1
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
2
|
Huang Z, Zhou RR. Mechanism for FXR to regulate bile acid and glycolipid metabolism to improve NAFLD. Shijie Huaren Xiaohua Zazhi 2023; 31:797-807. [DOI: 10.11569/wcjd.v31.i19.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, with liver metabolic disorders as major pathological changes, manifested as abnormal lipid accumulation, liver cell oxidative stress, etc., but its etiology is still unclear. The farnesol X receptor (FXR) is a major bile acid receptor in the "gut-liver axis", via which FXR regulates metabolism and affects the pathophysiological status of various substances through different pathways, thus contributing to the occurrence and development of NAFLD. Therefore, FXR has become a potential therapeutic target for NAFLD. This article reviews the relationship between FXR regulation of bile acid, glucose, and lipid metabolism through the "gut-liver axis" and the occurrence and development of NAFLD, to provide new insights and clues for further research about FXR-based pharmaceutical treatments.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
3
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Youssef FS, El-Sherbeni SA, Negm WA. A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection. Inflammopharmacology 2023; 31:9-19. [PMID: 36484974 PMCID: PMC9735105 DOI: 10.1007/s10787-022-01111-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The causative agent of CoV disease 2019 is a new coronavirus CoV type 2, affecting the respiratory tract with severe manifestations (SARS-CoV-2). Covid-19 is mainly symptomless, with slight indications in about 85% of the affected cases. Many efforts were done to face this pandemic by testing different drugs and agents to make treatment protocols in different countries. However, the use of these proposed drugs is associated with the development of adverse events. Remarkably, the successive development of SARS-CoV-2 variants which could affect persons even they were vaccinated, prerequisite wide search to find efficient and safe agents to face SARS-CoV-2 infection. Obeticholic acid (OCA), which has anti-inflammatory effects, may efficiently treat Covid-19. Thus, the goal of this perspective study is to focus on the possible medicinal effectiveness in managing Covid-19. OCA is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and anti-inflammatory effects. FXR is dysregulated in Covid-19 resulting in hyper-inflammation with concurrent occurrence of hypercytokinemia. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 (ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions. It is highly recommended to perform many investigations regarding different phases of the discovery of new drugs.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566 Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
4
|
Shiragannavar VD, Sannappa Gowda NG, Puttahanumantharayappa LD, Karunakara SH, Bhat S, Prasad SK, Kumar DP, Santhekadur PK. The ameliorating effect of withaferin A on high-fat diet-induced non-alcoholic fatty liver disease by acting as an LXR/FXR dual receptor activator. Front Pharmacol 2023; 14:1135952. [PMID: 36909161 PMCID: PMC9995434 DOI: 10.3389/fphar.2023.1135952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) incidence has been rapidly increasing, and it has emerged as one of the major diseases of the modern world. NAFLD constitutes a simple fatty liver to chronic non-alcoholic steatohepatitis (NASH), which often leads to liver fibrosis or cirrhosis, a serious health condition with limited treatment options. Many a time, NAFLD progresses to fatal hepatocellular carcinoma (HCC). Nuclear receptors (NRs), such as liver X receptor-α (LXR-α) and closely associated farnesoid X receptor (FXR), are ligand-inducible transcription factors that regulate various metabolism-associated gene expressions and repression and play a major role in controlling the pathophysiology of the human liver. Withaferin A is a multifaceted and potent natural dietary compound with huge beneficial properties and plays a vital role as an anti-inflammatory molecule. Methods: In vivo: Swill albino mice were fed with western diet and sugar water (WDSW) for 12, 16, and 20 weeks with suitable controls. Post necropsy, liver enzymes (AST, ALT, and ALP) and lipid profile were measured by commercially available kits using a semi-auto analyzer in serum samples. Liver histology was assessed using H&E and MTS stains to check the inflammation and fibrosis, respectively, using paraffin-embedded sections and mRNA expressions of these markers were measured using qRT-PCR method. TGF-β1 levels in serum samples were quantified by ELISA. In vitro: Steatosis was induced in HepG2 and Huh7 cells using free fatty acids [Sodium Palmitate (SP) and Oleate (OA)]. After induction, the cells were treated with Withaferin A in dose-dependent manner (1, 2.5, and 5 μM, respectively). In vitro steatosis was confirmed by Oil-Red-O staining. Molecular Docking: Studies were conducted using Auto Dock Vina software to check the binding affinity of Withaferin-A to LXR-α and FXR. Results: We explored the dual receptor-activating nature of Withaferin A using docking studies, which potently improves high-fat diet-induced NAFLD in mice and suppresses diet-induced hepatic inflammation and liver fibrosis via LXR/FXR. Our in vitro studies also indicated that Withaferin A inhibits lipid droplet accumulation in sodium palmitate and oleate-treated HepG2 and Huh7 cells, which may occur through LXR-α and FXR-mediated signaling pathways. Withaferin A is a known inhibitor of NF-κB-mediated inflammation. Intriguingly, both LXR-α and FXR activation inhibits inflammation and fibrosis by negatively regulating NF-κB. Additionally, Withaferin A treatment significantly inhibited TGF-β-induced gene expression, which contributes to reduced hepatic fibrosis. Discussion: Thus, the LXR/ FXR dual receptor activator Withaferin A improves both NAFLD-associated liver inflammation and fibrosis in mouse models and under in vitro conditions, which makes Withaferin A a possibly potent pharmacological and therapeutic agent for the treatment of diet-induced NAFLD.
Collapse
Affiliation(s)
- Varsha D Shiragannavar
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Nirmala G Sannappa Gowda
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Lakshana D Puttahanumantharayappa
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shreyas H Karunakara
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.,Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Divya P Kumar
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
5
|
Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc Ther 2022; 2022:4610834. [PMID: 35087605 PMCID: PMC8763555 DOI: 10.1155/2022/4610834] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia characterized by abnormal deposition of cholesterol in arteries can cause atherosclerosis and coronary artery occlusion, leading to atherosclerotic coronary heart disease. The body prevents atherosclerosis by reverse cholesterol transport to mobilize and excrete cholesterol and other lipids. Apolipoprotein A1, the major component of high-density lipoprotein, plays a key role in reverse cholesterol transport. Here, we reviewed the role of apolipoprotein A1-targeting molecules in antiatherosclerosis therapy, in particular ATP-binding cassette transporter A1, lecithin-cholesterol acyltransferase, and scavenger receptor class B type 1.
Collapse
|
6
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
7
|
Connelly MA, Velez Rivera J, Guyton JR, Siddiqui MS, Sanyal AJ. Review article: the impact of liver-directed therapies on the atherogenic risk profile in non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 52:619-636. [PMID: 32638417 PMCID: PMC7497003 DOI: 10.1111/apt.15935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Patients with non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, are at higher risk of cardiovascular disease (CVD) and associated mortality. Therefore, it is important to understand how new therapies for non-alcoholic steatohepatitis (NASH) may impact CVD risk factors in these patients. AIMS To summarise the effects of drug therapies on lipid and lipoprotein levels in patients with NASH and provide insight into the potential mechanisms for the observed changes. METHODS PubMed searches of the literature were performed and results were compiled. RESULTS Recent clinical trials have highlighted the safety and efficacy of drug candidates for the treatment of NASH. Several agents have shown improvements in the histological features of NASH and liver function. Pioglitazone, a drug that is currently available for type 2 diabetes and may be useful for NASH, exhibits beneficial effects on lipids. However, agents such as farnesoid X receptor agonists, which are in development for NASH, may adversely affect circulating lipids and lipoproteins. CONCLUSIONS NASH is a multi-system disease with a disproportionate CVD burden. Current and future drugs for NASH have had variable impact on the atherogenic risk profile. Potential co-administration of a statin may help mitigate the negative impact of some of these therapies on lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | - Jonathan Velez Rivera
- Division of Endocrinology, Metabolism, and NutritionDepartment of MedicineDuke University Medical CenterDurhamNCUSA
| | - John R. Guyton
- Division of Endocrinology, Metabolism, and NutritionDepartment of MedicineDuke University Medical CenterDurhamNCUSA
| | | | - Arun J. Sanyal
- Division of Gastroenterology and HepatologyVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|