1
|
Bestepe F, Fritsche C, Lakhotiya K, Niosi CE, Ghanem GF, Martin GL, Pal-Ghosh R, Becker-Greene D, Weston J, Hollan I, Risnes I, Rynning SE, Solheim LH, Feinberg MW, Blanton RM, Icli B. Deficiency of miR-409-3p improves myocardial neovascularization and function through modulation of DNAJB9/p38 MAPK signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:995-1009. [PMID: 37332476 PMCID: PMC10276151 DOI: 10.1016/j.omtn.2023.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Angiogenesis is critical for tissue repair following myocardial infarction (MI), which is exacerbated under insulin resistance or diabetes. MicroRNAs are regulators of angiogenesis. We examined the metabolic regulation of miR-409-3p in post-infarct angiogenesis. miR-409-3p was increased in patients with acute coronary syndrome (ACS) and in a mouse model of acute MI. In endothelial cells (ECs), miR-409-3p was induced by palmitate, while vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) decreased its expression. Overexpression of miR-409-3p decreased EC proliferation and migration in the presence of palmitate, whereas inhibition had the opposite effects. RNA sequencing (RNA-seq) profiling in ECs identified DNAJ homolog subfamily B member 9 (DNAJB9) as a target of miR-409-3p. Overexpression of miR-409-3p decreased DNAJB9 mRNA and protein expression by 47% and 31% respectively, while enriching DNAJB9 mRNA by 1.9-fold after Argonaute2 microribonucleoprotein immunoprecipitation. These effects were mediated through p38 mitogen-activated protein kinase (MAPK). Ischemia-reperfusion (I/R) injury in EC-specific miR-409-3p knockout (KO) mice (miR-409ECKO) fed a high-fat, high-sucrose diet increased isolectin B4 (53.3%), CD31 (56%), and DNAJB9 (41.5%). The left ventricular ejection fraction (EF) was improved by 28%, and the infarct area was decreased by 33.8% in miR-409ECKO compared with control mice. These findings support an important role of miR-409-3p in the angiogenic EC response to myocardial ischemia.
Collapse
Affiliation(s)
- Furkan Bestepe
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Colette Fritsche
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Carolyn E. Niosi
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - George F. Ghanem
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ruma Pal-Ghosh
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Weston
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ivana Hollan
- Department of Health Sciences, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Stein Erik Rynning
- Department of Heart Diseases, Haukeland University Hospital, Bergen, Norway
| | | | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Basak Icli
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
2
|
Han XD, Jiang XG, Yang M, Chen WJ, Li LG. miRNA‑124 regulates palmitic acid‑induced epithelial‑mesenchymal transition and cell migration in human retinal pigment epithelial cells by targeting LIN7C. Exp Ther Med 2022; 24:481. [PMID: 35761801 PMCID: PMC9214593 DOI: 10.3892/etm.2022.11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The present study revealed that palmitic acid (PA) treatment induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, which are involved in the progression of proliferative vitreoretinopathy (PVR). ARPE-19 cells were treated with PA followed by miRNA screening and EMT marker detection using qRT-PCR. Then, miR-124 mimic or inhibitor was transfected into ARPE-19 cells to explore the role of miR-124 on the EMT of ARPE-19 cells using transwell assay. The underlying mechanism of miRNA were predicted by bioinformatics method and confirmed by luciferase activity reporter assay. Furthermore, gain-of-function strategy was also used to explore the role of LIN7C in the EMT of ARPE-19 cells. The expression of miRNA or mRNA expression was determined by qRT-PCR and the protein expression was determined using western blot assay. The result presented that PA reduced the expression of E-cadherin/ZO-1 whilst increasing the expression of fibronectin/α-SMA. In addition, PA treatment enhanced the expression of microRNA (miR)-124 in ARPE-19 cells. Overexpression of miR-124 enhanced PA-induced upregulation of E-cadherin and ZO-1 expression and downregulation of fibronectin and α-SMA. Moreover, miR-124 mimic also enhanced the migration of ARPE-19 cells induced by PA treatment. Inversely, miR-124 inhibitor presented opposite effect on PA-induced EMT and cell migration in ARPE-19 cells. Luciferase activity reporter assay confirmed that Lin-7 homolog C (LIN7C) was a direct target of miR-124 in ARPE-19 cells. Overexpression of LIN7C was found to suppress the migration ability and expression of fibronectin and α-SMA, while increasing expression of E-cadherin and ZO-1; miR-124 mimic abrogated the inhibitive effect of LIN7C on the EMT of ARPE-19 cells and PA further enhanced this abolishment. Collectively, these findings suggest that miR-124/LIN7C can modulate EMT and cell migration in RPE cells, which may have therapeutic implications in the management of PVR diseases.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Xu-Guang Jiang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Min Yang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Wen-Jun Chen
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Li-Gang Li
- Department of Cataracts, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
3
|
Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, Little PJ, Xu S, Weng J. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Am J Cancer Res 2021; 11:9376-9396. [PMID: 34646376 PMCID: PMC8490502 DOI: 10.7150/thno.64706] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.
Collapse
|
4
|
Zhou H, Ni WJ, Meng XM, Tang LQ. MicroRNAs as Regulators of Immune and Inflammatory Responses: Potential Therapeutic Targets in Diabetic Nephropathy. Front Cell Dev Biol 2021; 8:618536. [PMID: 33569382 PMCID: PMC7868417 DOI: 10.3389/fcell.2020.618536] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Diabetic nephropathy (DN) is the principal cause of end-stage renal disease and results in high morbidity and mortality in patients, causing a large socioeconomic burden. Multiple factors, such as metabolic abnormalities, inflammation, immunoregulation and genetic predisposition, contribute to the pathogenesis of DN, but the exact mechanism is unclear, and the therapeutic strategies are not satisfactory. Accordingly, there is an unmet need for new therapeutic targets and strategies for DN. MicroRNAs (miRNAs) act as major epigenetic mechanisms that regulate gene expression and provide novel insights into our understanding of the molecular and signaling pathways that are associated with various diseases, including DN. Studies in the past decade have shown that different miRNAs affect the progression of DN by modulating different aspects of immune and inflammatory responses. Therefore, in this review, we summarized the pivotal roles of miRNAs in inflammatory and immune processes, with an integrative comprehension of the detailed signaling network. Additionally, we discussed the possibilities and significance of these miRNAs as therapeutic targets in the treatment of DN. This review will facilitate the identification of new therapeutic targets and novel strategies that can be translated into clinical applications for DN treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Qin Tang
- Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Jiang LL, Liu L. Effect of metformin on stem cells: Molecular mechanism and clinical prospect. World J Stem Cells 2020; 12:1455-1473. [PMID: 33505595 PMCID: PMC7789120 DOI: 10.4252/wjsc.v12.i12.1455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin is a first-line medication for type II diabetes. Numerous studies have shown that metformin not only has hypoglycemic effects, but also modulates many physiological and pathological processes ranging from aging and cancer to fracture healing. During these different physiological activities and pathological changes, stem cells usually play a core role. Thus, many studies have investigated the effects of metformin on stem cells. Metformin affects cell differentiation and has promising applications in stem cell medicine. It exerts anti-aging effects and can be applied to gerontology and regenerative medicine. The potential anti-cancer stem cell effect of metformin indicates that it can be an adjuvant therapy for cancers. Furthermore, metformin has beneficial effects against many other diseases including cardiovascular and autoimmune diseases. In this review, we summarize the effects of metformin on stem cells and provide an overview of its molecular mechanisms and clinical prospects.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|