1
|
Zhou X, Tong Y, Yu C, Pu J, Zhu W, Zhou Y, Wang Y, Xiong Y, Sun X. FAP positive cancer-associated fibroblasts promote tumor progression and radioresistance in esophageal squamous cell carcinoma by transferring exosomal lncRNA AFAP1-AS1. Mol Carcinog 2024; 63:1922-1937. [PMID: 38934786 DOI: 10.1002/mc.23782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant and heterogeneous stromal cells in the tumor microenvironment, which play important roles in regulating tumor progression and therapy resistance by transferring exosomes to cancer cells. However, how CAFs modulate esophageal squamous cell carcinoma (ESCC) progression and radioresistance remains incompletely understood. The expression of fibroblast activation protein (FAP) in CAFs was evaluated by immunohistochemistry in 174 ESCC patients who underwent surgery and 78 pretreatment biopsy specimens of ESCC patients who underwent definitive chemoradiotherapy. We sorted CAFs according to FAP expression, and the conditioned medium (CM) was collected to culture ESCC cells. The expression levels of several lncRNAs that were considered to regulate ESCC progression and/or radioresistance were measured in exosomes derived from FAP+ CAFs and FAP- CAFs. Subsequently, cell counting kit-8, 5-ethynyl-2'-deoxyuridine, transwell, colony formation, and xenograft assays were performed to investigate the functional differences between FAP+ CAFs and FAP- CAFs. Finally, a series of in vitro and in vivo assays were used to evaluate the effect of AFAP1-AS1 on radiosensitivity of ESCC cells. FAP expression in stromal CAFs was positively correlated with nerve invasion, vascular invasion, depth of invasion, lymph node metastasis, lack of clinical complete response and poor survival. Culture of ESCC cells with CM/FAP+ CAFs significantly increased cancer proliferation, migration, invasion and radioresistance, compared with culture with CM/FAP- CAFs. Importantly, FAP+ CAFs exert their roles by directly transferring the functional lncRNA AFAP1-AS1 to ESCC cells via exosomes. Functional studies showed that AFAP1-AS1 promoted radioresistance by enhancing DNA damage repair in ESCC cells. Clinically, high levels of plasma AFAP1-AS1 correlated with poor responses to dCRT in ESCC patients. Our findings demonstrated that FAP+ CAFs promoted radioresistance in ESCC cells through transferring exosomal lncRNA AFAP1-AS1; and may be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xilei Zhou
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yusuo Tong
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Changhua Yu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Juan Pu
- Department of Radiation Oncology, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yun Zhou
- Department of Radiotherapy, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, China
| | - Yuandong Wang
- Department of Radiotherapy, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yaozu Xiong
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Li C, Fu Y, He Y, Huang N, Yue J, Miao Y, Lv J, Xiao Y, Deng R, Zhang C, Huang M. Knockdown of LINC00511 enhances radiosensitivity of lung adenocarcinoma via regulating miR-497-5p/SMAD3. Cancer Biol Ther 2023; 24:2165896. [PMID: 36861928 PMCID: PMC9988350 DOI: 10.1080/15384047.2023.2165896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
As the most common histological subtype of primary lung cancer, lung adenocarcinoma (LUAD) causes enormous cancer deaths worldwide. Radiotherapy has been frequently used in LUAD cases, and radiosensitivity is vital for LUAD therapy. This research sought to explore the genetic factors affecting radiosensitivity in LUAD and inner mechanisms. LINC00511, miR-497-5p, and SMAD3 expression in LUAD cells were detected via qRT-PCR and western blot. CCK-8 assays, colony formation, and flow cytometry assays were employed to explore the cell viability, apoptosis, and radiosensitivity in PC-9 and A549 cells. The targeting relationship between LINC00511, miR-497-5p, and SMAD3 was verified by dual luciferase reporter assay. Furthermore, xenograft experiments were performed for the in vivo verification. In conclusion, LINC00511 was overexpressed in LUAD cells, which downregulated downstream miR-497-5p expression and mediately led to SMAD3 activation. LINC00511 downregulation suppressed cell viability while enhanced apoptosis rate in LUAD cells. Also, LINC00511 and SMAD3 were overexpressed, while miR-497-5p was downregulated in LUAD cells exposed to 4Gy irradiation treatment. Moreover, LINC00511 inhibition could block SMAD3 expression and promoted the radiosensitivity both in vitro and in vivo. These findings uncover LINC00511 knockdown promoted miR-497-5p expression and subsequently led to lower SMAD3 level, which enhanced radiosensitivity in LUAD cells. LINC00511/miR-497-5p/SMAD3 axis could be of considerable potential to enhance radiosensitivity in LUAD.
Collapse
Affiliation(s)
- Chongxin Li
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yanyan Fu
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yongmei He
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Nan Huang
- Department of Pulmonary, the Shizong Hospital of First People’s Hospital in Qujing, Qujing, P.R. China
| | - Jun Yue
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yi Miao
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Jialing Lv
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Youchuan Xiao
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Ruoyu Deng
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Chao Zhang
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
- CONTACT Chao zhang
| | - Meifang Huang
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
- Meifang Huang Department of Surgical Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan655000, P.R. China
| |
Collapse
|
4
|
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22:140. [PMID: 37598158 PMCID: PMC10439611 DOI: 10.1186/s12943-023-01839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-related mortality worldwide, with more than half of them occurred in China. Radiotherapy (RT) has been widely used for treating ESCC. However, radiation-induced DNA damage response (DDR) can promote the release of cytokines and chemokines, and triggers inflammatory reactions and changes in the tumor microenvironment (TME), thereby inhibiting the immune function and causing the invasion and metastasis of ESCC. Radioresistance is the major cause of disease progression and mortality in cancer, and it is associated with heterogeneity. Therefore, a better understanding of the radioresistance mechanisms may generate more reversal strategies to improve the cure rates and survival periods of ESCC patients. We mainly summarized the possible mechanisms of radioresistance in order to reveal new targets for ESCC therapy. Then we summarized and compared the current strategies to reverse radioresistance.
Collapse
Affiliation(s)
- Lingbo An
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
6
|
Noncoding RNAs in esophageal cancer: A glimpse into implications for therapy resistance. Pharmacol Res 2023; 188:106678. [PMID: 36709789 DOI: 10.1016/j.phrs.2023.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Esophageal cancer (EC) is one of the most common malignancies of the digestive system and has a high morbidity and mortality worldwide. Chemotherapy in combination with radiotherapy is one of the most important treatment modalities for EC. Chemoradiotherapy is currently acknowledged worldwide as being the standard treatment for locally advanced or unresectable disease. Unfortunately, due to the existence of therapy resistance, a number of EC patients fail to benefit from drug or irradiation treatment, which ultimately leads to poor outcomes. Considerable efforts have been made to explore the mechanisms underlying the therapy resistance of EC. Notably, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are current research areas for the modulation of therapy responses and may serve as new targets to overcome treatment resistance in EC. Herein, we summarized the mechanisms by which ncRNAs are involved in drug and radiation resistance in EC and highlighted their role in promoting or repressing treatment resistance. Additionally, we discussed the clinical relevance of ncRNAs, which may serve as potential therapeutic targets and predictive biomarkers for EC.
Collapse
|
7
|
Zhu C, Jiang J, Feng G, Fan S. The exciting encounter between lncRNAs and radiosensitivity in IR-induced DNA damage events. Mol Biol Rep 2023; 50:1829-1843. [PMID: 36507968 DOI: 10.1007/s11033-022-07966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| |
Collapse
|
8
|
He Y, Chen Z, He J. The clinical prognostic value of lncRNA LINC00473 in cancer patients: A meta-analysis. Medicine (Baltimore) 2022; 101:e32465. [PMID: 36596056 PMCID: PMC9803443 DOI: 10.1097/md.0000000000032465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND LINC00473 is a promising long non-coding RNA. There is increasing evidence that SNHG7 is abnormally expressed in various tumors and is associated with cancer prognosis. However, identification of the effect of long non-coding RNA LINC00473 in tumors remains necessary. METHODS Up to August 15, 2021, we searched electronic databases, including PubMed, Cochrane Library, EMBASE, Medline, and Web of Science. The results were evaluated by pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS There weres 13 included literature totaling cancer patients involved in this meta-analysis. The aggregated results revealed that high expression of LINC00473 was significantly associated with unfavorable overall survival (HR = 1.66, 95% CI: 1.48-1.86, P < .00001), disease-free survival (HR = 1.59, 95% CI: 1.09-2.32, P = .02) in a variety of cancers. Additionally, increased LINC00473 expression was also correlated with tumor node metastasis stage ((III/IV vs I/II) OR = 4.67, 95% CI = 3.11-7.02, P < .00001), differentiation ((poor/moderately vs well) OR = 3.25, 95% CI = 1.41-7.50, P = .006), tumor size ((larger vs smaller) OR = 2.49, 95% CI = 1.26-4.91, P = .03), and lymph node metastasis ((positive vs negative) OR = 3.10, 95% CI = 2.13-4.51, P = .008) in patients with cancers. Besides, the Gene Expression Profiling Interactive Analysis dataset evaluated that LINC00473 was upregulated in a variety of tumors and predicted worse prognosis. CONCLUSION Our results of this meta-analysis demonstrated that high LINC00473 expression may become a potential target for predicting prognosis of human cancers.
Collapse
Affiliation(s)
- Yuanyang He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zheng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jingyu He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
9
|
Huang T, Wu Z, Zhu S. The roles and mechanisms of the lncRNA-miRNA axis in the progression of esophageal cancer: a narrative review. J Thorac Dis 2022; 14:4545-4559. [PMID: 36524088 PMCID: PMC9745524 DOI: 10.21037/jtd-22-1449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is one of the most common malignant digestive tract tumors. Despite various treatment methods, the prognosis of patients remains unsatisfactory, largely due to an insufficient understanding of the mechanisms involved in the pathogenesis and progression of esophageal cancer. More than 98% of the nucleotide sequences in the human genome do not encode proteins, and their transcription products are noncoding RNAs (ncRNAs), mainly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). Experiments have shown that lncRNAs and miRNAs play crucial roles in the occurrence and progression of various human malignancies. These ncRNAs influence the progression of esophageal cancer through an intricate regulatory network. We herein summarized the roles and mechanisms of the lncRNA-miRNA axis in esophageal cancer cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), invasion and metastasis, drug resistance, radiotherapy resistance, and angiogenesis. This review provides a rationale for anticancer therapy that targets the lncRNA-miRNA axis in esophageal cancer. METHODS Related articles published in the PubMed database between 05/30/2008 to 09/10/2022 were identified using the following terms: "lncRNA AND miRNA AND esophageal cancer", "lncRNA AND miRNA AND cell proliferation", "lncRNA AND miRNA AND apoptosis", "lncRNA AND miRNA AND EMT", "lncRNA AND miRNA AND invasion and metastasis", "lncRNA AND miRNA AND drug resistance", and "lncRNA AND miRNA AND radiotherapy resistance". Published articles written in English available to readers were considered. KEY CONTENT AND FINDINGS We summarized the roles of the lncRNA-miRNA axis in the progression of esophageal cancer, including cell proliferation, apoptosis, EMT, invasion and metastasis, drug resistance, radio resistance, and other progressions, and determined that the lncRNA-miRNA axis may serve as a potential clinical treatment target for esophageal cancer. CONCLUSIONS The lncRNA-miRNA axis is closely related to the progression of esophageal cancer and may act as a potential biological target for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Tao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
10
|
Wang J, Li X, Duan C, Jia Y. CircFNDC3B
knockdown restrains the progression of esophageal squamous cell carcinoma through
miR
‐214‐3p/
CDC25A
axis. Clin Exp Pharmacol Physiol 2022; 49:1209-1220. [DOI: 10.1111/1440-1681.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Jiawei Wang
- Department of Thoracic Surgery Affiliated Hospital of Jiangnan University Wuxi China
| | - Xiaolin Li
- Department of Thoracic Surgery Affiliated Hospital of Jiangnan University Wuxi China
| | - Chao Duan
- Department of Thoracic Surgery Affiliated Hospital of Jiangnan University Wuxi China
| | - Yifei Jia
- Department of Thoracic Surgery Affiliated Hospital of Jiangnan University Wuxi China
| |
Collapse
|
11
|
Liu Z, Lu X, Wen L, You C, Jin X, Liu J. Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anticancer Drugs 2022; 33:e349-e361. [PMID: 34407051 DOI: 10.1097/cad.0000000000001213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) play critical roles in regulating the radiosensitivity of various cancers, including esophageal squamous cell carcinoma (ESCC). This research aimed to explore the role and potential mechanism of hsa_circ_0014879 in regulating ESCC radioresistance. The levels of hsa_circ_0014879, microRNA-519-3p (miR-519-3p) and cell division cycle 25A (CDC25A) were measured using quantitative real-time PCR or western blot. Cell proliferation was evaluated by colony formation assay. Cell migration and invasion were assessed by transwell and scratch assays. The levels of epithelial-mesenchymal transition (EMT)-related proteins were detected by western blot. Xenograft assay was used to analyze the effect of hsa_circ_0014879 on radiosensitivity in vivo. The binding relationship among hsa_circ_0014879, miR-519-3p and CDC25A was confirmed by dual-luciferase reporter assay. Hsa_circ_0014879 and CDC25A were upregulated, whereas miR-519-3p was downregulated in radio-resistant ESCC tissues and cells. Depletion of hsa_circ_0014879 suppressed the proliferation, migration and invasion of radio-resistant ESCC cells. Hsa_circ_0014879 knockdown elevated radiosensitivity of radio-resistant cells by modulating miR-519-3p. Moreover, miR-519-3p enhanced the radiosensitivity of radio-resistant cells by targeting CDC25A. Also, hsa_circ_0014879 upregulated CDC25A via sponging miR-519-3p. Hsa_circ_0014879 silencing enhanced the radiosensitivity of ESCC via regulating the miR-519-3p/CDC25A pathway.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Xiyan Lu
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Linchun Wen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Chuanwen You
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Xiaowei Jin
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Jingying Liu
- Department of Anesthesiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| |
Collapse
|
12
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Sharma A, Kansara S, Mahajan M, Yadav B, Garg M, Pandey AK. Long non-coding RNAs orchestrate various molecular and cellular processes by modulating epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166240. [PMID: 34363933 DOI: 10.1016/j.bbadis.2021.166240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate various hallmarks associated with the progression of human cancers through their binding with RNA, DNA, and proteins. Epithelial-Mesenchymal Transition (EMT) is a cardinal and multi-stage process where epithelial cells acquire a mesenchymal-like phenotype that is instrumental for tumor cells to initiate invasion and metastasis. LncRNAs can potentially promote tumor onset and progression as well as drug resistance by directly or indirectly altering the EMT program. Head and neck squamous cell carcinoma (HNSCC) are a dreadful malignancy affecting public health globally. The past few years have provided a better insight into the mechanism of EMT in HNSCC. The differential expression of the lncRNAs that can act either as promoters or suppressors in the process of EMT is of great importance. In this review, we aim to sum up, the highly structured mechanism with the diverse role of lncRNAs and their interaction with different molecules in the regulation of EMT. Moreover, discussing principal EMT pathways modulated by lncRNAs and their prospective potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ayushi Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Mehul Mahajan
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| |
Collapse
|
14
|
Li L, Zhang X, Liu N, Chen X, Peng C. LINC00473: A novel oncogenic long noncoding RNA in human cancers. J Cell Physiol 2020; 236:4174-4183. [PMID: 33222224 DOI: 10.1002/jcp.30176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been found to play essential roles in the occurrence and development of multiple human cancers. Accumulating evidence has shown that LINC00473, an oncogenic lncRNA, is upregulated in various human malignancies and related to poor clinical outcomes. Besides, LINC00473 overexpression can promote cell proliferation, migration, and invasion through multiple potential mechanisms, indicating that it may serve as a novel prognostic biomarker and therapeutic target for human cancers. Here, we reviewed the biological functions, molecular mechanisms, and clinical implications of LINC00473 in human cancers.
Collapse
Affiliation(s)
- Lingfeng Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Qin P, Li Y, Liu J, Wang N. Knockdown of LINC00473 promotes radiosensitivity of non-small cell lung cancer cells via sponging miR-513a-3p. Free Radic Res 2020; 54:756-764. [PMID: 33103510 DOI: 10.1080/10715762.2020.1841900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Radioresistance is a significant obstacle in NSCLC radiotherapy. Long non-coding RNA LINC00473 has been found to impact the radiotherapy in several malignant tumours. This study aimed to investigate the underlying role and mechanism of LINC00473 in regulating radiosensitivity of NSCLC cells. The levels of LINC00473 and miR-513a-3p were measured by quantitative Real-Time PCR. The relationship of LINC00473 with overall survival was tested by the Kaplan-Meier method. The effects of LINC00473 on cell viability and cell survival were assessed by cell counting kit-8 (CCK-8) and colony survival assay in NSCLC cells exposed to different doses of radiation. A luciferase reporter assay was used to investigate the correlation between LINC00473 and miR-513a-3p. The present study showed that the relative LINC00473 expression was upregulated and miR-513a-3p expression was downregulated in radioresistant NSCLC patients compared with radiosensitive patients. And upregulated LINC00473 expression was associated with poor prognosis of NSCLC patients after radiotherapy. Radiation led to an increase in LINC00473 expression in a dose- and time-dependent manner. The knockdown of LINC00473 markedly promoted radiosensitivity in NSCLC cells under different doses of radiation. LINC00473 was a sponge of miR-513a-3p and negatively regulated the miR-513a-3p expression. In conclusion, the inhibition of miR-513a-3p markedly reversed the promoted effect of LINC00473 knockdown on cell radiosensitivity. LINC00473 inhibition enhances radiosensitivity of NSCLC by sponging miR-513a-3p, providing a promising therapeutic target to increase the sensitivity of radiotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Peiyan Qin
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| | - Yang Li
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| | - Jinfeng Liu
- Endoscopy Center, Weifang People's Hospital, Shandong, China
| | - Nan Wang
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| |
Collapse
|
16
|
Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21186787. [PMID: 32947897 PMCID: PMC7576487 DOI: 10.3390/ijms21186787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Intrinsic resistance to ionizing radiation is the major impediment in the treatment and clinical management of esophageal squamous cell carcinoma (ESCC), leading to tumor relapse and poor prognosis. Although several biological and molecular mechanisms are responsible for resistance to radiotherapy in ESCC, the molecule(s) involved in predicting radiotherapy response and prognosis are still lacking, thus requiring a detailed understanding. Recent studies have demonstrated an imperative correlation amongst several long non-coding RNAs and their involvement in complex cellular networks like DNA damage and repair, cell cycle, apoptosis, proliferation, and epithelial-mesenchymal transition. Additionally, accumulating evidence has suggested abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy effects in tumor cells' sensitivity. Thus, lncRNAs indeed represent unique molecules that can influence tumor cell susceptibility for various clinical interventions. On this note, herein, we have summarized the current status of lncRNAs in augmenting resistance/sensitivity in ESCC against radiotherapy. In addition, we have also discussed various strategies to increase the radiosensitivity in ESCC cells under clinical settings.
Collapse
|
17
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|