and p-p38 MAPK; but enhanced the expression of CD206 and IL-10. In addition, we observed more expression and phosphorylation of STAT6 in the aCALR-treated BMDM. Lack of STAT6 resulted in comparable and slightly higher expression of CALR, TNF-alpha and IL-6 in the aCALR-treated STAT6-/- BMDMs than the untreated cells. Therefore, we conclude that CALR is a novel biomarker in the evaluation of ALI. Blocking CALR activity by aCALR effectively suppressed ALI independent of circulating monocytes. Siglec F+CD206+M2 subtype macrophages and p38 MAPK/STAT6 signaling pathway played important role in the immune regulation of aCALR. Blocking CALR activity is a promising therapeutic approach in the treatment of ARDS/ALI.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Lu Hu
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| |
Collapse
|
16
|
Synergistic renoprotective effects of sesame oil and erythropoietin on ischemic kidney injury after renal transplantation. AMB Express 2020; 10:4. [PMID: 31912323 PMCID: PMC6946783 DOI: 10.1186/s13568-019-0934-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023] Open
Abstract
In this study, we evaluated the combined therapeutic efficacy of erythropoietin (a hematopoietic hormone produced by the fetal liver and kidney in response to inflammation and apoptosis) and sesame oil (from Sesamum indicum L.) on ischemic kidney injury following kidney transplantation in a rat model. Rats were assigned to the following groups: sham, control, 1000 U/kg erythropoietin, 1 mL/kg sesame oil, 1000 U/kg erythropoietin + 1 mL/kg sesame oil, and positive control. We measured the levels of blood urea nitrogen (BUN), creatinine, alanine aminotransferase (ALT), lipid peroxidation, reactive oxygen species (ROS), reduced glutathione (GSH), antioxidant enzymes, and proinflammatory markers and performed renal histopathological evaluation. The combined erythropoietin and sesame oil treatment significantly reduced BUN, ALT, creatinine, lipid peroxidation, ROS, and proinflammatory markers and GSH and antioxidant enzyme levels. Histopathological examination showed that the combined erythropoietin and sesame oil treatment significantly reduced necrosis. Therefore, combined treatment of sesame oil and erythropoietin may represent an effective therapeutic approach against ischemic kidney injury after kidney transplantation.
Collapse
|
17
|
Cantarelli C, Angeletti A, Cravedi P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant 2019; 19:2407-2414. [PMID: 30903735 PMCID: PMC6711804 DOI: 10.1111/ajt.15369] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/25/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein produced mainly by the adult kidney in response to hypoxia and is the crucial regulator of red blood cell production. EPO receptors (EPORs), however, are not confined to erythroid cells, but are expressed by many organs including the heart, brain, retina, pancreas, and kidney, where they mediate EPO-induced, erythropoiesis-independent, tissue-protective effects. Some of these tissues also produce and locally release small amounts of EPO in response to organ injury as a mechanism of self-repair. Growing evidence shows that EPO possesses also important immune-modulating effects. Monocytes can produce EPO, and autocrine EPO/EPOR signaling in these cells is crucial in maintaining immunologic self-tolerance. New data in mice and humans also indicate that EPO has a direct inhibitory effect on effector/memory T cells, while it promotes formation of regulatory T cells. This review examines the nonerythropoietic effects of EPO, with a special emphasis on its modulating activity on innate immune cells and T cells and on how it affects transplant outcomes.
Collapse
Affiliation(s)
- Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Angeletti
- Department of Experimental, Diagnostic, Specialty Medicine, Nephrology, Dialysis, and Renal Transplant Unit, S. Orsola University Hospital, Bologna, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
18
|
Elshiekh M, Kadkhodaee M, Seifi B, Ranjbaran M. Additional effects of erythropoietin pretreatment, ischemic preconditioning, and N-acetylcysteine posttreatment in rat kidney reperfusion injury. Turk J Med Sci 2019; 49:1249-1255. [PMID: 31342735 PMCID: PMC7018199 DOI: 10.3906/sag-1812-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/aim Since the nature of ischemia/reperfusion (IR)-induced tissue damage is multifactorial and complex, in the current study, the effects of multiple treatment strategies via concomitant administration of erythropoietin (EPO) and N-acetylcysteine (NAC) with an ischemic preconditioning (IPC) regimen on renal IR injury were examined. Materials and methods Thirty male Wistar rats were subjected to bilateral occlusion of the renal pedicles for 50 min followed by reperfusion. EPO (1000 IU/kg) was administered for 3 days, as well as IPC before the IR and NAC (150 mg/kg) administration for 4 days after IR. The animals were randomly allocated into 6 groups (n = 5): sham, IR, EPO+IR, IPC+IR, NAC+IR, and EPO+IPC+NAC+IR. Kidney tissues and blood samples were obtained for oxidative stress, proinflammatory cytokines, and renal functional evaluations. Results IR caused significant inflammatory response, oxidative stress, and reduced renal function. Treatment with EPO, IPC, and NAC or a combination of two of them attenuated renal dysfunction and reduced the oxidative stress and inflammatory markers. Rats treated with the combination of EPO, IPC, and NAC showed a higher degree of protection compared to the other groups. Conclusion These results showed that concomitant administration of EPO and IPC along with posttreatment NAC may have additive beneficial effects on kidney IR injury during IR-induced acute renal failure.
Collapse
Affiliation(s)
- Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan,Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|