1
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Wang H, Zhang B, Dong W, Li Y, Zhao L, Zhang Y. Effect of Diammonium Glycyrrhizinate in Improving Focal Cerebral Ischemia-Reperfusion Injury in Rats Through Multiple Mechanisms. Dose Response 2022; 20:15593258221142792. [PMID: 36479318 PMCID: PMC9720820 DOI: 10.1177/15593258221142792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke is a current major disabling and killer disease worldwide. We aimed to investigate the protective effect and mechanism of diammonium glycyrrhizinate in alleviating acute ischemic stroke. METHODS Ninety male Sprague Dawley (SD) rats (weighing 250-300 g) were randomly allocated into three groups: sham operation group (sham group), diammonium glycyrrhizinate group (DG group) and model group (model group) each with 30 individuals. A rat model of focal CIR injury was established by reversible middle cerebral artery occlusion. RESULTS Zea-Longa scores for the rats in the DG group and model group were 7-fold and 8-fold higher than those of the sham group 2 h post-surgery (2.90 ± 0.99 vs. 0.30 ± 0.53, P < .05; 2.80 ± 0.61 vs. 0.30 ± 0.53, P < .05, respectively). Three days after model establishment, the scores of DG group were 26.92% lower compared with those of the model group (1.90 ± 0.76 vs. 2.60 ± 0.62, P < .05). In addition, compared with the sham group, the number of Nissl bodies and Akt-positive cells in were 27.35% and 30.42% lower in the hippocampus of the DG group (Nissl bodies: 83.40 ± 7.01 vs. 115.60 ± 11.97, p < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 136.10 ± 10.37, P < .05) and 58.65% and 57.31% lower in the model group (Nissl bodies: 47.80 ± 4.91 vs. 115.60 ± 11.97, P < .05; Akt-positive cells: 58.10 ± 4.98 vs. 136.10 ± 10.37, P < 0.05), respectively. However, the number of Nissl bodies and Akt-positive cells in the hippocampus of DG group were 74.48% and 62.9% higher compared with the model group, respectively (Nissl bodies: 83.40 ± 7.01 vs. 47.80 ± 4, P < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 58.10 ± 4.98, P < .05). In addition, compared with the sham group, the number of caspase-3-positive cells, the expression level of p38 mitogen-activated protein kinase (MAPK) and the expression of matrix metallopeptidase 9 (MMP-9) were 2-fold, 34.38%, 64.78% higher in the DG group (caspase-3-positive cells: 78.70 ± 6.52 vs. 27.10 ±3.00, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.32 ± 0.10, P < .05; MMP-9: 14.83 ± 1.18 vs. 9.00 ± 2.05, P < .05, respectively), and more than 3-fold, 1-fold and 1-fold higher in model group (caspase-3-positive cells: 121.10 ± 11.04 vs. 27.10 ± 3.00, P < .05; p-38MAPK: 0.70 ± 0.12 vs. 0.32 ± 0.10, P < .05; MMP-9: 19.00 ± 1.90 vs. 9.00 ± 2.05, P < .05), respectively. However, the number of caspase-3-positive cells and the expression levels of p-38MAPK and MMP-9 were 35.01%, 38.57% and 28.12% lower in DG group compared with the model group (caspase-3-positive cells: 78.70 ± 6.52 vs. 121.10 ± 11.04, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.70 ± 0.12, P < .05; MMP-9: 14.83 ± 1.18 vs. 19.00 ± 1.90, P < .05). CONCLUSIONS Our study showed that diammonium glycyrrhizinate at 20 mg/kg/day had a protective effect on cerebral ischemia-reperfusion injury in rats by promoting formation of Nissl bodies and increasing protein expression of Akt while decreasing that of caspase-3, p38 MAPK and MMP-9, either directly or indirectly, by inhibiting apoptosis and reducing neuroinflammation. All these mechanisms resulted in improved overall neurological function.
Collapse
Affiliation(s)
- Hong Wang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| | - Binbin Zhang
- Department of Neurology,
Dongli District
Hospital, Tianjin, Chian
| | - Weiwei Dong
- Department of Nuclear Medicine,
The
Fourth Central Clinical School, Tianjin Medical
University, Tianjin, China
| | - Yuying Li
- Department of Neurology,
Tianjin
Medical University General Hospital,
Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery,
Tianjin
Medical University General Hospital Airport
Site, Tianjin, China
| | - Ying Zhang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| |
Collapse
|
3
|
Marchelek-Mysliwiec M, Nalewajska M, Turoń-Skrzypińska A, Kotrych K, Dziedziejko V, Sulikowski T, Pawlik A. The Role of Forkhead Box O in Pathogenesis and Therapy of Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231911611. [PMID: 36232910 PMCID: PMC9569915 DOI: 10.3390/ijms231911611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes is a disease that causes numerous complications disrupting the functioning of the entire body. Therefore, new treatments for the disease are being sought. Studies in recent years have shown that forkhead box O (FOXO) proteins may be a promising target for diabetes therapy. FOXO proteins are transcription factors involved in numerous physiological processes and in various pathological conditions, including cardiovascular diseases and diabetes. Their roles include regulating the cell cycle, DNA repair, influencing apoptosis, glucose metabolism, autophagy processes and ageing. FOXO1 is an important regulator of pancreatic beta-cell function affecting pancreatic beta cells under conditions of insulin resistance. FOXO1 also protects beta cells from damage resulting from oxidative stress associated with glucose and lipid overload. FOXO has been shown to affect a number of processes involved in the development of diabetes and its complications. FOXO regulates pancreatic β-cell function during metabolic stress and also plays an important role in regulating wound healing. Therefore, the pharmacological regulation of FOXO proteins is a promising approach to developing treatments for many diseases, including diabetes mellitus. In this review, we describe the role of FOXO proteins in the pathogenesis of diabetes and the role of the modulation of FOXO function in the therapy of this disease.
Collapse
Affiliation(s)
| | - Magdalena Nalewajska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Katarzyna Kotrych
- Department of Radiology, West Pomeranian Center of Oncology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive, and Gastroenterological Surgery, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
- Correspondence:
| |
Collapse
|
4
|
Zhang X, You LY, Zhang ZY, Jiang DX, Qiu Y, Ruan YP, Mao ZJ. Integrating pharmacological evaluation and computational identification for deciphering the action mechanism of Yunpi-Huoxue-Sanjie formula alleviates diabetic cardiomyopathy. Front Pharmacol 2022; 13:957829. [PMID: 36147338 PMCID: PMC9487204 DOI: 10.3389/fphar.2022.957829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Yunpi-Huoxue-Sanjie (YP-SJ) formula is a Chinese herbal formula with unique advantages for the treatment of diabetic cardiovascular complications, such as Diabetic cardiomyopathy (DCM). However, potential targets and molecular mechanisms remain unclear. Therefore, our research was designed to evaluate rat myocardial morphology, fat metabolism and oxidative stress to verify myocardial protective effect of YP-SJ formula in vivo. And then to explore and validate its probable mechanism through network pharmacology and experiments in vitro and in vivo. Methods: In this study, DCM rats were randomly divided into five groups: control group, model group, and three YP-SJ formula groups (low-dose, middle-dose, and high-dose groups). Experimental rats were treated with 6 g/kg/d, 12 g/kg/d and 24 g/kg/d YP-SJ formula by gavage for 10 weeks, respectively. Cardiac function of rats was measured by high-resolution small-animal imaging system. The cells were divided into control group, high glucose group, high glucose + control serum group, high glucose + dosed serum group, high glucose + NC-siRNA group, high glucose + siRNA-FoxO1 group. The extent of autophagy was measured by flow cytometry, immunofluorescence, and western blotting. Results: It was found that YP-SJ formula could effectively improve cardiac systolic function in DCM rats. We identified 46 major candidate YP-SJ formula targets that are closely related to the progression of DCM. Enrichment analysis revealed key targets of YP-SJ formula related to environmental information processing, organic systems, and the metabolic occurrence of reactive oxygen species. Meanwhile, we verified that YP-SJ formula can increase the expression of forkhead box protein O1 (FoxO1), autophagy-related protein 7 (Atg7), Beclin 1, and light chain 3 (LC3), and decrease the expression of phosphorylated FoxO1 in vitro and in vivo. The results showed that YP-SJ formula could activate the FoxO1 signaling pathway associated with DCM rats. Further experiments showed that YP-SJ formula could improve cardiac function by regulating autophagy. Conclusion: YP-SJ formula treats DCM by modulating targets that play a key role in autophagy, improving myocardial function through a multi-component, multi-level, multi-target, multi-pathway, and multi-mechanism approach.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Li-Yan You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Ze-Yu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dong-Xiao Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
- *Correspondence: Zhu-Jun Mao, ; Ye-Ping Ruan,
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
- *Correspondence: Zhu-Jun Mao, ; Ye-Ping Ruan,
| |
Collapse
|
5
|
Han R, Huang H, Xia W, Liu J, Luo H, Tang J, Xia Z. Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Front Cardiovasc Med 2022; 9:951597. [PMID: 36035917 PMCID: PMC9403618 DOI: 10.3389/fcvm.2022.951597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the primary cause of morbidity and mortality in diabetic cardiovascular complications, which initially manifests as cardiac hypertrophy, myocardial fibrosis, dysfunctional remodeling, and diastolic dysfunction, followed by systolic dysfunction, and eventually end with acute heart failure. Molecular mechanisms underlying these pathological changes in diabetic hearts are complicated and multifactorial, including but not limited to insulin resistance, oxidative stress, lipotoxicity, cardiomyocytes apoptosis or autophagy, inflammatory response, and myocardial metabolic dysfunction. With the development of molecular biology technology, accumulating evidence illustrates that members of the class O of Forkhead box (FoxO) transcription factors are vital for maintaining cardiomyocyte metabolism and cell survival, and the functions of the FoxO family proteins can be modulated by a wide variety of post-translational modifications including phosphorylation, acetylation, ubiquitination, arginine methylation, and O-glycosylation. In this review, we highlight and summarize the most recent advances in two members of the FoxO family (predominately FoxO1 and FoxO3a) that are abundantly expressed in cardiac tissue and whose levels of gene and protein expressions change as DCM progresses, with the goal of providing valuable insights into the pathogenesis of diabetic cardiovascular complications and discussing their therapeutic potential and possible effects of salvianolic acids, a natural product.
Collapse
Affiliation(s)
- Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The Univerisity of Hong Kong, Hong Kong, China
- *Correspondence: Weiyi Xia,
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People’s Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Zhengyuan Xia,
| |
Collapse
|
6
|
Chen XY, Wang JQ, Cheng SJ, Wang Y, Deng MY, Yu T, Wang HY, Zhou WJ. Diazoxide Post-conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Front Cardiovasc Med 2021; 8:711465. [PMID: 34938777 PMCID: PMC8687117 DOI: 10.3389/fcvm.2021.711465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Previous studies have shown that diazoxide can protect against myocardial ischemia-reperfusion injury (MIRI). The intranuclear hypoxia-inducible factor-1 (HIF-1)/hypoxia-response element (HRE) pathway has been shown to withstand cellular damage caused by MIRI. It remains unclear whether diazoxide post-conditioning is correlated with the HIF-1/HRE pathway in protective effect on cardiomyocytes. Methods: An isolated cardiomyocyte model of hypoxia-reoxygenation injury was established. Prior to reoxygenation, cardiomyocytes underwent post-conditioning treatment by diazoxide, and 5-hydroxydecanoate (5-HD), N-(2-mercaptopropionyl)-glycine (MPG), or dimethyloxallyl glycine (DMOG) followed by diazoxide. At the end of reoxygenation, ultrastructural morphology; mitochondrial membrane potential; interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and HIF-1α levels; and downstream gene mRNA and protein levels were analyzed to elucidate the protective mechanism of diazoxide post-conditioning. Results: Diazoxide post-conditioning enabled activation of the HIF-1/HRE pathway to induce myocardial protection. When the mitoKATP channel was inhibited and ROS cleared, the diazoxide effect was eliminated. DMOG was able to reverse the effect of ROS absence to restore the diazoxide effect. MitoKATP and ROS in the early reoxygenation phase were key to activation of the HIF-1/HRE pathway. Conclusion: Diazoxide post-conditioning promotes opening of the mitoKATP channel to generate a moderate ROS level that activates the HIF-1/HRE pathway and subsequently induces myocardial protection.
Collapse
Affiliation(s)
- Xi-Yuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Department of Anesthesiology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jia-Qi Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Si-Jing Cheng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Meng-Yuan Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hai-Ying Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Wen-Jing Zhou
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
7
|
Wang X, An P, Gu Z, Luo Y, Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 2021; 22:ijms22147525. [PMID: 34299144 PMCID: PMC8305404 DOI: 10.3390/ijms22147525] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
8
|
Wang J, Bai J, Duan P, Wang H, Li Y, Zhu Q. Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKT-FoxO1 signalling pathway. J Cell Mol Med 2021; 25:3935-3949. [PMID: 33547878 PMCID: PMC8051713 DOI: 10.1111/jcmm.16346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the expression of inwardly rectifying potassium channel 6.1 (Kir6.1) in heart mitochondria is significantly reduced in type 1 diabetes. However, whether its expression and function are changed and what role it plays in type 2 diabetic cardiomyopathy (DCM) have not been reported. This study investigated the role and mechanism of Kir6.1 in DCM. We found that the cardiac function and the Kir6.1 expression in DCM mice were decreased. We generated mice overexpressing or lacking Kir6.1 gene specifically in the heart. Kir6.1 overexpression improved cardiac dysfunction in DCM. Cardiac‐specific Kir6.1 knockout aggravated cardiac dysfunction. Kir6.1 regulated the phosphorylation of AKT and Foxo1 in DCM. We further found that Kir6.1 overexpression also improved cardiomyocyte dysfunction and up‐regulated the phosphorylation of AKT and FoxO1 in neonatal rat ventricular cardiomyocytes with insulin resistance. Furthermore, FoxO1 activation down‐regulated the expression of Kir6.1 and decreased the mitochondrial membrane potential (ΔΨm) in cardiomyocytes. FoxO1 inactivation up‐regulated the expression of Kir6.1 and increased the ΔΨm in cardiomyocytes. Chromatin immunoprecipitation assay demonstrated that the Kir6.1 promoter region contains a functional FoxO1‐binding site. In conclusion, Kir6.1 improves cardiac dysfunction in DCM, probably through the AKT‐FoxO1 signalling pathway.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jing Bai
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Peng Duan
- Department of Cardiology, Chinese PLA No. 371 Hospital, Henan, China
| | - Hao Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Villalpando DM, Verdasco-Martín CM, Plaza I, Gómez-Rivas J, R de Bethencourt F, Villarroel M, García JL, Otero C, Ferrer M. Beneficial Effects of Spirulina Aqueous Extract on Vasodilator Function of Arteries from Hypertensive Rats. Int J Vasc Med 2020; 2020:6657077. [PMID: 33457015 PMCID: PMC7787865 DOI: 10.1155/2020/6657077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Hypertension is a multifactorial disorder considered one of the major causes of premature death worldwide. This pathology is associated with vascular functional/structural alterations in which nitric oxide (NO) and oxygen reactive species participate. On the other hand, the use of microalgae extracts in the treatment of cardiovascular diseases is increasing. Based on the antioxidant and antihypertensive properties of Spirulina, this study aims to investigate the effect of an aqueous extract of Spirulina on the vasodilator function of the aorta from spontaneously hypertensive rats (SHR), analyzing the functional role of NO. For this, aortic segments from male SHR were divided into two groups, one control and the other exposed to an Spirulina aqueous extract (0.1% w/v, for 3 hours), to analyze (i) the production of NO, superoxide anion, and hydrogen peroxide; (ii) the vasodilator response induced by acetylcholine (ACh), by the NO donor and sodium nitroprusside (SNP), and by the KATP channel opener and pinacidil; and (iii) the expression of the p-Akt, p-eNOS, and HO-1 proteins. The results showed that the aqueous Spirulina extract (i) increased the production of NO, did not significantly modify that of superoxide, while decreased that of hydrogen peroxide; (ii) increased the vasodilatory responses induced by ACh, NPS, and pinacidil; and (iii) increased the expression of p-Akt and HO-1. These results suggest that incubation with the aqueous Spirulina extract improves the vascular function of arteries from SHR by increasing the release/bioavailability/function of NO. Increased KATP channel activation and expression of pAkt and HO-1 appear to be participating in these actions.
Collapse
Affiliation(s)
- Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Verdasco-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ignacio Plaza
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Gómez-Rivas
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Morris Villarroel
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - José L. García
- Centro de Investigaciones Biológicas Margarita Salas, Biotecnología Medioambiental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
10
|
Yu W, Chen C, Cheng J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 2020; 7:3497-3504. [PMID: 33089967 PMCID: PMC7755013 DOI: 10.1002/ehf2.13065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunjuan Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical College69 Dong Xia North RoadShantou515041China
| | - Jidong Cheng
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| |
Collapse
|
11
|
Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD, Tie YY, Qu L, Li XY. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24:12355-12367. [PMID: 32961025 PMCID: PMC7687015 DOI: 10.1111/jcmm.15725] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes is a disorder of glucose metabolism, and over 90% are type 2 diabetes. Diabetic cardiomyopathy (DCM) is one of the type 2 diabetes complications, usually accompanied by changes in myocardial structure and function, together with cardiomyocyte apoptosis. Our study investigated the effect of curcumin on regulating oxidative stress (OS) and apoptosis in DCM. In vivo, diabetes was induced in an experimental rat model by streptozoticin (STZ) together with high‐glucose and high‐fat (HG/HF) diet feeding. In vitro, H9c2 cardiomyocytes were cultured with high‐glucose and saturated free fatty acid palmitate. Curcumin was orally or directly administered to rats or cells, respectively. Streptozoticin ‐induced diabetic rats showed metabolism abnormalities and elevated markers of OS (superoxide dismutase [SOD], malondialdehyde [MDA], gp91phox, Cyt‐Cyto C), enhanced cell apoptosis (Bax/Bcl‐2, Cleaved caspase‐3, TUNEL‐positive cells), together with reduced Akt phosphorylation and increased Foxo1 acetylation. Curcumin attenuated the myocardial dysfunction, OS and apoptosis in the heart of diabetic rats. Curcumin treatment also enhanced phosphorylation of Akt and inhibited acetylation of Foxo1. These results strongly suggest that apoptosis was increased in the heart of diabetic rats, and curcumin played a role in diabetic cardiomyopathy treatment by modulating the Sirt1‐Foxo1 and PI3K‐Akt pathways.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shan-Shan Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Cheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Guang Cui
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin-Rui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min-Feng Hao
- Department of Neurology, Xi'an Central Hospital, Xi'an, China
| | - Meng-Dan Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Yuan Tie
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Qu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue-Yi Li
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020; 10:E1200. [PMID: 32824877 PMCID: PMC7466137 DOI: 10.3390/biom10081200] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (B.A.); (M.Ż.)
| |
Collapse
|
13
|
Jin L, Zhang J, Deng Z, Liu J, Han W, Chen G, Si Y, Ye P. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther 2020; 11:122. [PMID: 32183879 PMCID: PMC7079514 DOI: 10.1186/s13287-020-01633-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a cardiac complication of long-term uncontrolled diabetes and is characterized by myocardial fibrosis and abnormal cardiac function. Mesenchymal stem cells (MSCs) are multipotent cells with immunoregulatory and secretory functions in diabetes and heart diseases. However, very few studies have focused on the effect and the underlying mechanism of MSCs on myocardial fibrosis in DCM. Therefore, we aimed to explore the therapeutic potential of MSCs in myocardial fibrosis and its underlying mechanism in vivo and in vitro. METHODS A DCM rat model was induced using a high-fat diet (HFD) combined with a low-dose streptozotocin (STZ) injection. After four infusions of MSCs, rat serum and heart tissues were collected, and the levels of blood glucose and lipid, cardiac structure, and function, and the degree of myocardial fibrosis including the expression levels of pro-fibrotic factor and collagen were analyzed using biochemical methods, echocardiography, histopathology, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA). We infused prostaglandin E2 (PGE2)-deficient MSCs to DCM rats in vivo and established a system mimicking diabetic myocardial fibrosis in vitro by inducing cardiac fibroblasts with high glucose (HG) and coculturing them with MSCs or PGE2-deficient MSCs to further explore the underlying mechanism of amelioration of myocardial fibrosis by MSCs. RESULTS Metabolic abnormalities, myocardial fibrosis, and cardiac dysfunction in DCM rats were significantly ameliorated after treatment with MSCs. Moreover, the levels of TGF-β, collagen I, collagen III, and collagen accumulation were markedly decreased after MSC infusion compared to those in DCM hearts. However, PGE2-deficient MSCs had decreased ability to alleviate cardiac fibrosis and dysfunction. In addition, in vitro study revealed that the concentration of PGE2 in the MSC group was enhanced, while the proliferation and collagen secretion of cardiac fibroblasts were reduced after MSC treatment. However, MSCs had little effect on alleviating fibrosis when the fibroblasts were pretreated with cyclooxygenase-2 (COX-2) inhibitors, which also inhibited PGE2 secretion. This phenomenon could be reversed by adding PGE2. CONCLUSIONS Our results indicated that MSC infusion could ameliorate cardiac fibrosis and dysfunction in DCM rats. The underlying mechanisms might involve the function of PGE2 secreted by MSCs.
Collapse
Affiliation(s)
- Liyuan Jin
- Department of Geriatric Cardiology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853 China
- Chinese People’s Liberation Army Medical School, No. 28 Fuxing Road, Beijing, 100853 China
| | - Jinying Zhang
- Chinese People’s Liberation Army Medical School, No. 28 Fuxing Road, Beijing, 100853 China
| | - Zihui Deng
- Chinese People’s Liberation Army Medical School, No. 28 Fuxing Road, Beijing, 100853 China
| | - Jiejie Liu
- Department of Basic Research, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Weidong Han
- Department of Basic Research, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Guanghui Chen
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Yiling Si
- Department of Basic Research, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Ping Ye
- Department of Geriatric Cardiology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853 China
| |
Collapse
|