1
|
Xue J, Liu Y, Liu B, Jia X, Fang X, Qin S, Zhang Y. Celastrus orbiculatus Thunb. extracts and celastrol alleviate NAFLD by preserving mitochondrial function through activating the FGF21/AMPK/PGC-1α pathway. Front Pharmacol 2024; 15:1444117. [PMID: 39161898 PMCID: PMC11330833 DOI: 10.3389/fphar.2024.1444117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Junli Xue
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunchao Liu
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xinsheng Fang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
2
|
Cao F, Wang Y, Song Y, Xu F, Xie Q, Jiang M, Liu X, Zhang D, Xu L. Celastrol Treatment Ameliorated Acute Ischemic Stroke-Induced Brain Injury by Microglial Injury Inhibition and Nrf2/HO-1 Pathway Activations. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1076522. [PMID: 37082194 PMCID: PMC10113063 DOI: 10.1155/2023/1076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 04/22/2023]
Abstract
Background Stroke is the third main reason of mortality, which is the leading reason for adult disability in the globe. Poststroke inflammation is well known to cause acute ischemic stroke- (AIS-) induced brain injury (BI) exacerbation. Celastrol (CL) has exhibited anti-inflammatory activities in various inflammatory traits though underlying mechanisms remain unknown. So, the present investigation is aimed at studying CL protective mechanism against AIS-induced BI. Methods A mouse model regarding middle cerebral artery occlusion and an oxygen-glucose deprivation (OGD) cell model with or not CL treatment were constructed to study CL protective effects. NF-E2-related factor 2 (Nrf2) was then silenced in BV2 microglia cells (BV2) to study Nrf2 role regarding CL-mediated neuroprotection. Results The results showed that CL treatment suppressed AIS-induced BI by inhibiting NLRP3/caspase-1 pathway activations and induction of apoptosis and pyroptosis in vivo and in vitro. NLRP3/caspase-1 pathway blocking activation suppressed OGD-induced cell pyroptosis and apoptosis. Also, CL treatment reversed OGD-induced microglial injury by promoting Nrf2/heme oxygenase-1 (HO-1) pathway activations. Nrf2 downregulation reversed CL protective effects against OGD-induced microglial injury, pyroptosis, and apoptosis. Conclusion The findings advise that CL treatment ameliorated AIS-induced BI by inhibiting microglial injury and activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fanfan Cao
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
| | - Ying Wang
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
| | - Yuting Song
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
- Ningxia Medical University, Ningxia 750000, China
| | - Fengxia Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Qiuhua Xie
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Mei Jiang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Xinghui Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Denghai Zhang
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
- Ningxia Medical University, Ningxia 750000, China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| |
Collapse
|
3
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Yue H, Cai W, Li Y, Feng X, Dong P, Xue C, Wang J. A Novel Sialoglycopeptide from Gadus morhua Eggs Prevents Liver Fibrosis Induced by CCl 4 via Downregulating FXR/FGF15 and TLR4/TGF-β/Smad Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13093-13101. [PMID: 34714650 DOI: 10.1021/acs.jafc.1c05411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liver fibrosis plays a critical role in liver disease progression. A sialoglycopeptide from the Gadus morhua eggs (Gm-SGPP) was identified having a 7000 Da molecular weight with a core pentasaccharide structure and osteogenesis activity. However, whether Gm-SGPP is beneficial to liver fibrosis remains unknown. In this study, mice with liver fibrosis were intraperitoneally injected with 2.5% CCl4 (10 mL/kg) and orally administered with Gm-SGPP (500 mg/kg) for 30 days. Results showed that Gm-SGPP alleviated oxidative liver damage and lipid metabolism disorder and reduced hepatocyte necrosis and lipid droplet accumulation. Notably, we found that Gm-SGPP increased the number and changed the composition of bile acids via increasing cholesterol 7a-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) expression, which caused inhibition of ileum farnesoid X receptor (FXR) expression and accelerated the cholesterol conversion. Cholesterol accumulation is a risk factor for liver fibrosis. Masson staining showed that Gm-SGPP significantly reduced the degree of collagen deposition. Western blotting further suggested that Gm-SGPP downregulated the key gene of the toll-like receptor 4 (TLR4)-mediated transforming growth factor-β (TGF-β)/Smad pathway. To our best knowledge, this is the first report that Gm-SGPP prevented liver fibrosis via attenuating cholesterol accumulation. Our present results provide new ideas for the Gadus morhua egg's high-value utilization.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province 266237, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| |
Collapse
|
5
|
Jin GJ, Peng X, Chen ZG, Wang YL, Liao WJ. Celastrol attenuates chronic constrictive injury-induced neuropathic pain and inhibits the TLR4/NF-κB signaling pathway in the spinal cord. J Nat Med 2021; 76:268-275. [PMID: 34510370 DOI: 10.1007/s11418-021-01564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Tripterygium wilfordii Hook F. is a well-known but poisonous traditional Chinese medicine used for treating a wide variety of inflammatory and autoimmune disorders. Celastrol, a quinone methyl triterpenoid compound and a representative component of T. wilfordii Hook F., shows a variety of pharmacological activities, such as anti-inflammatory and antitumor activities. Here, we investigated the antineuropathic pain (NP) effect of celastrol and its potential mechanisms. Rats with chronic constrictive injury (CCI)-induced NP were used to evaluate the analgesic effect of celastrol. Gabapentin was used as a reference compound (positive control). The results showed that gabapentin (100 mg/kg, i.p.) and multiple doses of celastrol (0.5, 1 and 2 mg/kg, i.p.) increased the threshold of mechanical and thermal pain in the rats with NP. Western blot results showed that celastrol significantly inhibited the activation of microglia and astrocytes in the spinal cord of rats with NP. Additionally, the levels of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1β and interleukin 6, detected by ELISA in the spinal cord of the rats with NP, were significantly inhibited by celastrol. Furthermore, celastrol treatment dramatically inhibited the expression of the TLR4/NF-κB signaling pathway in the spinal cord. Taken together, our findings suggested that celastrol could attenuate mechanical and thermal pain in CCI-induced NP, and this protection might be attributed to inhibiting the TLR4/NF-κB signaling pathway and exerting anti-inflammatory effects in the spinal cord.
Collapse
Affiliation(s)
- Gui-Juan Jin
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Xuehuizi Peng
- Department of Children's Rehabilitation, Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi-Guo Chen
- Department of Pharmacy, College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Three Gorges University, Yichang, China
| | - Yu-Lin Wang
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Wen-Jun Liao
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China.
| |
Collapse
|
6
|
Lipidomic Profiling of Ipsilateral Brain and Plasma after Celastrol Post-Treatment in Transient Middle Cerebral Artery Occlusion Mice Model. Molecules 2021; 26:molecules26144124. [PMID: 34299399 PMCID: PMC8306490 DOI: 10.3390/molecules26144124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Celastrol, a pentacyclic triterpene isolated from the traditional Chinese medicine Tripterygium wilfordii Hook. F., exhibits effectiveness in protection against multiple central nervous system (CNS) diseases such as cerebral ischemia, but its influence on lipidomics still remains unclear. Therefore, in the present study, the efficacy and potential mechanism of celastrol against cerebral ischemia/reperfusion (I/R) injury were investigated based on lipidomics. Middle cerebral artery occlusion (MCAO) followed by reperfusion was operated in mice to set up a cerebral I/R model. TTC staining and TUNEL staining were used to evaluate the therapeutic effect of celastrol. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS) was employed for lipidomics analysis in ipsilateral hemisphere and plasma. Celastrol remarkably reduced cerebral infarct volume and apoptosis positive cells in tMCAO mice. Furthermore, lipidomics analysis showed that 14 common differentially expressed lipids (DELs) were identified in brain and five common DELs were identified in plasma between the Sham, tMCAO and Celastrol-treated tMCAO groups. Through enrichment analysis, sphingolipid metabolism and glycerophospholipid metabolism were demonstrated to be significantly enriched in all the comparison groups. Among the DELs, celastrol could reverse cerebral I/R injury-induced alteration of phosphatidylcholine, phosphatidylethanolamine and sulfatide, which may be responsible for the neuroprotective effect of celastrol. Our findings suggested the neuroprotection of celastrol on cerebral I/R injury may be partially associated with its regulation of lipid metabolism.
Collapse
|
7
|
Kim CW, Go RE, Lee HK, Kang BT, Cho WJ, Choi KC. Anti-obesity effects of Celastrus orbiculatus extract containing celastrol on canine adipocytes. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:177-185. [PMID: 34248261 PMCID: PMC8243799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
From 50 to 60% of companion animals in the United States are overweight or obese and this obesity rate is rising. As obesity is associated with a number of health problems, an agent that can help weight loss in pets and assist in clinically managing obesity through veterinary prescription foods and medication would be beneficial. Many studies have shown that celastrol, a phytochemical compound found in Celastrus orbiculatus extract (COE), has anti-obesity and anti-inflammatory effects, although these effects have not yet been determined in canine or canine-derived cells. The objective of this study was to investigate the effects of celastrol on the adipogenic differentiation and lipolysis of canine adipocytes. Primary preadipocytes were isolated from the gluteal region of a beagle dog and the primary adipocytes were differentiated into mature adipocytes by adipocyte differentiation media containing isobutylmethylxanthine, dexamethasone, and insulin. In a water-soluble tetrazolium (WST) assay, the cell viability of mature adipocytes was decreased after treatment with COE (0, 0.93, 2.32, and 4.64 nM celastrol) in a concentration-dependent manner, although preadipocytes were not affected. Oil Red O (ORO) staining revealed that COE inhibited the differentiation into mature adipocytes and lipid accumulation in adipocytes. In addition, treatment with COE significantly reduced triglyceride content and increased lipolytic activities by 1.5-fold in canine adipocytes. Overall, it was concluded that COE may enhance anti-obesity activity in canine adipocytes by inhibiting lipid accumulation and increasing lipolytic activity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Byeong-Teck Kang
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Woo Jae Cho
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| |
Collapse
|
8
|
Zhang J, Ling N, Lei Y, Peng M, Hu P, Chen M. Multifaceted Interaction Between Hepatitis B Virus Infection and Lipid Metabolism in Hepatocytes: A Potential Target of Antiviral Therapy for Chronic Hepatitis B. Front Microbiol 2021; 12:636897. [PMID: 33776969 PMCID: PMC7991784 DOI: 10.3389/fmicb.2021.636897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is considered a “metabolic virus” and affects many hepatic metabolic pathways. However, how HBV affects lipid metabolism in hepatocytes remains uncertain yet. Accumulating clinical studies suggested that compared to non-HBV-infected controls, chronic HBV infection was associated with lower levels of serum total cholesterol and triglycerides and a lower prevalence of hepatic steatosis. In patients with chronic HBV infection, high ALT level, high body mass index, male gender, or old age was found to be positively correlated with hepatic steatosis. Furthermore, mechanisms of how HBV infection affected hepatic lipid metabolism had also been explored in a number of studies based on cell lines and mouse models. These results demonstrated that HBV replication or expression induced extensive and diverse changes in hepatic lipid metabolism, by not only activating expression of some critical lipogenesis and cholesterolgenesis-related proteins but also upregulating fatty acid oxidation and bile acid synthesis. Moreover, increasing studies found some potential targets to inhibit HBV replication or expression by decreasing or enhancing certain lipid metabolism-related proteins or metabolites. Therefore, in this article, we comprehensively reviewed these publications and revealed the connections between clinical observations and experimental findings to better understand the interaction between hepatic lipid metabolism and HBV infection. However, the available data are far from conclusive, and there is still a long way to go before clarifying the complex interaction between HBV infection and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Lei
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Pan Q, Gao Z, Zhu C, Peng Z, Song M, Li L. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion. Am J Physiol Endocrinol Metab 2020; 319:E932-E943. [PMID: 32776826 DOI: 10.1152/ajpendo.00051.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a basic member of the Class III histone deacetylases, SIRT1 has been implicated in the occurrence and progression of diabetic retinopathy (DR). The current study aimed to investigate the roles of SIRT1/miR-20a/Yse-associated protein (YAP)/hypoxia-inducible factor 1 α (HIF1α)/vascular endothelial growth factor A (VEGFA) in DR. The expression of SIRT1 was initially determined through quantitative RT-PCR and Western blot analysis following the successful establishment of a DR mouse model, followed by detection of SIRT1 catalytic activity. Retinal microvascular endothelial cells (RMECs) were cultured in media supplemented with normal glucose (NG) or high glucose (HG). Thereafter, SIRT1 was either silenced or overexpressed in RMECs, after which EdU staining and Matrigel-based tube formation assay were performed to assess cell proliferation and tube formation. The binding relationship between YAP, HIF1α, and VEGFA was further illustrated using dual-luciferase reporter assay. Preretinal neovascular cell number was tallied with the IB4-positive vascular endothelial cells, as determined by immunofluorescence. SIRT1 was poorly expressed in mice with DR and HG-treated RMECs with low catalytic activity. The proliferation and tube formation capabilities of RMECs were elevated under HG conditions, which could be reversed following overexpression of SIRT1. SIRT1 was identified as positively regulating the expression of miR-20a with YAP detected as the key target gene of miR-20a. Our data suggested that YAP could upregulate VEGFA via induction of HIF1α. Moreover, SIRT1 overexpression strongly repressed RMEC proliferation and angiogenesis, which could be reversed via restoration of YAP/HIF1α/VEGFA expression. Taken together, the key findings of our study suggest that upregulation of SIRT1 inhibits the development of DR via miR-20a-induced downregulation of YAP/HIF1α/VEGFA.
Collapse
Affiliation(s)
- Qintuo Pan
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiqiang Gao
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenlei Zhu
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zijie Peng
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Minmin Song
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lili Li
- Department of Radiation Oncology and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
10
|
Habtemariam S, Nabavi SF, Berindan-Neagoe I, Cismaru CA, Izadi M, Sureda A, Nabavi SM. Should we try the antiinflammatory natural product, celastrol, for COVID-19? Phytother Res 2020; 34:1189-1190. [PMID: 32347602 PMCID: PMC7267639 DOI: 10.1002/ptr.6711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Kent, UK
| | - Seyed Fazel Nabavi
- Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Advanced Medicine - Medfuture, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,The Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Sciences, Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Morteza Izadi
- Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma, Spain
| | | |
Collapse
|
11
|
Zhu B, Wei Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med 2020; 9:783-796. [PMID: 31957323 PMCID: PMC6970044 DOI: 10.1002/cam4.2719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
AIM Cholangiocarcinoma is a malignant tumor originating from bile duct epithelium. Currently, the treatment strategy is very limited and the prognosis is poor. Recent studies reported celastrol exhibits antigrowth and antimetastasis properties in many tumors. Our study aimed to assess the anti-CCA effects of cholangiocarcinoma (CCA) and the mechanisms involved in it. METHODS In this study, the long-term and short-term antiproliferation effects was determined using colony formation and Cell Counting Kit-8 (CCK-8) assays, respectively. Flow cytometry was performed to quantify apoptosis. Furthermore, wound healing and transwell assays were performed to determine the cell migration and invasion capabilities, respectively. To further find the mechanism involved in the celastrol-induced biological functions, LY204002, a PI3K/Akt signaling inhibitor, and an Akt-1 overexpression plasmid were employed to find whether PI3K/Akt pathway was involved in the celastrol-induced CCA cell inhibition. Additionally, short interfering RNA (siRNA) was also used to investigate the mechanism involved in the celastrol-induced PI3K/Akt signaling inhibition. Western blotting and immunofluorescence assays were also performed to detect the degree of relative proteins. Moreover, we validated the antiproliferation and antimetastasis effects of celastrol in vivo by constructing subcutaneous and lung metastasis nude mice models. RESULTS We discovered that celastrol effectively induced apoptotic cell death and inhibited the capacity of migration and invasion in CCA cells. Further mechanistic study identified that celastrol regulated the PI3K/Akt signaling pathway, and the antitumor efficacy was likely due to the upregulation of PTEN, a negative regulator of PI3K/Akt. Blockage of PTEN abolished the celastrol-induced PI3K/Akt signaling inhibition. Additionally, in vivo experiments conformed celastrol inhibited the tumor growth and lung metastasis with no serious side effects. CONCLUSIONS Overall, our study elucidated a mechanistic framework for the anti-CCA effects of celastrol via PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Biqiang Zhu
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| | - Yunwei Wei
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| |
Collapse
|