1
|
Yu Z, Li W, Tian C, Cao Y, Zhang C. Drug-induced hepatic sinusoidal obstruction syndrome: current advances and future perspectives. Arch Toxicol 2024:10.1007/s00204-024-03950-9. [PMID: 39718593 DOI: 10.1007/s00204-024-03950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) has gained recognition as a rare form of drug-induced liver injury (DILI) in recent years. Although extensively studied in the context of hematopoietic stem cell transplantation (HSCT), the applicability of this knowledge to drug-induced HSOS remains limited due to distinct etiological factors. The primary causes of drug-induced HSOS include the ingestion of pyrrolizidine alkaloid (PA)-containing plants, as well as the use of chemotherapeutic agents and immunosuppressive drugs. The underlying pathogenesis is not yet fully understood. Noninvasive diagnostic imaging modalities such as ultrasonography, computed tomography, and magnetic resonance imaging play a valuable role in diagnosis. Further research is essential to develop standardized severity grading systems and optimize treatment strategies. This review summarizes the key etiologies, pathological mechanisms, clinical features, diagnostic approaches, severity assessment, and therapeutic options for drug-induced HSOS.
Collapse
Affiliation(s)
- Zaoqin Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Cheng Tian
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Cao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Chouikh N, Benguedouar L, Ayad R, Medjahed Z, Bento-Silva A, Duarte N, Sifour M. Phytochemical analysis, antioxidant activity and modulatory effect of aqueous leaf extract of Pistacia lentiscus L on oxaliplatin-induced oxidative stress in isolated rat liver mitochondria. Drug Chem Toxicol 2024:1-12. [PMID: 39603979 DOI: 10.1080/01480545.2024.2429615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
This study evaluates the antioxidant effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) and its potential to counteract oxaliplatin (OXA)-induced mitochondrial oxidative stress in rat livers, a common side effect of chemotherapy in cancer treatment. Bioactive compounds were identified using High-Performance Liquid Chromatography coupled with Tandem Mass Spectrometry (HPLC-MS and MS), with Fourier-Transform Infrared Spectroscopy (FTIR) and Atomic Absorption Spectrophotometry (AAS) for chemical and mineral analysis. ALEPL showed notable antioxidant activity, with IC50 values of 4.30 ± 0.27 μg/mL for DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging, 13.64 ± 0.51 μg/mL for reducing power, 32.62 ± 5.32 μg/mL for hydroxyl radical scavenging, and 205.08 ± 25.77 μg/mL for superoxide anion radical scavenging. In ex vivo experiments, mitochondria isolated from Wistar rat livers were treated with OXA and ALEPL in a dose-dependent manner. ALEPL pretreatment effectively restored mitochondrial antioxidant enzyme activities, increased glutathione (GSH) levels, and reduced lipid peroxidation (MDA) caused by OXA. These findings suggest that ALEPL has the potential to act as a natural antioxidant to support cancer treatment by mitigating chemotherapy-induced oxidative stress. Future studies could explore its application as an adjuvant in clinical settings to enhance the efficacy of chemotherapy while reducing its side effects.
Collapse
Affiliation(s)
- Nesrine Chouikh
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel, Algeria
| | - Lamia Benguedouar
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel, Algeria
| | - Rabha Ayad
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - Zeineb Medjahed
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel, Algeria
| | | | - Noelia Duarte
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel, Algeria
| |
Collapse
|
3
|
Cheng X, Zhu C, Chen Y, Li M, Li G, Zu Y, Gao Q, Shang T, Liu D, Zhang C, Ren X. Huaier relieves oxaliplatin-induced hepatotoxicity through activation of the PI3K/AKT/Nrf2 signaling pathway in C57BL/6 mice. Heliyon 2024; 10:e37010. [PMID: 39286172 PMCID: PMC11402744 DOI: 10.1016/j.heliyon.2024.e37010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatotoxicity caused by the anticancer medication oxaliplatin (OXA) significantly restricts its clinical use and raises the risk of liver damage. Huaier, a fungus found in China, has been demonstrated to have various beneficial effects in adjuvant therapy for cancer. However, the preventive impact of Huaier against OXA-induced hepatotoxicity is still unknown. The potential molecular pathways behind the hepatoprotective activity of Huaier against OXA-induced hepatotoxicity were investigated in the current study Mice were intraperitoneally injected with 10 mg/kg of OXA once a week for six consecutive weeks to establish a liver injury model. Huaier (2 g/kg, 4 g/kg, and 8 g/kg) was administered weekly to mice by gavage for six weeks. Commercial kits were used to determine the contents of glutathione, catalase, superoxide dismutase, and malondialdehyde. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the impact of Huaier therapy on the expression of the PI3K pathway. Huaier exhibited a good protective effect on OXA-induced hepatotoxicity in a dose-dependent manner, which was connected to the suppression of oxidative stress, according to the results of biochemical index detection and histological staining analysis. In addition, Huaier could counteract the OXA-induced suppression of the PI3K/AKT signaling pathway. Moreover, the hepatoprotective effect and PI3K activation of Huaier were eradicated by LY294002. These findings imply that by decreasing oxidative stress, Huaier can minimize OXA-induced liver injury, establishing the groundwork for Huaier to lessen chemotherapy-induced hepatotoxicity in clinical practice.
Collapse
Affiliation(s)
- Xinwei Cheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunzhou Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianyan Gao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yoshino Y, Fujii Y, Chihara K, Nakae A, Enmi JI, Yoshioka Y, Miyawaki I. Non-invasive differentiation of hepatic steatosis and steatohepatitis in a mouse model using nitroxyl radical as an MRI-contrast agent. Toxicol Rep 2024; 12:1-9. [PMID: 38173653 PMCID: PMC10758964 DOI: 10.1016/j.toxrep.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Drug-induced steatohepatitis is considered more serious than drug-induced hepatic steatosis, so that differentiating between the two is crucial in drug development. In addition, early detection of drug-induced steatohepatitis is considered important since recovery is possible with drug withdrawal. However, no method has been established to differentiate between the two. In the development of drug-induced steatohepatitis, reactive oxygen species (ROS) is excessively generated in the liver. It has been reported that ROS can be monitored with electron spin resonance (ESR) and dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) by using nitroxyl radicals, which are known to participate in various in vivo redox reactions. The decay/reduction rate, which is an index for monitoring nitroxyl radicals, has been reported to be increased in tissues with excessive ROS levels other than liver, but decreased in methionine choline deficient (MCD) diet-induced steatohepatitis with excess ROS. Therefore, looking to differentiate between drug-induced hepatic steatosis and steatohepatitis, we examined whether the reduction rate decreases in steatohepatitis other than the MCD-diet induced disease and whether the decrease could be detected by MRI. We used STAM™ mice in which hepatic steatosis and steatohepatitis developed sequentially under diabetic conditions. 3-carbamoyl-PROXYL (CmP), one of the nitroxyl radicals, was injected intravenously during the MRI procedure and the reduction rate was calculated. The reduction rate was significantly higher in early steatohepatitis than in hepatic steatosis and the control. Excess ROS in early steatohepatitis was detected by an immunohistochemical marker for ROS. Therefore, it was indicated that the increase or decrease in the reduction rate in steatohepatitis differs depending on the model, and early steatohepatitis could be noninvasively differentiated from hepatic steatosis using CmP in MRI. Since the change in direction of the reduction rate in steatohepatitis in clinical studies could be predicted by confirming the reduction rate in preclinical studies, the present method, which can be used consistently in clinical and preclinical studies, warrants consideration as a candidate monitoring method for differentiating between early drug-induced steatohepatitis and hepatic steatosis in drug development.
Collapse
Affiliation(s)
- Yuka Yoshino
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
| | - Yuta Fujii
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
| | - Kazuhiro Chihara
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Aya Nakae
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Jun-ichiro Enmi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
5
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
6
|
Dong ZB, Wang YJ, Wan WJ, Wu J, Wang BJ, Zhu HL, Xie M, Liu L. Resveratrol ameliorates oxaliplatin‑induced neuropathic pain via anti‑inflammatory effects in rats. Exp Ther Med 2022; 24:586. [PMID: 35949346 PMCID: PMC9353538 DOI: 10.3892/etm.2022.11523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhi-Bin Dong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yu-Jia Wang
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Wen-Jun Wan
- Xishui Hospital Affiliated to Hubei Institute of Science and Technology, Huanggang, Hubei 438299, P.R. China
| | - Ji Wu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 531412, P.R. China
| | - Bo-Jun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Min Xie
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ling Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
7
|
Li Y, Guo Z, Cui H, Wang T, Xu Y, Zhao J. Urantide prevents CCl4‑induced acute liver injury in rats by regulating the MAPK signalling pathway. Mol Med Rep 2021; 24:688. [PMID: 34328202 PMCID: PMC8365596 DOI: 10.3892/mmr.2021.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
A number of drugs and other triggers can cause acute liver injury (ALI) in clinical practice. Therefore, identifying a safe drug for the prevention of liver injury is important. The aim of the present study was to investigate the potential preventive effect and regulatory mechanism of urantide on carbon tetrachloride (CCl4)‑induced ALI by investigating the expression of components of the MAPK signalling pathway and the urotensin II (UII)/urotensin receptor (UT) system. Liver oedema and severe fatty degeneration of the cytoplasm were observed in ALI model rats, and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were found to be significantly increased. Compared with those in the ALI model group, ALT and AST levels and the liver index did not significantly increase in each group given the preventive administration of urantide, and the liver tissue morphology was correspondingly protected. Moreover, the gene and protein expression levels of UII, G protein‑coupled receptor (GPR14) and the oxidative stress‑sensitive cytokines, α‑smooth muscle actin and osteopontin were decreased, indicating that the protein translation process was effectively maintained. However, the expression levels of MAPK signalling pathway‑related proteins and genes were decreased. It was found that urantide could effectively block the MAPK signalling pathway by antagonizing the UII/UT system, thus protecting the livers of ALI model rats. Therefore, it was suggested that ALI may be associated with the MAPK signalling pathway, and effective inhibition of the MAPK signalling pathway may be critical in protecting the liver.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zheming Guo
- Second Department of Trauma, Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050000, P.R. China
| | - Haipeng Cui
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Tu Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuhang Xu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
8
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
9
|
Lee MCM, Kachura JJ, Vlachou PA, Dzulynsky R, Di Tomaso A, Samawi H, Baxter N, Brezden-Masley C. Evaluation of Adjuvant Chemotherapy-Associated Steatosis (CAS) in Colorectal Cancer. ACTA ACUST UNITED AC 2021; 28:3030-3040. [PMID: 34436031 PMCID: PMC8395441 DOI: 10.3390/curroncol28040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Chemotherapy-associated steatosis is poorly understood in the context of colorectal cancer. In this study, Stage II–III colorectal cancer patients were retrospectively selected to evaluate the frequency of chemotherapy-associated steatosis and to determine whether patients on statins throughout adjuvant chemotherapy develop chemotherapy-associated steatosis at a lower frequency. Baseline and incident steatosis for up to one year from chemotherapy start date was assessed based on radiology. Of 269 patients, 76 (28.3%) had steatosis at baseline. Of the remaining 193 cases, patients receiving adjuvant chemotherapy (n = 135) had 1.57 (95% confidence interval [CI], 0.89 to 2.79) times the adjusted risk of developing steatosis compared to patients not receiving chemotherapy (n = 58). Among patients who underwent chemotherapy, those using statins for pre-existing hyperlipidemia (n = 37) had 0.71 (95% CI, 0.10 to 2.75) times the risk of developing steatosis compared to patients who were not prevalent users of statins (n = 98). Chemotherapeutic treatment of Stage II–III colorectal cancer appears to be consistent with a moderately increased risk of steatosis, although larger studies are necessary to assess the significance of this observation. Prospective trials should be considered to further explore the potential for protective use of statins in this curative patient population.
Collapse
Affiliation(s)
- Michelle C. M. Lee
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
- Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jacob J. Kachura
- Mount Sinai Hospital, 1284-600 University Avenue, Toronto, ON M5G 1X5, Canada; (J.J.K.); (A.D.T.)
| | - Paraskevi A. Vlachou
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
- Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Raissa Dzulynsky
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
| | - Amy Di Tomaso
- Mount Sinai Hospital, 1284-600 University Avenue, Toronto, ON M5G 1X5, Canada; (J.J.K.); (A.D.T.)
| | - Haider Samawi
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
- Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nancy Baxter
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
- Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christine Brezden-Masley
- St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada; (M.C.M.L.); (P.A.V.); (R.D.); (H.S.); (N.B.)
- Mount Sinai Hospital, 1284-600 University Avenue, Toronto, ON M5G 1X5, Canada; (J.J.K.); (A.D.T.)
- Lunenfeld-Tanenbaum Research Institute, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Correspondence: ; Tel.: +416-586-8605; Fax: +416-586-8659
| |
Collapse
|
10
|
da Motta KP, Lemos BB, Paltian JJ, Reis ASD, Blödorn GB, Alves D, Luchese C, Wilhelm EA. 7-Chloro-4-(phenylselanyl) quinoline reduces renal oxidative stress induced by oxaliplatin in mice. Can J Physiol Pharmacol 2021; 99:1102-1111. [PMID: 34015230 DOI: 10.1139/cjpp-2021-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The object of this study was to evaluate the relationship between oxidative damage induced by oxaliplatin (OXA) and the therapeutic potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) in kidney of mice. Mice received OXA (10 mg/kg) or vehicle intraperitoneally (days 0 and 2). Oral administration of 4-PSQ (1 mg/kg) or vehicle was performed on days 2 to 14. On day 15 the animals were euthanized and the kidneys and blood were collected. The effect of OXA and (or) 4-PSQ on urea, thiobarbituric acid reactive species, nonprotein thiol (NPSH), and protein carbonyl (PC) levels were investigated. Moreover, renal superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), δ-aminolevulinic acid dehydratase (δ-ALA-D), and Na+,K+ ATPase activities were evaluated. Our findings revealed an increase on urea levels and significant renal oxidative damage in OXA-induced mice. OXA exposure increased SOD, GPx, and GST activities and caused a reduction on NPSH levels and CAT and GR activities. Na+,K+ ATPase and δ-ALA-D activities were reduced by OXA. 4-PSQ decreased plasmatic urea levels and renal oxidative damage. SOD, GPx, CAT, GR, and Na+,K+ ATPase activities were restored by 4-PSQ. 4-PSQ may be a good prototype for the treatment of OXA-induced renal injury.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| | - Briana B Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| | - Jaini J Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Gustavo B Blödorn
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
11
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
12
|
Dai W, Sun Y, Jiang Z, Du K, Xia N, Zhong G. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Med Sci Monit 2020; 26:e922492. [PMID: 32594092 PMCID: PMC7341693 DOI: 10.12659/msm.922492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background With increasing research on non-alcoholic fatty liver (NAFLD) and acute myocardial infarction (AMI), many studies show a tight correlation between NAFLD and AMI, but the underlying pathophysiology is still not clear. This study was performed to identify the potential hub genes and pathways related to these 2 diseases by using the bioinformatics method. Material/Methods The Gene Expression Omnibus (GEO) dataset GSE63067 of NAFLD patients and normal controls was downloaded from the GEO database. The GSE60993 and GSE66360 datasets for AMI patients and healthy controls were also obtained. Differentially expressed genes (DEGs) of NAFLD and AMI datasets and the common genes between them were obtained. Further GO and KEGG enrichment analyses for common genes were performed. To define the pathogenesis associated with both NAFLD and AMI, a protein–protein interaction (PPI) network was constructed. Finally, SPSS software was utilized to analyze the diagnostic value of hub genes in the NAFLD and AMI datasets, respectively. Results Seventy-eight common genes were obtained in NAFLD and AMI with the threshold of P-value <0.05. Thirty-one GO terms and 10 KEGG pathways were obtained. Also, the top 10 hub genes (TLR2, LILRB2, CXCL1, FPR1, TLR4, TYROBP, MMP9, FCER1G, CLEC4D, and CCR2) were selected with P<0.05. Conclusions The results of this study suggest that some novel genes play an important role in the occurrence and progression NAFLD and AMI. More experimental research and clinical trials are needed to verify our results.
Collapse
Affiliation(s)
- Weiran Dai
- Department of Cardiology Ward 1, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Yue Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Zhiyuan Jiang
- Department of Hypertension, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Kuan Du
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Ning Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Guoqiang Zhong
- Department of Cardiology Ward 1, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| |
Collapse
|