1
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2024. [PMID: 39034866 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Umar Raza
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jia Song
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Junyan Lu
- Department of Cardiology, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaohong Liu
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Wei Zhang
- Outpatient Clinic of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shujuan Li
- Department of Pediatric Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhang Y, Wu J, Dong E, Wang Z, Xiao H. Toll-like receptors in cardiac hypertrophy. Front Cardiovasc Med 2023; 10:1143583. [PMID: 37113698 PMCID: PMC10126280 DOI: 10.3389/fcvm.2023.1143583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Correspondence: Zhanli Wang Han Xiao
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Zhanli Wang Han Xiao
| |
Collapse
|
3
|
Fan R, Wang L, Botchway BOA, Zhang Y, Liu X. Protective role of ethyl pyruvate in spinal cord injury by inhibiting the high mobility group box-1/toll-like receptor4/nuclear factor-kappa B signaling pathway. Front Mol Neurosci 2022; 15:1013033. [PMID: 36187352 PMCID: PMC9524569 DOI: 10.3389/fnmol.2022.1013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a high incident rate of central nervous system disease that usually causes paralysis below the injured level. The occurrence of chronic inflammation with the axonal regeneration difficulties are the underlying barriers for the recovery of SCI patients. Current studies have paid attention to controlling the instigative and developmental process of neuro-inflammation. Ethyl pyruvate, as a derivative of pyruvate, has strong anti-inflammatory and neuroprotective functions. Herein, we reviewed the recent studies of ethyl pyruvate and high mobility group box-1 (HMGB1). We think HMGB1 that is one of the main nuclear protein mediators to cause an inflammatory response. This protein induces astrocytic activation, and promotes glial scar formation. Interestingly, ethyl pyruvate has potent inhibitory effects on HMGB1 protein, as it inhibits chronic inflammatory response by modulating the HMGB1/TLR4/NF-κB signaling pathway. This paper discusses the potential mechanism of ethyl pyruvate in inhibiting chronic inflammation after SCI. Ethyl pyruvate can be a prospective therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ruihua Fan
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | | | - Yong Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu, ; orcid.org/0000-0003-4325-6762
| |
Collapse
|
4
|
Wilde C, Mitgau J, Suchý T, Schoeneberg T, Liebscher I. Translating the Force - mechano-sensing GPCRs. Am J Physiol Cell Physiol 2022; 322:C1047-C1060. [PMID: 35417266 DOI: 10.1152/ajpcell.00465.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Incorporating mechanical cues into cellular responses allows us to experience our direct environment. Specialized cells can perceive and discriminate between different physical properties such as level of vibration, temperature, or pressure. Mechanical forces are abundant signals that also shape general cellular responses such as cytoskeletal rearrangement, differentiation, or migration and contribute to tissue development and function. The molecular structures that perceive and transduce mechanical forces are specialized cytoskeletal proteins, cell junction molecules, and membrane proteins such as ion channels and metabotropic receptors. G protein-coupled receptors (GPCRs) have attracted attention as metabotropic force receptors as they are among the most important drug targets. This review summarizes the function of mechano-sensitive GPCRs, specifically, the angiotensin II type 1 receptor and adrenergic, apelin, histamine, parathyroid hormone 1, and orphan receptors, focusing particularly on the advanced knowledge gained from adhesion-type GPCRs. We distinguish between shear stress and cell swelling/stretch as the two major types of mechano-activation of these receptors and contemplate the potential contribution of the force-from-lipid and force-from-tether models that have previously been suggested for ion channels.
Collapse
Affiliation(s)
- Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Jakob Mitgau
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Tomás Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Torsten Schoeneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| |
Collapse
|
5
|
Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. iScience 2022; 25:103973. [PMID: 35281739 PMCID: PMC8905320 DOI: 10.1016/j.isci.2022.103973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.
Collapse
|
6
|
Zhang L, Zhang B, Yu Y, Wang J, Wu J, Su Y, Jiang H, Zou Y, Ge J. Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. Int Heart J 2021; 62:162-170. [PMID: 33455985 DOI: 10.1536/ihj.20-384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-mobility group box 1 (HMGB1) is increased in the myocardium under pressure overload (PO) and is involved in PO-induced cardiac remodeling. The mechanisms of the upregulation of cardiac HMGB1 expression have not been fully elucidated. In the present study, a mouse transverse aortic constriction (TAC) model was used, and an angiotensin II (Ang II) type 1 (AT1) receptor inhibitor (losartan) or Ang II type 2 (AT2) receptor inhibitor (PD123319) was administrated to mice for 14 days. Cardiac myocytes were cultured and treated with Ang II for 5 minutes to 48 hours conditionally with the blockage of the AT1 or AT2 receptor. TAC-induced cardiac hypertrophy was observed at 14 days after the operation, which was partially reversed by losartan, but not by PD123319. Similarly, the upregulated HMGB1 expression levels observed in both the serum and myocardium induced by TAC were reduced by losartan. Elevated cardiac HMGB1 protein levels, but not mRNA or serum levels, were significantly decreased by PD123319. Furthermore, HMGB1 expression levels in culture media and cardiac myocytes were increased following Ang II treatment in vitro, positively associated with the duration of treatment. Similarly, Ang II-induced upregulation of HMGB1 in vitro was inhibited by both losartan and PD123319. These results suggest that upregulation of HMGB1 in serum and myocardium under PO, which are partially derived from cardiac myocytes, may be induced by Ang II via the AT1 and AT2 receptors. Additionally, amelioration of PO-induced cardiac hypertrophy following losartan treatment may be associated with the reduction of HMGB1 expression through the AT1 receptor.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Fudan University
| | - Jingfeng Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| |
Collapse
|
7
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
8
|
Chen L, Zhu H, Su S, Harshfield G, Sullivan J, Webb C, Blumenthal JA, Wang X, Huang Y, Treiber FA, Kapuku G, Li W, Dong Y. High-Mobility Group Box-1 Is Associated With Obesity, Inflammation, and Subclinical Cardiovascular Risk Among Young Adults: A Longitudinal Cohort Study. Arterioscler Thromb Vasc Biol 2020; 40:2776-2784. [PMID: 32814439 PMCID: PMC7578115 DOI: 10.1161/atvbaha.120.314599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We aimed to characterize circulating HMGB1 (high-mobility group box-1) levels, one of the better-characterized damage-associated molecular patterns, with respect to age, sex, and race in the general population, and investigate the longitudinal associations of HMGB1 with inflammatory markers, obesity, and preclinical markers of cardiovascular disease. Approach and Results: The analyses included 489 participants (50% Blacks, aged 24.6±3.3 years at the first visit) with up to 4 follow-up visits (1149 samples) over a maximum of 8.5 years. Systolic blood pressure, diastolic blood pressure, carotid-femoral pulse wave velocity, and carotid intima-media thickness together with plasma HMGB1, hs-CRP (high-sensitivity C-reactive protein), IFN-γ (interferon-γ), IL-6 (interleukin-6), IL-10 (interleukin-10), and TNF-α (tumor necrosis factor-α) were measured at each visit. At baseline, plasma HMGB1 concentrations were higher in Blacks compared with Whites (3.86 versus 3.20 ng/mL, P<0.001), and in females compared with males (3.75 versus 3.30 ng/mL, P=0.005). HMGB1 concentrations increased with age (P=0.007), and higher levels of obesity measures (P<0.001). Without adjustment for age, sex, race, and body mass index, HMGB1 concentrations were positively associated with hs-CRP, IL-6, TNF-α, systolic blood pressure, diastolic blood pressure, and carotid-femoral pulse wave velocity (P<0.05) but not IL-10, IFN-γ or carotid intima-media thickness. After covariate adjustments, the associations of HMGB1 with hs-CRP, and carotid-femoral pulse wave velocity remained statistically significant (P<0.05). CONCLUSIONS This study demonstrates the age, sex, and race differences in circulating HMGB1. The increasing circulating concentrations of HMGB1 with age suggest a potential role of HMGB1 in the pathogenesis of chronic low-grade inflammation, obesity, and subclinical cardiovascular disease risk.
Collapse
Affiliation(s)
- Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shaoyong Su
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gregory Harshfield
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Clinton Webb
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Frank A. Treiber
- College of Nursing, Medical University of South Carolina, Charleston, SC, USA
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gaston Kapuku
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Reveals the Potential Cardiovascular Protective Targets of the Thyroid Hormone Metabolite 3-Iodothyronamine (3-T1AM). BIOMED RESEARCH INTERNATIONAL 2020; 2020:1302453. [PMID: 32685439 PMCID: PMC7322601 DOI: 10.1155/2020/1302453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) is rapidly emerging as a promising compound in decreasing the heart rate and lowering the cardiac output. The aim of our study was to fully understand the molecular mechanism of 3-T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Materials and Methods In our study, we utilized RNA-Seq to characterize the gene expression in H9C2 cells after 3-T1AM treatment. Comparative transcriptome analysis, including gene ontology, signaling pathways, disease connectivity analysis, and protein-protein interaction networks (PPI), was presented to find the critical gene function, hub genes, and related pathways. Results A total of 1494 differently expressed genes (DEGs) were identified (192 upregulated and 1302 downregulated genes) in H9C2 cells for 3-T1AM treatment. Of these, 90 genes were associated with cardiovascular diseases. The PPI analysis indicated that 5 hub genes might be the targets of 3-T1AM. Subsequently, eight DEGs characterized using RNA-Seq were confirmed by RT-qPCR assays. Conclusions Our study provides a comprehensive analysis of 3-T1AM on H9C2 cells and delineates a new insight into the therapeutic intervention of 3-T1AM for the cardiovascular diseases.
Collapse
|
10
|
Choi J, Oh S, Son M, Byun K. Pyrogallol-Phloroglucinol-6,6-Bieckol Alleviates Obesity and Systemic Inflammation in a Mouse Model by Reducing Expression of RAGE and RAGE Ligands. Mar Drugs 2019; 17:E612. [PMID: 31661887 PMCID: PMC6891643 DOI: 10.3390/md17110612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Ecklonia cava (E. cava) can alleviate diet-induced obesity in animal models, and phlorotannins contained in E. cava help prevent hypertrophy-induced adipocyte differentiation. Receptor for advanced glycation end-products (RAGE) is well known to induce hypertrophy of visceral fat and to trigger inflammation substantially. While the relationship between RAGE and obesity and inflammation has been well-characterized, few studies describe the effects of phlorotannin on RAGE. In this study, we investigated the anti-obesity effects of pyrogallol-phloroglucinol-6,6-bieckol (PPB)-a single compound from the ethanoic extract of E. cava-mediated by a reduction in the inflammation caused by RAGE and RAGE ligands. In visceral fat, PPB (i) significantly inhibited RAGE ligands, (ii) reduced the expression of RAGE, and (iii) reduced the binding ratio between RAGE and RAGE ligands. Under lower expression of RAGE, RAGE ligands and their cognate binding, the differentiation of macrophages found in visceral fat into M1-type-the pro-inflammatory form of this immune cell-was reduced. As the M1-type macrophage decreased, pro-inflammatory cytokines, which cause obesity, decreased in visceral fat. The results of this study highlight the anti-obesity effects of PPB, with the effects mediated by reductions in RAGE, RAGE ligands, and inflammation.
Collapse
Affiliation(s)
- Junwon Choi
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| |
Collapse
|