1
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
2
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
3
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Wan H, Zhang Y, Hua Q. Cellular autophagy, the compelling roles in hearing function and dysfunction. Front Cell Neurosci 2022; 16:966202. [PMID: 36246522 PMCID: PMC9561951 DOI: 10.3389/fncel.2022.966202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanyuan Zhang,
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qingquan Hua,
| |
Collapse
|
5
|
Wang B, Ntim M, Xia M, Wang Y, Lu JC, Yang JY, Li S. Long-Term Social Isolation-Induced Autophagy Inhibition and Cell Senescence Aggravate Cognitive Impairment in D(+)Galactose-Treated Male Mice. Front Aging Neurosci 2022; 14:777700. [PMID: 35401146 PMCID: PMC8988191 DOI: 10.3389/fnagi.2022.777700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with physiological and pathological changes and presents health complications, such as dementia. Isolation has also been associated with the experience of growing old. Both have been linked individually to the incidence of cognitive decline. In this present study, the effects of these two phenomena have been looked at in animal models where aging was induced with D(+)Galactose in mice who underwent long-term post-weaned social isolation (L-PWSI). Assessing cognitive function using Y-maze, Morris water maze (MWM), and passive avoidance tests (PATs) confirmed that cognition is impaired in either of the treatments but worsened when the D(+)Galactose mice were subjected to L-PWSI. Moreover, a synaptic protein, PSD95, and dendritic spines density were significantly reduced in the L-PWSI and D(+)Galactose-treated mice. Our previous study revealed that autophagy deficit is involved in cognitive impairment in the L-PWSI model. Here, we first report the inhibited cell cycle in L-PWSI, combined with the decreased autophagy, aggravates cognitive impairment in D(+)Galactose-treated mice. Beyond these, the autophagy and cell cycle mechanisms that link isolation and aging have been explored. The close association between isolation and aging in humans is very real and needs much research attention going forward for possible therapeutic interventions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ying Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin-cheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jin-Yi Yang,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Shao Li,
| |
Collapse
|
6
|
Guo L, Cao W, Niu Y, He S, Chai R, Yang J. Autophagy Regulates the Survival of Hair Cells and Spiral Ganglion Neurons in Cases of Noise, Ototoxic Drug, and Age-Induced Sensorineural Hearing Loss. Front Cell Neurosci 2021; 15:760422. [PMID: 34720884 PMCID: PMC8548757 DOI: 10.3389/fncel.2021.760422] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.
Collapse
Affiliation(s)
- Lingna Guo
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Jianming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
El-Shaqanqery HE, Mohamed RH, Sayed AA. Mitochondrial Effects on Seeds of Cancer Survival in Leukemia. Front Oncol 2021; 11:745924. [PMID: 34692527 PMCID: PMC8529120 DOI: 10.3389/fonc.2021.745924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The cancer metabolic alteration is considered a hallmark and fast becoming a road for therapeutic intervention. Mitochondria have been regarded as essential cell elements that fuel the metabolic needs of most cancer cell types. Leukemia stem cells (LSCs) are a heterogeneous, highly self-renewing, and pluripotent cell population within leukemic cells. The most important source of ATP and metabolites to fulfill the bioenergetics and biosynthetic needs of most cancer stem cells is the mitochondria. In addition, mitochondria have a core role in autophagy and cell death and are the main source of reactive oxygen species (ROS) generation. Overall, growing evidence now shows that mitochondrial activities and pathways have changed to adapt with different types of leukemia, thus mitochondrial metabolism could be targeted for blood malignancy therapy. This review focuses on the function of mitochondria in LSC of the different leukemia types.
Collapse
Affiliation(s)
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Sayed
- Genomics Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
胡 娜, 司 超, 张 治, 马 克, 张 亮. [Down-regulation of the Expression of Senescence Proteins P16 and P21 by Activating Connexin 43 in the Smooth Muscle of Spiral Modiolar Artery of Guinea Pigs]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:188-193. [PMID: 33829690 PMCID: PMC10408918 DOI: 10.12182/20210360504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To analyze the correlation between connexin 43 (Cx43) and the expression of P16 and P21, aging-related proteins, and to investigate the possible role of Cx43 in the development of cell senescence with an aging model prepared by D-galactose (D-gal) intervention in the vascular smooth muscle cells (VSMCs) of guinea pig spiral modiolar artery (SMA). METHODS The VSMCs of guinea pig SMA were cultured with the adhesion method, and the markers of VSMCs were detected with immunofluorescence technique. The experiment has a control group, a D-gal group, and a group that received D-gal and gap junction agonist AAP10 intervention, hereafter referred to as the AAP10 group. Cell Counting Kit-8 (CCK-8) was used to check VSMC activity and to determine the concentration and duration of D-gal intervention. The mRNA expression of Cx43 in each group was checked with qRT-PCR. The expression of Cx43, P16 and P21 proteins in each group was examined with the Western blot. The expression and distribution of P16 and P21 proteins were examined with immunofluorescence assay. RESULTS Immunofluorescence results showed that the positive expression rate of cell actin (α-SM-actin) was over 90%. CCK-8 results showed that the optimal concentration of D-gal intervention was 30 mg/mL and the intervention duration was 48 h. qRT-PCR test showed that the mRNA expression of Cx43 in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01), while it is higher in the AAP10 group than that of the D-gal group ( P<0.01); Western blot assay showed that the Cx43 expression level in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01) and the expression of P16 and P21 was significantly higher than that in the control group ( P<0.01), the expression of Cx43 protein in AAP10 group was significantly up-regulated compared with that in the D-gal group ( P<0.01), while the expression of P16 and P21 was down-regulated significantly ( P<0.01); The results of immunofluorescence showed that P16 and P21 were mainly expressed in the cell nucleus. Semi-quantitative analysis of fluorescence intensity showed that the level of P16 and P21 protein in the D-gal group was significantly higher than that in the control group, and the fluorescence intensity of AAP10 group was significantly lower than that in the D-gal group ( P<0.01). CONCLUSION Up-regulation of Cx43 expression can reverse the D-gal-induced abnormal expression of P16 and P21, two aging-related proteins, in SMA. It is suggested that Cx43 on SMA may be involved in D-gal-induced cell senescence, which provides a theoretical basis and possible intervention target for the delay of cell senescence.
Collapse
Affiliation(s)
- 娜 胡
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 超 司
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 治平 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 克涛 马
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 亮 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| |
Collapse
|
9
|
Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21217994. [PMID: 33121167 PMCID: PMC7663488 DOI: 10.3390/ijms21217994] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 9.1% of the global population and is a significant public health problem associated with increased morbidity and mortality. CKD is associated with highly prevalent physiological and metabolic disturbances such as hypertension, obesity, insulin resistance, cardiovascular disease, and aging, which are also risk factors for CKD pathogenesis and progression. Podocytes and proximal tubular cells of the kidney strongly express AMP-activated protein kinase (AMPK). AMPK plays essential roles in glucose and lipid metabolism, cell survival, growth, and inflammation. Thus, metabolic disease-induced renal diseases like obesity-related and diabetic chronic kidney disease demonstrate dysregulated AMPK in the kidney. Activating AMPK ameliorates the pathological and phenotypical features of both diseases. As a metabolic sensor, AMPK regulates active tubular transport and helps renal cells to survive low energy states. AMPK also exerts a key role in mitochondrial homeostasis and is known to regulate autophagy in mammalian cells. While the nutrient-sensing role of AMPK is critical in determining the fate of renal cells, the role of AMPK in kidney autophagy and mitochondrial quality control leading to pathology in metabolic disease-related CKD is not very clear and needs further investigation. This review highlights the crucial role of AMPK in renal cell dysfunction associated with metabolic diseases and aims to expand therapeutic strategies by understanding the molecular and cellular processes underlying CKD.
Collapse
|
10
|
Late Exercise Preconditioning Promotes Autophagy against Exhaustive Exercise-Induced Myocardial Injury through the Activation of the AMPK-mTOR-ULK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5697380. [PMID: 32656262 PMCID: PMC7322587 DOI: 10.1155/2019/5697380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/10/2019] [Indexed: 02/02/2023]
Abstract
Accumulating evidence shows that the AMPK-mTOR pathway modulates autophagy via coordinated phosphorylation of ULK1. The aim of the present study was to investigate the relationship between AMPK, mTOR, and ULK1 during late exercise preconditioning (LEP), and to explore whether LEP-induced myocardial protection is related to the autophagy. The exercise preconditioning (EP) protocol was as follows: rats were instructed to for run four repeated in duration of 10 minutes (including 10 minutes rest between each period) on a treadmill. Exhaustive exercise (EE) after LEP pretreatment and administration of wortmannin (an autophagy inhibitor that suppresses Class III PI3K-kinase (PI3KC3) activity) were added to test the protective effect. Cardiac troponin I (cTnI), and transmission electron microscopy (TEM), along with hematoxylin-basic fuchsin-picric acid (HBFP) staining, were used to evaluate the myocardial ischemic-hypoxic injury and protection. Western blot was used to analyze the relationship of autophagy-associated proteins. Exhaustive exercise caused severe myocardial ischemic-hypoxic injury, which led to an increase in cTnI levels, changes of ischemia–hypoxia, and cells ultrastructure. Compared with the EE group, LEP significantly suppressed exhaustive exercise-induced myocardial injury. However, wortmannin attenuated LEP-induced myocardial protection by inhibiting autophagy. Compared with the C group, AMPK was increased in the LEP, EE, and LEP+EE groups, but phosphorylation of AMPK at Thr172 was not significantly changed. Exercise did not have any effect on mTOR expression. Compared with the C group, ULK1 was increased and the ULK1ser757/ULK1 ratio was decreased in the LEP and LEP+EE groups. ULK1 was not significantly affected in the EE group, however, phosphorylation of ULK1 at Ser757 was remarkably decreased. To sum up, our results suggested that LEP promoted autophagy through the activation of AMPK-mTOR-ULK1 pathway, and that activated autophagy was partially involved in myocardial protection against EE-induced myocardial ischemic-hypoxic injury.
Collapse
|
11
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|
12
|
Weng F, Zhu L, Yang L, Li Y, Liu R, Fan J, Zhou J. [Expression of B-cell lymphoma-2 protein multisite phosphorylation in autophagy after spinal cord injury in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:618-627. [PMID: 31090358 PMCID: PMC8337205 DOI: 10.7507/1002-1892.201812064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the changes of autophagy after spinal cord injury (SCI) in rats and its relationship with multisite phosphorylation of B-cell lymphoma-2 (Bcl-2) protein. METHODS Forty male Sprague-Dawley rats aged 8 weeks were used to prepare SCI models by modified Allen method, and the SCI model were prepared successfully in 36 rats. The 36 SCI models were randomly divided into SCI group, autophagy inhibitor group, and autophagy promoter group, with 12 rats in each group. Another 12 rats were selected as sham operation group with only laminectomy and no spinal cord injury. At the end of modeling, the autophagy inhibitor group and the autophagy promoter group were intrathecally injected with 20 μL of 600 nmol/L 3-methyladenine and 25 nmol/L rapamycin, respectively, once a day for 4 weeks. The sham operation group and the SCI group were injected with only 20 μL of normal saline at the same time point. The motor function of rat in each group was evaluated by the Basso-Beattie-Bresnahan (BBB) score at 1 day and 1, 2, 4 weeks after modeling. The rats in each group were sacrificed at 24 hours after the last injection and the spinal cord tissues were taken. ELISA assay was used to detect the levels of inflammatory factors in spinal cord tissues, including myeloperoxidase (MPO), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β); the morphological changes of spinal cord were observed by HE staining; the autophagy of mitochondria in spinal cord tissues was observed by transmission electron microscopy; the expressions of Beclin1 and microtubule-associated protein light chain 3 (LC3) were detected by immunofluorescence staining; neuronal apoptosis in spinal cord tissues were observed by TUNEL staining; LC3/TUNEL positive cells were calculated by immunofluorescence double staining; the expressions of Bcl-2 associated X protein (Bax), Bcl-2, p-Bcl-2 (Ser87), and p-Bcl-2 (Ser70) were detected by Western blot. RESULTS Compared with sham operation group, BBB score of SCI group decreased at each time point, while the levels of MPO, TNF-α, and IL-1β increased; peripheral space of nerve cells enlarged, cells swelled, vacuoles appeared, and autophagic bodies appeared in mitochondria; the positive rates of Beclin1 and LC3 proteins, and apoptotic rate of neurons significantly increased; the LC3/TUNEL positive cells significantly increased; the expressions of Bax, p-Bcl-2 (Ser87), and p-Bcl-2 (Ser70) proteins increased, while the expression of Bcl-2 protein decreased; all showing significant differences ( P<0.05). Compared with SCI group, BBB score in autophagy inhibitor group decreased at each time point, while the levels of MPO, TNF-α, and IL-1β increased; a few autophagic vesicles appeared in mitochondria; the positive rates of Beclin1 and LC3 proteins decreased and the apoptotic rate of neurons increased significantly; the LC3 positive cells decreased and the TUNEL positive cells increased; the expressions of Bax, p-Bcl-2 (Ser87), and p-Bcl-2 (Ser70) proteins increased, while the expression of Bcl-2 protein decreased. The results of autophagy promoter group were opposite to those of autophagy inhibitor group; all showing significant differences between groups ( P<0.05). CONCLUSION Induction of autophagy after SCI in rats can reduce neuronal apoptosis and protect spinal cord function, which may be related to the inhibition of Bcl-2 protein multisite phosphorylation.
Collapse
Affiliation(s)
- Fengbiao Weng
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200, P.R.China
| | - Lifan Zhu
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200, P.R.China
| | - Liwen Yang
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200, P.R.China
| | - Yong Li
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200, P.R.China
| | - Rong Liu
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200, P.R.China
| | - Jin Fan
- Department of Spinal Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| | - Jianxin Zhou
- Department of Orthopaedics, First People's Hospital of Wujiang District in Suzhou City, Suzhou Jiangsu, 215200,
| |
Collapse
|
13
|
Guo D, Shen Y, Li W, Li Q, Zhao Y, Pan C, Chen B, Zhong Y, Miao Y. 6-Bromoindirubin-3'-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver. Front Pharmacol 2019; 10:320. [PMID: 31057395 PMCID: PMC6477879 DOI: 10.3389/fphar.2019.00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
Liver aging is associated with age-related histopathological and functional changes that significantly enhance the risk of numerous diseases or disorders developing in elderly populations. 6-Bromoindirubin-3'-oxime (6BIO), a potent inhibitor of glycogen synthase kinase-3 (GSK-3), has been implicated in various age-related diseases and processes, such as tumorigenesis, neurodegeneration, and diabetes. Recent studies have also revealed that 6BIO increases autophagy in yeast, mammalian cell lines, and dopaminergic neurons, which is one of the classical mechanisms strongly associated with liver aging. However, the impact or the mechanism of action of 6BIO in liver remains entirely unknown. Here, we find that 6BIO reduces oxidative stress, improves lipid metabolism, enhances autophagy, and significantly retards liver aging via modulating the GSK-3β pathway and mTOR pathway. Our findings suggest that 6BIO could be a potential agent to protect the liver in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
- Donghao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Shen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinjie Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Zhu X, Yang G, Xu J, Zhang C. Silencing of SNHG6 induced cell autophagy by targeting miR-26a-5p/ULK1 signaling pathway in human osteosarcoma. Cancer Cell Int 2019; 19:82. [PMID: 30988663 PMCID: PMC6448242 DOI: 10.1186/s12935-019-0794-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background lncRNAs have been proved to play crucial parts in various human cytopathology and cell physiology, including tumorigenesis. Down-regulated lncRNAs SNHG6 have shown great cell proliferation inhibitory effects in cancer development. Here we investigated how SNHG6 effected human osteosarcoma (OS) development and progression. Methods: Reverse transcription-quantitative PCR was performed to detect SNHG6 mRNA level in both OS tissues and cell lines. MTT and colony formation assays were used to determine the growth impact of SNHG6. Wound healing and trans-well assay were performed to measure the invasion effect of SNHG6. Western blotting were utilized to dissect molecular mechanisms. Results We identified SNHG6 as a lncRNAs that significantly up-regulated in OS tissues and cells, patients with high SNHG6 expression suffered more malignant metastasis and shorter survival times. Furthermore, silencing of SNHG6 in OS significantly inhibited OS cell growth, weakened cell invasion capacity, arrested cell cycle at G0/G1 phase, and induced cell apoptosis. Additionally, mechanism assays suggested that SNHG6 could competitively sponging miR-26a-5p thereby regulating ULK1, and induced cell apoptosis and autophagy by targeting caspase3 and ATF3. Conclusions: Our findings demonstrated that SNHG6 acted as an oncogene in osteosarcoma cells through regulating miR-26a-5p/ULK1 at a post-transcriptional level. SNHG6 might serve as a candidate prognostic biomarker and a target for novel therapies of osteosarcoma patients.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Guangling Yang
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Jisheng Xu
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Chuanlin Zhang
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| |
Collapse
|
15
|
Liu B, Tu Y, He W, Liu Y, Wu W, Fang Q, Tang H, Tang R, Wan Z, Sun W, Wan Y. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging (Albany NY) 2018; 10:4197-4212. [PMID: 30585174 PMCID: PMC6326678 DOI: 10.18632/aging.101723] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
The kidney is a typical organ undergoing age and injury. Hyperoside is reported to be useful for preventing aging induced by D-galactose (D-gal). However, therapeutic mechanisms remain unclear. We thereby aimed to verify whether hyperoside, compared to vitamin E (VE), could alleviate renal aging and injury by regulating autophagic activity and its related signaling pathways. In vivo, rats were administered with either hyperoside or VE after renal aging modeling induced by D-gal. Changes in renal aging and injury markers, autophagic activity and AMPK-ULK1 signaling pathway in the kidneys were analysed. In vitro, the NRK-52E cells exposed to D-gal were used to investigate regulative actions of hyperoside and VE on cell viability, renal tubular cellular aging markers, autophagic activity and its related signaling pathways by histomorphometry, immunohistochemistry, immunofluorescence, lentiviral transfection and Western blot. Aging and injury in the kidneys and renal tubular cells induced by D-gal were ameliorated by hyperoside and VE. Hyperoside and VE inhibited autophagic activity through mTOR-independent and AMPK-ULK1 signaling pathways. Hyperoside, as a component of phytomedicine similar to VE, attenuated renal aging and injury induced by D-gal via inhibiting AMPK-ULK1-mediated autophagy. This study provides the first evidence that hyperoside contributes to the prevention of age-associated renal injury.
Collapse
Affiliation(s)
- Buhui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Equal contribution
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Equal contribution
| | - Weiming He
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yinglu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qijun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Haitao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou 225500, China
| | - Renmao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou 225500, China
| | - Ziyue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo 108-8636, Japan
| | - Wei Sun
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yigang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
16
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
17
|
Ebrahim N, Ahmed IA, Hussien NI, Dessouky AA, Farid AS, Elshazly AM, Mostafa O, Gazzar WBE, Sorour SM, Seleem Y, Hussein AM, Sabry D. Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway. Cells 2018; 7:cells7120226. [PMID: 30467302 PMCID: PMC6315695 DOI: 10.3390/cells7120226] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and a common cause of end-stage renal disease. Autophagy has a defensive role against kidney damage caused by hyperglycemia. Mesenchymal stem cell (MSC)-derived exosomes are currently considered as a new promising therapy for chronic renal injury. However, the renal-protective mechanism of exosomes on DN is not completely understood. We examined the potential role of MSC-derived exosomes for enhancement of autophagy activity and their effect on DN. In our study, we used five groups of rats: control; DN; DN treated with exosomes; DN treated with 3-methyladenine (3-MA) and chloroquine (inhibitors of autophagy); and DN treated with 3-methyladenine (3-MA), chloroquine, and exosome groups. We assessed renal function, morphology, and fibrosis. Moreover, ratios of the autophagy markers mechanistic target of rapamycin (mTOR), Beclin-1, light chain-3 (LC3-II), and LC3-II/LC3-I were detected. Additionally, electron microscopy was used for detection of autophagosomes. RESULTS Exosomes markedly improved renal function and showed histological restoration of renal tissues, with significant increase of LC3 and Beclin-1, and significant decrease of mTOR and fibrotic marker expression in renal tissue. All previous effects were partially abolished by the autophagy inhibitors chloroquine and 3-MA. CONCLUSION We conclude that autophagy induction by exosomes could attenuate DN in a rat model of streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Inas A Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
- Molecular Biology and Biotechnology Unit, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Noha I Hussien
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Arigue A Dessouky
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt.
| | - Amal M Elshazly
- Department of Anatomy, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Walaa Bayoumie El Gazzar
- Department of Medical Biochemistry, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Safwa M Sorour
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Ahmed M Hussein
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt.
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
- Molecular Biology and Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|