1
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Cui G, Wang H, Yang C, Zhou X, Wang J, Wang T, Ma T. Berberine prevents lethal EV71 neurological infection in newborn mice. Front Pharmacol 2022; 13:1027566. [PMID: 36386168 PMCID: PMC9640474 DOI: 10.3389/fphar.2022.1027566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing fatal neurological complications of hand, foot, and mouth disease (HFMD) in young children. Currently no effective antiviral therapy is available. In the present study, we found that natural compound Berberine (BBR) displayed potent inhibitory effects on EV71 replication in various neural cells (IC50 of 2.79–4.03 μM). In a newborn mouse model of lethal EV71 infection, Berberine at 2–5 mg/kg markedly reduced mortality and clinical scores. Consistently, the replication of EV71 and pathological changes were attenuated in various infected organs including brain and lung with BBR treatment. Interestingly, EV71 infection in the brain mainly localized in the peripheral zone of brainstem and largely in astrocytes. Primary culture of astrocytes from newborn mouse brain confirmed the efficient EV71 replication that was mostly inhibited by BBR treatment at 5 μM. Further investigations revealed remarkably elevated cellular reactive oxygen species (ROS) levels that coincided with EV71 replication in primary cultured astrocytes and various cell lines. BBR largely abolished the virus-elevated ROS production and greatly diminished EV71 replication by up-regulating NFE2 like bZIP transcription factor 2 (Nrf2) via the kelch like ECH associated protein 1 (Keap)-Nrf2 axis. The nuclear localization of Nrf2 and expression of downstream antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were increased significantly by BBR treatment. Collectively, our findings revealed that BBR prevents lethal EV71 neurological infection via inhibiting virus replication through regulating Keap-Nrf2 axis and ROS generation in astrocytes of brainstem, thus providing a potential antiviral treatment for severe EV71 infection associated with neurological complications.
Collapse
|
4
|
Insights into the Anti-inflammatory and Antiviral Mechanisms of Resveratrol. Mediators Inflamm 2022; 2022:7138756. [PMID: 35990040 PMCID: PMC9391165 DOI: 10.1155/2022/7138756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.
Collapse
|
5
|
Targeting autophagy with natural products to prevent SARS-CoV-2 infection. J Tradit Complement Med 2021; 12:55-68. [PMID: 34664025 PMCID: PMC8516241 DOI: 10.1016/j.jtcme.2021.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a catabolic process that maintains internal homeostasis and energy balance through the lysosomal degradation of redundant or damaged cellular components. During virus infection, autophagy is triggered both in parenchymal and in immune cells with different finalistic objectives: in parenchymal cells, the goal is to destroy the virion particle while in macrophages and dendritic cells the goal is to expose virion-derived fragments for priming the lymphocytes and initiate the immune response. However, some viruses have developed a strategy to subvert the autophagy machinery to escape the destructive destiny and instead exploit it for virion assembly and exocytosis. Coronaviruses (like SARS-CoV-2) possess such ability. The autophagy process requires a set of proteins that constitute the core machinery and is controlled by several signaling pathways. Here, we report on natural products capable of interfering with SARS-CoV-2 cellular infection and replication through their action on autophagy. The present study provides support to the use of such natural products as adjuvant therapeutics for the management of COVID-19 pandemic to prevent the virus infection and replication, and so mitigating the progression of the disease.
Collapse
|
6
|
Polyphenols Epigallocatechin Gallate and Resveratrol, and Polyphenol-Functionalized Nanoparticles Prevent Enterovirus Infection through Clustering and Stabilization of the Viruses. Pharmaceutics 2021; 13:pharmaceutics13081182. [PMID: 34452144 PMCID: PMC8398301 DOI: 10.3390/pharmaceutics13081182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of the virions into very stable assemblies. Clustering and stabilization were not compromised even in dilute virus solutions or after diluting the polyphenols-clustered virions by 50-fold. In addition, the polyphenols lowered virus binding on cells. In silico docking experiments of these molecules against 2- and 3-fold symmetry axes of the capsid, using an algorithm developed for this study, discovered five binding sites for polyphenols, out of which three were novel binding sites. Our results altogether suggest that polyphenols exert their antiviral effect through binding to multiple sites on the virion surface, leading to aggregation of the virions and preventing RNA release and reducing cell surface binding.
Collapse
|
7
|
Tienaho J, Reshamwala D, Karonen M, Silvan N, Korpela L, Marjomäki V, Sarjala T. Field-Grown and In Vitro Propagated Round-Leaved Sundew ( Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities. Molecules 2021; 26:3581. [PMID: 34208192 PMCID: PMC8230826 DOI: 10.3390/molecules26123581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Drosera rotundifolia L. is a carnivorous plant used in traditional medicine for its therapeutic properties. Because of its small size, its collection in nature is laborious and different cultivation methods have been studied to ensure availability. However, only a few studies exist where the lab-grown sundew tissue and field-grown sundew would have been compared in their functionality or metabolic profiles. In this study, the antioxidant and antiviral activities of lab-grown and field-grown sundew extracts and their metabolic profiles are examined. The effect of drying methods on the chromatographic profile of the extracts is also shown. Antioxidant activity was significantly higher (5-6 times) in field-grown sundew but antiviral activity against enterovirus strains coxsackievirus A9 and B3 was similar in higher extract concentrations (cell viability ca. 90%). Metabolic profiles showed that the majority of the identified compounds were the same but field-grown sundew contained higher numbers and amounts of secondary metabolites. Freeze-drying, herbal dryer, and oven or room temperature drying of the extract significantly decreased the metabolite content from -72% up to -100%. Freezing was the best option to preserve the metabolic composition of the sundew extract. In conclusion, when accurately handled, the lab-grown sundew possesses promising antiviral properties, but the secondary metabolite content needs to be higher for it to be considered as a good alternative for the field-grown sundew.
Collapse
Affiliation(s)
- Jenni Tienaho
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, University of Jyväskylä, Seminaarinkatu 15, FI-40014 Jyväskylä, Finland; (D.R.); (V.M.)
| | - Maarit Karonen
- Natural Chemistry Research Group, University of Turku, FI-20014 Turku, Finland;
| | - Niko Silvan
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| | - Leila Korpela
- Forest Health and Biodiversity Group, Natural Resources Unit, Natural Resources Institute Finland, FI-00791 Helsinki, Finland;
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Seminaarinkatu 15, FI-40014 Jyväskylä, Finland; (D.R.); (V.M.)
| | - Tytti Sarjala
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| |
Collapse
|
8
|
Ahmadi A, Hayes AW, Karimi G. Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytother Res 2021; 35:5564-5583. [PMID: 34114705 DOI: 10.1002/ptr.7192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs a set of essential functions in cellular biology. These include synthesis of lipids, homeostasis of calcium, and controlling the folding of proteins. Inflammation and oxidative stress are two important reasons behind the accumulation of misfolded or unfolded proteins in the ER. In such circumstances, a series of measures are undertaken in the cell which are collectively called unfolded protein response (UPR). The aim of UPR is to reduce the burden of protein aggregates and promote survival. However, extended and unrestricted ER stress (ERS) can induce further inflammation and apoptosis. ERS and the UPR are involved in different diseases such as neurodegenerative and cardiovascular diseases. Resveratrol (RSV), a natural polyphenol, has well-documented evidence supporting its numerous biological properties including antioxidant, antiinflammatory, antiobesity, antidiabetic, and antiischemic activities. The compound is also known for its potential beneficial effects on cognitive function and liver, kidney, and lung health. In this review, the role of ERS in several pathological conditions and the potential protective effects of RSV are discussed. However, the scarcity of clinical data means that more research needs to be conducted to gain a lucid understanding of RSV's effects on endoplasmic reticulum stress (ERS) in humans.
Collapse
Affiliation(s)
- Ali Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL USA and Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Abedini E, Khodadadi E, Zeinalzadeh E, Moaddab SR, Asgharzadeh M, Mehramouz B, Dao S, Samadi Kafil H. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8866311. [PMID: 33815561 PMCID: PMC7987421 DOI: 10.1155/2021/8866311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Resveratrol is a polyphenolic antioxidant whose possible health benefits include anticarcinogenic, antiaging, and antimicrobial properties that have gained significant attention. The compound is well accepted by individuals and has been commonly used as a nutraceutical in recent decades. Its widespread usage makes it essential to study as a single agent as well as in combination with traditional prescription antibiotics as regards to antimicrobial properties. Resveratrol demonstrates the action of antimicrobials against a remarkable bacterial diversity, viruses, and fungus. This report explains resveratrol as an all-natural antimicrobial representative. It may modify the bacterial virulence qualities resulting in decreased toxic substance production, biofilm inhibition, motility reduction, and quorum sensing disturbance. Moreover, in conjunction with standard antibiotics, resveratrol improves aminoglycoside efficacy versus Staphylococcus aureus, while it antagonizes the deadly function of fluoroquinolones against S. aureus and also Escherichia coli. The present study aimed to thoroughly review and study the antimicrobial potency of resveratrol, expected to help researchers pave the way for solving antimicrobial resistance.
Collapse
Affiliation(s)
- Ehsan Abedini
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako, Mali
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
11
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|