1
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Han Y, Sun K, Yu S, Qin Y, Zhang Z, Luo J, Hu H, Dai L, Cui M, Jiang C, Liu F, Huang Y, Gao P, Chen X, Xin T, Ren X, Wu X, Song J, Wang Q, Tang Z, Chen J, Zhang H, Zhang X, Liu M, Luo D. A Mettl16/m 6A/mybl2b/Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells. EMBO J 2024; 43:1990-2014. [PMID: 38605226 PMCID: PMC11099167 DOI: 10.1038/s44318-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.
Collapse
Affiliation(s)
- Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Manman Cui
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaolin Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianqing Xin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Festari MF, Jara E, Costa M, Iriarte A, Freire T. Truncated O-glycosylation in metastatic triple-negative breast cancer reveals a gene expression signature associated with extracellular matrix and proteolysis. Sci Rep 2024; 14:1809. [PMID: 38245559 PMCID: PMC10799929 DOI: 10.1038/s41598-024-52204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death by cancer in women worldwide. Triple-negative (TN) BC constitutes aggressive and highly metastatic tumors associated with shorter overall survival of patients compared to other BC subtypes. The Tn antigen, a glycoconjugated structure resulting from an incomplete O-glycosylation process, is highly expressed in different adenocarcinomas, including BC. It also favors cancer growth, immunoregulation, and metastasis in TNBC. This work describes the differentially expressed genes (DEGs) associated with BC aggressiveness and metastasis in an incomplete O-glycosylated TNBC cell model. We studied the transcriptome of a TNBC model constituted by the metastatic murine 4T1 cell line that overexpresses the Tn antigen due to a mutation in one of the steps of the O-glycosylation pathway. We analyzed and compared the results with the parental wild-type cell line and with a Tn-negative cell clone that was poorly metastatic and less aggressive than the 4T1 parental cell line. To gain insight into the generated expression data, we performed a gene set analysis. Biological processes associated with cancer development and metastasis, immune evasion, and leukocyte recruitment were highly enriched among functional terms of DEGs. Furthermore, different highly O-glycosylated protein-coding genes, such as mmp9, ecm1 and ankyrin-2, were upregulated in 4T1/Tn+ tumor cells. The altered biological processes and DEGs that promote tumor growth, invasion and immunomodulation might explain the aggressive properties of 4T1/Tn+ tumor cells. These results support the hypothesis that incomplete O-glycosylation that leads to the expression of the Tn antigen, which might regulate activity or interaction of different molecules, promotes cancer development and immunoregulation.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Dr. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay.
| |
Collapse
|
4
|
Bilan F, Amini M, Doustvandi MA, Tohidast M, Baghbanzadeh A, Hosseini SS, Mokhtarzadeh A, Baradaran B. Simultaneous suppression of miR-21 and restoration of miR-145 in gastric cancer cells; a promising strategy for inhibition of cell proliferation and migration. BIOIMPACTS : BI 2023; 14:27764. [PMID: 38505672 PMCID: PMC10945301 DOI: 10.34172/bi.2023.27764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 03/21/2024]
Abstract
Introduction Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. microRNAs are a group of regulatory non-coding RNAs that are involved in GC progression. miR-145 as a tumor suppressor and miR-21 as an oncomiR were shown to be dysregulated in many cancers including GC. This research aimed to enhance the expression of miR-145 while reducing the expression of miR-21 and examine their impact on the proliferation, apoptosis, and migration of GC cells. Methods KATO III cells with high expression levels of miR-21-5p and low expression of miR-145-5p were selected. These cells were then transfected with either miR-145-5p mimics or anti-miR-21-5p, alone or in combination. Afterward, the cell survival rate was determined using the MTT assay, while apoptosis induction was investigated through V-FITC/PI and DAPI staining. Additionally, cell migration was examined using the wound healing assay, and cell cycle progression was analyzed through flow cytometry. Furthermore, gene expression levels were quantified utilizing the qRT-PCR technique. Results The study's findings indicated that the co-replacement of miR-145-5p and anti-miR-21-5p led to a decrease in cell viability and the induction of apoptosis in GC cells. This was achieved via modulating the expression of Bax and Bcl-2, major cell survival regulators. Additionally, the combination therapy significantly increased sub-G1 cell cycle arrest and reduced cell migration by downregulating MMP-9 expression as an epithelial-mesenchymal transition marker. This study provides evidence for the therapeutic possibility of the combination of miR-145-5p and anti-miR-21-5p and also suggests that they could inhibit cell proliferation by modulating the PTEN/AKT1 signaling pathway. Conclusion Our research revealed that utilizing miR-145-5p and anti-miR-21-5p together could be a promising therapeutic approach for treating GC.
Collapse
Affiliation(s)
- Farzaneh Bilan
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Zhang W, Shang X, Liu N, Ma X, Yang R, Xia H, Zhang Y, Zheng Q, Wang X, Liu Y. ANK2 as a novel predictive biomarker for immune checkpoint inhibitors and its correlation with antitumor immunity in lung adenocarcinoma. BMC Pulm Med 2022; 22:483. [PMID: 36539782 PMCID: PMC9768990 DOI: 10.1186/s12890-022-02279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been shown to significantly improve the survival of patients with advanced lung adenocarcinoma (LUAD). However, only limited proportion of patients could benefit from ICIs. Novel biomarkers with strong predictability are needed for clinicians to maximize the efficacy of ICIs. Our study aimed to identify potential biomarkers predicting ICIs efficacy in LUAD. METHODS The Cancer Genome Atlas (TCGA) PanCancer Atlas studies in cBioportal were used to evaluate the mutation frequency of ANK2 across multiple cancers. Clinical and mutational data for LUAD from ICIs-treated cohorts (Hellmann et al. and Rizvi et al.) were collected to explore the correlation between ANK2 mutation and clinical outcomes. In addition, the relationship between ANK2 expression and clinical outcomes was analyzed using LUAD data from TCGA and Gene Expression Omnibus. Furthermore, the impact of ANK2 mutation and expression on the tumor immune microenvironment of LUAD was analyzed using TCGA and TISIDB databases. RESULTS Patients with ANK2 mutation benefited more from ICIs. In ICIs-treated cohort, prolonged progression-free survival (PFS) (median PFS: NR (not reached) vs. 5.42 months, HR (hazard ratio) 0.31, 95% CI 0.18-0.54; P = 0.0037), improved complete response rate (17.65% vs. 1.85%, P = 0.0402), and improved objective response rate (64.71% vs. 24.07%, P = 0.0033) were observed in LUAD patients with ANK2 mutation compared to their wild-type counterparts. Regarding ANK2 expression, it was observed that ANK2 expression was decreased in LUAD (P < 0.05) and a higher level of ANK2 expression was associated with longer overall survival (HR 0.69, 95% CI 0.52-0.92; P = 0.012) in TCGA LUAD cohort. Moreover, ANK2 mutation or higher ANK2 expression correlated with enhanced antitumor immunity and "hot" tumor microenvironment in LUAD, which could be potential mechanisms that ANK2 mutation facilitated ICIs therapy and patients with higher ANK2 expression survived longer. CONCLUSION Our findings suggest that ANK2 mutation or increased ANK2 expression may serve as a favorable biomarker for the efficacy of ICIs in patients with LUAD.
Collapse
Affiliation(s)
- Wengang Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiaoling Shang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Ni Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xinchun Ma
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Rui Yang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Handai Xia
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yuqing Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Qi Zheng
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiuwen Wang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yanguo Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| |
Collapse
|
6
|
Lee YC, Lin CH, Chang WL, Lin WD, Pan JK, Wang WJ, Su BC, Chung HH, Tsai CH, Lin FC, Wang WC, Lu PJ. Concurrent Chemoradiotherapy-Driven Cell Plasticity by miR-200 Family Implicates the Therapeutic Response of Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:4367. [PMID: 35457185 PMCID: PMC9030842 DOI: 10.3390/ijms23084367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common and fatal malignancy with an increasing incidence worldwide. Over the past decade, concurrent chemoradiotherapy (CCRT) with or without surgery is an emerging therapeutic approach for locally advanced ESCC. Unfortunately, many patients exhibit poor response or develop acquired resistance to CCRT. Once resistance occurs, the overall survival rate drops down rapidly and without proper further treatment options, poses a critical clinical challenge for ESCC therapy. Here, we utilized lab-created CCRT-resistant cells as a preclinical study model to investigate the association of chemoradioresistantresistance with miRNA-mediated cell plasticity alteration, and to determine whether reversing EMT status can re-sensitize refractory cancer cells to CCRT response. During the CCRT treatment course, refractory cancer cells adopted the conversion of epithelial to mesenchymal phenotype; additionally, miR-200 family members were found significantly down-regulated in CCRT resistance cells by miRNA microarray screening. Down-regulated miR-200 family in CCRT resistance cells suppressed E-cadherin expression through snail and slug, and accompany with an increase in N-cadherin. Rescuing expressions of miR-200 family members in CCRT resistance cells, particularly in miR-200b and miR-200c, could convert cells to epithelial phenotype by increasing E-cadherin expression and sensitize cells to CCRT treatment. Conversely, the suppression of miR-200b and miR-200c in ESCC cells attenuated E-cadherin, and that converted cells to mesenchymal type by elevating N-cadherin expression, and impaired cell sensitivity to CCRT treatment. Moreover, the results of ESCC specimens staining established the clinical relevance that higher N-cadherin expression levels associate with the poor CCRT response outcome in ESCC patients. Conclusively, miR-200b and miR-200c can modulate the conversion of epithelial-mesenchymal phenotype in ESCC, and thereby altering the response of cells to CCRT treatment. Targeting epithelial-mesenchymal conversion in acquired CCRT resistance may be a potential therapeutic option for ESCC patients.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Han Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Wei-Lun Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Der Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Jhih-Kai Pan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan;
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsien-Hui Chung
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City 320, Taiwan;
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Chen-Hsun Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Forn-Chia Lin
- Department of Radiation Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Ching Wang
- Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan 710, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Clinical Medicine Research, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
7
|
Xia S, Ji L, Tang L, Zhang L, Zhang X, Tang Q, Feng Z, Lu L. Proteasome Subunit Alpha Type 7 Promotes Proliferation and Metastasis of Gastric Cancer Through MAPK Signaling Pathway. Dig Dis Sci 2022; 67:880-891. [PMID: 33721161 DOI: 10.1007/s10620-021-06903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Proteasome subunit alpha type 7 (PSMA7) shows a carcinogenic effect on various human malignancies, but its role and regulatory mechanism in gastric carcinoma (GC) remain unclear. AIMS This study aimed to explore the role and mechanism of PSMA7 in GC. METHODS In this study, PSMA7 expressions in GC cells and tissues were detected, and relationships between PSMA7 and clinicopathological features were explored. Then, PSMA7 levels in human GC cells were intervened, and changes in cell biological behavior were observed in vitro and vivo. Key proteins and downstream factors of MAPK signaling pathway were detected after PSMA7 intervention. RESULTS PSMA7 was upregulated in GC tissues and cell lines. PSMA7 overexpression was significantly associated with poor pTNM, cTNM stage, and high HP infection. PSMA7 can promote proliferation, invasion, and metastasis of GC cells in vitro and vivo. Furthermore, PSMA7 expression affected the phosphorylation level of JNK, P38, ERK and the expressions of their downstream factors Ap-1, c-myc, P53. CONCLUSION PSMA7 can promote GC proliferation, invasion, and metastasis through MAPK signaling pathway in GC cells.
Collapse
Affiliation(s)
- Shujing Xia
- Department of Gastroenterology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
- Department of Gastroenterology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, 210029, China
| | - Lei Ji
- School of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Lizhong Tang
- Department of Pharmacy, Yancheng TCM Hospital affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lili Zhang
- Department of Gastroenterology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
| | - Xiumei Zhang
- Department of Pathology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, 210029, China.
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| |
Collapse
|
8
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Lygeros S, Danielides G, Kyriakopoulos GC, Grafanaki K, Tsapardoni F, Stathopoulos C, Danielides V. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis. Rhinology 2021; 60:39-46. [PMID: 34812434 DOI: 10.4193/rhin21.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the expression of MMP-12 in patients with chronic rhinosinusitis with polyps (CRSwNP). METHODOLOGY Tissue samples from 37 patients with CRSwNP undergoing functional endoscopic sinus surgery and healthy mucosa specimens from 12 healthy controls were obtained intraoperatively. The mRNA and protein expression levels of MMP-12 were quantified by real-time polymerase chain reaction and Western blotting, respectively. RESULTS mRNA levels of MMP-12 were significantly elevated in the CRSwNP tissue samples compared to those in control ones. The protein levels of MMP-12 showed a trend of increasing but with no statistical significance. CONCLUSIONS Elevation of MMP-12 in patients with CRSwNP suggests its potential implication in the pathogenesis of the disease. The difference in the expression profile observed between mRNA and protein levels could be due to post-translational gene expression regulation. Our findings provide evidence that MMP-12 along with other MMPs may serve as a biomarker and therapeutic target in the management of the disease.
Collapse
Affiliation(s)
- S Lygeros
- Department of Otorhinolaryngology, University Hospital of Patras, Patras, Greece
| | - G Danielides
- Department of Otorhinolaryngology, University Hospital of Patras, Patras, Greece
| | - G C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | - K Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, Patras, Greece
| | - F Tsapardoni
- Department of Ophthalmology, University Hospital of Patras, Patras, Greece
| | - C Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | - V Danielides
- Department of Otorhinolaryngology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
10
|
Vijai M, Baba M, Ramalingam S, Thiyagaraj A. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Oncol Lett 2021; 22:850. [PMID: 34733368 PMCID: PMC8561619 DOI: 10.3892/ol.2021.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Doublecortin-like kinase protein 1 (DCLK1) is a microtubule-associated protein with a C-terminal serine/threonine kinase domain. Its expression was first reported in radial glial cells, where it serves an essential role in early neurogenesis, and since then, other functions of the DCLK1 protein have also been identified. Initially considered to be a marker of quiescent gastrointestinal and pancreatic stem cells, DCLK1 has recently been identified in the gastrointestinal tract as a marker of tuft cells. It has also been implicated in different types of cancer, where it regulates several vital pathways, such as Kras signaling. However, its underlying molecular mechanisms remain unclear. The present review discusses the different roles of DCLK1 and its interactions with other proteins that are homologically similar to DCLK1 to develop a novel therapeutic strategy to target cancer cells more accurately.
Collapse
Affiliation(s)
- Muthu Vijai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Mursaleen Baba
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
11
|
He Y, Chen Y, Tong Y, Long W, Liu Q. Identification of a circRNA-miRNA-mRNA regulatory network for exploring novel therapeutic options for glioma. PeerJ 2021; 9:e11894. [PMID: 34434651 PMCID: PMC8351580 DOI: 10.7717/peerj.11894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Glioma is the most common brain neoplasm with a poor prognosis. Circular RNA (circRNA) and their associated competing endogenous RNA (ceRNA) network play critical roles in the pathogenesis of glioma. However, the alteration of the circRNA-miRNA-mRNA regulatory network and its correlation with glioma therapy haven't been systematically analyzed. Methods With GEO, GEPIA2, circBank, CSCD, CircInteractome, mirWalk 2.0, and mirDIP 4.1, we constructed a circRNA-miRNA-mRNA network in glioma. LASSO regression and multivariate Cox regression analysis established a hub mRNA signature to assess the prognosis. GSVA was used to estimate the immune infiltration level. Potential anti-glioma drugs were forecasted using the cMap database and evaluated with GSEA using GEO data. Results A ceRNA network of seven circRNAs (hsa_circ_0030788/0034182/0000227/ 0018086/0000229/0036592/0002765), 15 miRNAs(hsa-miR-1200/1205/1248/ 1303/3925-5p/5693/581/586/599/607/640/647/6867-5p/767-3p/935), and 46 mRNAs (including 11 hub genes of ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A) was constructed. Functional enrichment showed they influenced majority of the hallmarks of tumors. Eleven hub genes were proven to be decent prognostic signatures for glioma in both TCGA and CGGA datasets. Forty-six LASSO regression significant genes were closely related to immune infiltration. Finally, five compounds (fulvestrant, tanespimycin, mifepristone, tretinoin, and harman) were predicted as potential treatments for glioma. Among them, mifepristone and tretinoin were proven to inhibit the cell cycle and DNA repair in glioma. Conclusion This study highlights the potential pathogenesis of the circRNA-miRNA-mRNA regulatory network and identifies novel therapeutic options for glioma.
Collapse
Affiliation(s)
- Yi He
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yuxin Tong
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wenyong Long
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Qing Liu
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
13
|
TUFT1 Facilitates Metastasis, Stemness, and Vincristine Resistance in Colorectal Cancer via Activation of PI3K/AKT Pathway. Biochem Genet 2021; 59:1018-1032. [PMID: 33634374 DOI: 10.1007/s10528-021-10051-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Since the incidence and mortality of colorectal cancer (CRC) are increasing in recent years, the research on the pathogenesis of colorectal cancer has attracted more and more attention. Here, our results confirmed that the mRNA expression level and proteins accumulation of TUFT1 were significantly increased in CRC tissues from late-stage CRC patients (III + IV) (p < 0.001), indicated by qPCR and IHC assay. The TUFT1 expression was positively correlated with tumor stage by analyzing 126 specimens from CRC patients. Next, we found that up-regulation of TUFT1 enhanced the migration and invasion of LoVo cells, whereas the down-regulation of TUFT1 observably weakened the migration and invasion of SW837 cells, indicating that TUFT1 promotes the metastasis of CRC cells. In addition, TUFT1 overexpression increased the number of mammary spheres and vincristine resistance of LoVo cells by sphere formation assay and measuring the IC50 value, suggesting the TUFT1 promotes stemness and the vincristine resistance of CRC cells. Finally, we found that TUFT1 overexpression increased p-AKT in LoVo cells, while down-regulation of TUFT1 decreased the p-AKT levels in SW837 cells. Therefore, we determined that the function of TUFT1 in CRC depends on PI3K/AKT pathway. Taken together, these data demonstrated that TUFI1 facilitates metastasis, stemness, and vincristine resistance of colorectal cancer cells via activation of PI3K/AKT pathway, which might act as a promising therapeutic target for CRC.
Collapse
|
14
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
15
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
An individualized immune signature of pretreatment biopsies predicts pathological complete response to neoadjuvant chemoradiotherapy and outcomes in patients with esophageal squamous cell carcinoma. Signal Transduct Target Ther 2020; 5:182. [PMID: 32883946 PMCID: PMC7471268 DOI: 10.1038/s41392-020-00221-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
No clinically available biomarkers can predict pathological complete response (pCR) for esophageal squamous cell carcinomas (ESCCs) with neoadjuvant chemoradiotherapy (nCRT). Considering that antitumor immunity status is an important determinant for nCRT, we performed an integrative analysis of immune-related gene profiles from pretreatment biopsies and constructed the first individualized immune signature for pCR and outcome prediction of ESCCs through a multicenter analysis. During the discovery phase, 14 differentially expressed immune-related genes (DEIGs) with greater than a twofold change between pCRs and less than pCRs (<pCRs) were revealed from 28 pretreatment tumors in a Guangzhou cohort using microarray data. Ten DEIGs were verified by qPCR from 30 cases in a Beijing discovery cohort. Then, a four-gene-based immune signature (SERPINE1, MMP12, PLAUR, and EPS8) was built based on the verified DEIGs from 71 cases in a Beijing training cohort, and achieved a high accuracy with an area under the receiver operating characteristic curve (AUC) of 0.970. The signature was further validated in an internal validation cohort and an integrated external cohort (Zhengzhou and Anyang cohorts) with AUCs of 0.890 and 0.859, respectively. Importantly, a multivariate analysis showed that the signature was the only independent predictor for pCR. In addition, patients with high predictive scores showed significantly longer overall and relapse-free survival across multiple centers (P < 0.05). This is the first, validated, and clinically applicable individualized immune signature of pCR and outcome prediction for ESCCs with nCRT. Further prospective validation may facilitate the combination of nCRT and immunotherapy.
Collapse
|
17
|
Azarbarzin S, Safaralizadeh R, Khojasteh MB, Baghbanzadeh A, Baradaran B. Current perspectives on the dysregulated microRNAs in gastric cancer. Mol Biol Rep 2020; 47:7253-7264. [PMID: 32776162 DOI: 10.1007/s11033-020-05720-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022]
Abstract
Since gastric cancer (GC) is diagnosed at advanced stages, the survival rate is low in affected people. In this regard, investigating the mechanisms underlying GC development, are so critical. MiRNAs, which are small non coding RNAs, as a post transcriptional repressor, regulate expression of target genes by stimulating breakage or transcription suppression of their targets therefore aberrant expression of miRNAs leading to GC carcinogenesis. In the last decades, there have been various studies approving the pivotal role of miRNAs in various phases of GC development including cancer initiation, proliferation, migration, invasion, metastasis, angiogenesis, apoptosis, and drug resistance. Therefore, the present review aimed at summarizing the dysregulated miRNAs which contribute to various cellular and developmental mechanisms such as, proliferation, apoptosis, invasion, migration, and angiogenesis. Moreover, it provides an overview on novel miRNAs involved in drug resistance and circular miRNAs as cancer biomarkers. Thereafter, it is hoped that the present study will shed more light on diagnostic and prognostic biomarkers of GC, and potential GC treatments based on miRNAs.
Collapse
Affiliation(s)
- Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mahdi Banan Khojasteh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Kong FB, Deng QM, Deng HQ, Dong CC, Li L, He CG, Wang XT, Xu S, Mai W. Siva‑1 regulates multidrug resistance of gastric cancer by targeting MDR1 and MRP1 via the NF‑κB pathway. Mol Med Rep 2020; 22:1558-1566. [PMID: 32626967 PMCID: PMC7339453 DOI: 10.3892/mmr.2020.11211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Siva-1 is a well-known anti-apoptosis protein that serves a role in multiple types of cancer cells. However, whether Siva-1 affects multidrug resistance via the NF-κB pathway in gastric cancer is currently unknown. The present study aimed to determine the possible involvement of Siva-1 in gastric cancer anticancer drug resistance in vitro. A vincristine (VCR)-resistant KATO III/VCR gastric cancer cell line with stable Siva-1 overexpression was established. The protein expression levels of Siva-1, NF-κB, multidrug resistance 1 (MDR1) and multidrug resistance protein 1 (MRP1) were detected via western blotting. The effect of Siva-1 overexpression on anticancer drug resistance was assessed by measuring the 50% inhibitory concentration of KATO III/VCR cells to VCR, 5-fluorouracil and doxorubicin. The rate of doxorubicin efflux and apoptosis were detected by flow cytometry. Additionally, colony formation, wound healing and Transwell assays were used to detect the proliferation, migration and invasion of cells, respectively. The results of the current study revealed that the Siva-1-overexpressed KATO III/VCR gastric cancer cells exhibited a significantly decreased sensitivity to VCR, 5-fluorouracil and doxorubicin. The results of flow cytometry revealed that the percentage of apoptotic cells decreased following overexpression of Siva-1. The colony formation assay demonstrated that cell growth and proliferation were significantly promoted by Siva-1 overexpression. Additionally, Siva-1 overexpression increased the migration and invasion of KATO III/VCR cells in vitro. Western blot analysis determined that Siva-1 overexpression increased NF-κB, MDR1 and MRP1 levels. The current study demonstrated that overexpression of Siva-1, which functions as a regulator of MDR1 and MRP1 gene expression in gastric cancer cells via promotion of NF-κB expression, inhibited the sensitivity of gastric cancer cells to certain chemotherapies. These data provided novel insight into the molecular mechanisms of gastric cancer, and may be of significance for the clinical diagnosis and therapy of patients with gastric cancer.
Collapse
Affiliation(s)
- Fan-Biao Kong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiao-Ming Deng
- Department of Surgery, Guangxi Traditional Chinese Medical University Affiliated First Hospital, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Hong-Qiang Deng
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chen-Cheng Dong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lei Li
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chun-Gang He
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Tong Wang
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Sheng Xu
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Mai
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
19
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
20
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
21
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
22
|
Xia Y, Jia C, Xue Q, Jiang J, Xie Y, Wang R, Ran Z, Xu F, Zhang Y, Ye T. Antipsychotic Drug Trifluoperazine Suppresses Colorectal Cancer by Inducing G0/G1 Arrest and Apoptosis. Front Pharmacol 2019; 10:1029. [PMID: 31572198 PMCID: PMC6753363 DOI: 10.3389/fphar.2019.01029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
Repurposing existing drugs for cancer treatment is an effective strategy. An approved antipsychotic drug, trifluoperazine (TFP), has been reported to have potential anticancer effects against several cancer types. Here, we investigated the effect and molecular mechanism of TFP in colorectal cancer (CRC). In vitro studies showed that TFP induced G0/G1 cell cycle arrest to dramatically inhibit CRC cell proliferation through downregulating cyclin-dependent kinase (CDK) 2, CDK4, cyclin D1, and cyclin E and upregulating p27. TFP also induced apoptosis, decreased mitochondrial membrane potential, and increased reactive oxygen species levels in CRC cells, indicating that TFP induced mitochondria-mediated intrinsic apoptosis. Importantly, TFP significantly suppressed tumor growth in two CRC subcutaneous tumor models without side effects. Interestingly, TFP treatment increased the expression levels of programmed death-1 ligand 1 (PD-L1) in CRC cells and programmed death-1 (PD-1) in tumor-infiltrating CD4+ and CD8+ T cells, implying that the combination of TFP with an immune checkpoint inhibitor, such as an anti-PD-L1 or anti-PD-1 antibody, might have synergistic anticancer effects. Taken together, our study signifies that TFP is a novel treatment strategy for CRC and indicates the potential for using the combination treatment of TFP and immune checkpoint blockade to increase antitumor efficiency.
Collapse
Affiliation(s)
- Yong Xia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Xue
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jinrui Jiang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ranran Wang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhiqiang Ran
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tinghong Ye
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
23
|
Tan BB, Li Y. Role of microRNAs in drug resistance of gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2019; 27:913-917. [DOI: 10.11569/wcjd.v27.i15.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug therapy is an important component of comprehensive treatments for gastric cancer (GC), but drug resistance of cancer cells often leads to treatment failure. It is significant to explore the drug resistance mechanism of GC cells. It has been reported that microRNAs (miRNAs) are closely related to drug resistance in GC. However, there are many kinds of microRNAs, which possess complex mechanisms and are not widely applied in clinical patients, so there are still many areas to be investigated about the relationship between microRNAs and drug resistance in GC. In this review, we review the role of miRNAs in the formation of drug resistance and discuss the existing problems and future directions.
Collapse
Affiliation(s)
- Bi-Bo Tan
- Third Department of Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yong Li
- Third Department of Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
24
|
Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, Zoppoli P, Calice G, La Rocca F, Sgambato A, Lucci V, Falco G, Ruggieri V. Adapting and Surviving: Intra and Extra-Cellular Remodeling in Drug-Resistant Gastric Cancer Cells. Int J Mol Sci 2019; 20:ijms20153736. [PMID: 31370155 PMCID: PMC6695752 DOI: 10.3390/ijms20153736] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
Collapse
Affiliation(s)
- Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Henu Kumar Verma
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Napoli, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Alessandro Sgambato
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| |
Collapse
|
25
|
Ma H, Wang P, Li Y, Yang Y, Zhan S, Gao Y. Decreased expression of serum miR-647 is associated with poor prognosis in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2552-2558. [PMID: 31934082 PMCID: PMC6949550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated to be critical players in different types of tumors including gastric cancer (GC). However, the expression level of serum miR-647 in patients with GC and its potential prognostic significance were poorly known. The aim of this study was to investigate the clinical significance of serum miR-647 in GC. A total of 105 patients with GC and 50 healthy volunteers were recruited into this study. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to analyze the expression of serum miR-647. Diagnostic accuracy of serum miR-647 in distinguishing GC patients from healthy controls was assessed by the receiver operating characteristic (ROC) curve analysis. Chi-square was used to evaluate the association between serum miR-647 level and clinicopathologic parameters. Kaplan-Meier method was used to analyze the overall survival (OS) and relapse-free survival (RFS). Multivariate Cox proportional hazards analyses were further used to identify prognostic factors. Our results showed that a significantly downregulated expression of serum miR-647 was found in patients with GC. ROC curve analyses showed that serum miR-647 was highly efficient for discriminating patients with GC from healthy controls. In addition, low serum miR-647 expression was associated with aggressive clinical features and unfavorable survival in GC. Mechanistically downregulation of miR-647 in GC cell lines increased the expression levels of STX6, STX7, and PRKCA. In conclusion, our results demonstrate that serum miR-647 might serve as a novel serum biomarker for monitoring GC progression.
Collapse
Affiliation(s)
- Huan Ma
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Peijun Wang
- Department of Hamatology, Qingdao Central HospitalNo. 127, Siliu South Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yuan Li
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yan Yang
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Shuhui Zhan
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yuqiang Gao
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| |
Collapse
|
26
|
Deng LM, Tan T, Zhang TY, Xiao XF, Gu H. miR‑1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol 2019; 55:451-461. [PMID: 31268161 PMCID: PMC6615921 DOI: 10.3892/ijo.2019.4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide and results in the second greatest rate of cancer-associated mortality globally. Multidrug resistance (MDR) often develops during the chemotherapy, resulting in the failure of treatment. To investigate the molecular mechanism of MDR, the roles of microRNA (miR)-1 were studied in GC. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression levels of miR-1 and sorcin in SGC7901/ADM and SGC7901/VCR cell lines. The effect of miR-1 on the half maximal inhibitory concentration (IC50), cell apoptosis rates and drug accumulation was uncovered by MTT assay and flow cytometric analysis. Furthermore, dual-luciferase assay and western blotting were used to determine the target of miR-1 in GC. It was demonstrated that miR-1 was highly downregulated in MDR GC cell lines, including SGC7901/ADM and SGC7901/VCR. Overexpression of miR-1 in MDR GC cells decreased IC50, but increased the cell apoptosis rates and promoted the drug accumulation in cancer cells. Dual-luciferase activity assay indicated that sorcin was the target of miR-1 in GC. In addition, overexpression of sorcin could partially reverse the effect of miR-1 in MDR GC cells. The role of miR-1 in MDR GC cells makes it a potential therapeutic target for a successful clinical outcome.
Collapse
Affiliation(s)
- Lang-Mei Deng
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tan Tan
- Department of Inspection, Chenzhou No.1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Tian-Yi Zhang
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xue-Fei Xiao
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huan Gu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
miR-1915-3p inhibits Bcl-2 expression in the development of gastric cancer. Biosci Rep 2019; 39:BSR20182321. [PMID: 31036603 PMCID: PMC6522727 DOI: 10.1042/bsr20182321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Many gene expressions changed during the development of gastric cancer, and non-coding RNAs including microRNAs (miRNAs) have been found to regulate cancer progression by participating in the process of tumor cell growth, migration, invasion and apoptosis. Our previous study has identified 29 miRNAs that are highly expressed in gastric cancer stem cells. One of these miRNAs, miR-1915-3p, has shown great potential as a diagnostic and prognostic biomarker for the cancers in liver, colon and thyroid, as well as in immune and kidney diseases. Herein, we found that miR-1915-3p exhibited low expression level in differentiated gastric cancer cell lines and gastric cancer tissues. It was found that the miR-1915-3p inhibited the growth of gastric cancer cells and thus promoted cell apoptosis. We discovered that the expressions of miR-1915-3p were significantly correlated to the lymph node metastasis and overall survival of patients with gastric cancer. Further study showed that there was a negative correlation between miR-1915-3p and Bcl-2 (B cell lymphoma/leukemia-2) expression, suggesting that Bcl-2 was a target gene of miR-1915-3p. Hence, miR-1915-3p possibly contributes to the development and progression of gastric cancer by inhibiting the anti-apoptotic protein Bcl-2. The finding provides a potential therapeutic strategy for gastric cancer.
Collapse
|
28
|
Chen C, Tang X, Liu Y, Zhu J, Liu J. Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (Review). Int J Oncol 2019; 54:1511-1524. [PMID: 30896792 PMCID: PMC6438417 DOI: 10.3892/ijo.2019.4751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and malignant types of cancer worldwide. In China, it is the second most common type of cancer and the malignancy with the highest incidence and mortality rate. Chemotherapy for GC is not always effective due to the development of drug resistance. Drug resistance, which is frequently observed in GC, undermines the success rate of chemotherapy and the survival of patients with GC. The dysregulation of non‑coding RNAs (ncRNAs), primarily microRNAs (miRNAs or miRs) and long non‑coding RNAs (lncRNAs), is involved in the development of GC drug resistance via numerous mechanisms. These mechanisms contribute to the involvement of a large and complex network of ncRNAs in drug resistance. In this review, we focus on and summarize the latest research on the specific mechanisms of action of miRNAs and lncRNAs that modulate drug resistance in GC. In addition, we discuss future prospects and clinical applications of ncRNAs as potential targeted therapies against the chemoresistance of GC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
29
|
Deng YW, Hao WJ, Li YW, Li YX, Zhao BC, Lu D. Hsa-miRNA-143-3p Reverses Multidrug Resistance of Triple-Negative Breast Cancer by Inhibiting the Expression of Its Target Protein Cytokine-Induced Apoptosis Inhibitor 1 In Vivo. J Breast Cancer 2018; 21:251-258. [PMID: 30275853 PMCID: PMC6158160 DOI: 10.4048/jbc.2018.21.e40] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Multidrug resistance (MDR) remains a major obstacle in the treatment of triple-negative breast cancer (TNBC) with conventional chemotherapeutic agents. A previous study demonstrated that hsa-miRNA-143-3p plays a vital role in drug resistance of TNBC. Downregulation of hsa-miRNA-143-3p upregulated the expression of its target protein cytokine-induced apoptosis inhibitor 1 (CIAPIN1) in order to activate MDR, while upregulation of hsa-miRNA-143-3p effectively enhances the sensitivity of drug-resistant TNBC cells to chemotherapeutics. The present study aimed to further verify these findings in vivo. METHODS We established a hypodermic tumor nude mice model using paclitaxel-resistant TNBC cells. We expressed ectopic hsa-miRNA-143-3p under the control of a breast cancer-specific human mammaglobin promoter that guided the efficient expression of exogenous hsa-miRNA-143-3p only in breast cancer cells. Thereafter, we overexpressed hsa-miRNA-143-3p in xenografts using a recombinant virus system and quantified the expression of hsa-miRNA-143-3p, CIAPIN1 protein, and proteins encoded by related functional genes by western blot. RESULTS We successfully completed the prospective exploration of the intravenous virus injection pattern from extensive expression to targeted expression. The overexpression of hsa-miRNA-143-3p significantly alleviated chemoresistance of TNBC by inhibiting viability. In addition, we observed that the expression of CIAPIN1 as a hsa-miRNA-143-3p target protein was remarkably decreased. CONCLUSION We partly illustrated the mechanism underlying the hsa-miRNA-143-3p/CIAPIN1 drug resistance pathway. HsamiRNA-143-3p as a tumor suppressive microRNA may be a novel target to effectively reverse MDR of TNBC in vivo.
Collapse
Affiliation(s)
- Yu Wei Deng
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Jing Hao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Wen Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xin Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chen Zhao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|