1
|
He L, Tian Y, Liu Q, Bao J, Ding RB. Antidepressant Sertraline Synergistically Enhances Paclitaxel Efficacy by Inducing Autophagy in Colorectal Cancer Cells. Molecules 2024; 29:3733. [PMID: 39202813 PMCID: PMC11357241 DOI: 10.3390/molecules29163733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. It is important to discover new therapeutic regimens for treating CRC. Depression is known to be an important complication of cancer diseases. Repurposing antidepressants into anticancer drugs and exploring the combinational efficacy of antidepressants and chemotherapy are potentially good options for developing CRC treatment regimens. In this study, sertraline, an antidepressant drug, and paclitaxel, an anticancer drug, were chosen to study their antitumor effects in the treatment of colorectal cancer, alone or in combination, and to explore their underlying mechanisms. The data showed that sertraline exerted a dose-dependent cytotoxic effect on MC38 and CT26 colorectal cancer cell lines with IC50 values of 10.53 μM and 7.47 μM, respectively. Furthermore, sertraline synergistically sensitized chemotherapeutic agent paclitaxel efficacy in CRC cells with combination index (CI) values at various concentrations consistently lower than 1. Sertraline remarkably augmented paclitaxel-induced autophagy by increasing autophagosome formation indicated by elevated LC3-II/I ratio and promoting autophagic flux by degrading autophagy cargo receptor SQSTM1/p62, which may explain the synergistically cytotoxic effect of sertraline and paclitaxel combination therapy on CRC cells. This study provides important evidence to support repurposing sertraline as an anticancer agent and suggests a novel combinational regimen for effectively treating CRC as well as in the simultaneous treatment of CRC and depression.
Collapse
Affiliation(s)
- Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Yuxi Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Qingqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
2
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Fatehi R, Nouraei M, Panahiyan M, Rashedinia M, Firouzabadi N. Modulation of ACE2/Ang1-7/Mas and ACE/AngII/AT1 axes affects anticancer properties of sertraline in MCF-7 breast cancer cells. Biochem Biophys Rep 2024; 38:101738. [PMID: 38831897 PMCID: PMC11145238 DOI: 10.1016/j.bbrep.2024.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The renin-angiotensin system (RAS) is best known for playing a major role in maintaining the physiology of the cardiovascular system. Dysregulation of the RAS pathway has been proposed as a link to some malignancies and contributes to cancer metastasis. Breast cancer is considered as one of the leading causes of cancer death in women and its prevention remains yet a challenge. Elements of RAS are expressed in both normal breast tissue and cancerous cells, signifying the essential role of RAS in breast cancer pathology. Sertraline, a widely used antidepressant, has shown anti-proliferative properties on a variety of malignancies. This study aimed to investigate the effect of sertraline and its combination with agonists and antagonists of RAS (A779, Ang 1-7 and losartan) on viability of MCF-7 cells along with their effect on apoptosis and distribution of cell cycle. Our results indicated that sertraline, losartan and Ang 1-7 significantly decreased cell viability, induced apoptosis and cell cycle arrest. A779 blunted the effect of sertraline on cell viability, ROS generation and cell cycle arrest. Combination treatment of sertraline with losartan as well as Ang 1-7 caused a remarkable decline in cell viability. In conclusion, results of the present study support the anti-cancer properties of sertraline, losartan and Ang 1-7 via induction of apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nouraei
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Panahiyan
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Kang P, Wang Y, Chen J, Chang Y, Zhang W, Cui T, Yi X, Li S, Li C. TRPM2-dependent autophagy inhibition exacerbates oxidative stress-induced CXCL16 secretion by keratinocytes in vitiligo. J Pathol 2024; 262:441-453. [PMID: 38186269 DOI: 10.1002/path.6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
5
|
He L, Fu Y, Tian Y, Wang X, Zhou X, Ding RB, Qi X, Bao J. Antidepressants as Autophagy Modulators for Cancer Therapy. Molecules 2023; 28:7594. [PMID: 38005316 PMCID: PMC10673223 DOI: 10.3390/molecules28227594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a major global public health problem with high morbidity. Depression is known to be a high-frequency complication of cancer diseases that decreases patients' life quality and increases the mortality rate. Therefore, antidepressants are often used as a complementary treatment during cancer therapy. During recent decades, various studies have shown that the combination of antidepressants and anticancer drugs increases treatment efficiency. In recent years, further emerging evidence has suggested that the modulation of autophagy serves as one of the primary anticancer mechanisms for antidepressants to suppress tumor growth. In this review, we introduce the anticancer potential of antidepressants, including tricyclic antidepressants (TCAs), tetracyclic antidepressants (TeCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). In particular, we focus on their autophagy-modulating mechanisms for regulating autophagosome formation and lysosomal degradation. We also discuss the prospect of repurposing antidepressants as anticancer agents. It is promising to repurpose antidepressants for cancer therapy in the future.
Collapse
Affiliation(s)
- Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Yuxi Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; (X.W.); (X.Z.)
| | - Xuejun Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; (X.W.); (X.Z.)
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
6
|
Zheng Y, Chang X, Huang Y, He D. The application of antidepressant drugs in cancer treatment. Biomed Pharmacother 2023; 157:113985. [PMID: 36402031 DOI: 10.1016/j.biopha.2022.113985] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Antidepressants refer to psychotropic drugs which are used to treat mental illness with prominent emotional depression symptoms. It was reported that antidepressants had associated with anti-carcinogenic function which was associated with various signaling pathways and changing of microenvironment. Its mechanism includes cell apoptosis, antiproliferative effects, mitochondria-mediated oxidative stress, DNA damaging, changing of immune response and inflammatory conditions, and acting by inhibiting multidrug resistance of cancer cells. Accumulated studies showed that antidepressants influenced the metabolic pathway of tumor cells. This review summarized recent developments with the impacts and mechanisms of 10 kinds of antidepressants in carcinostasis. Antidepressants are also used in combination therapy with typical anti-tumor drugs which shows a synergic effect in anti-tumor. By contrast, the promotion roles of antidepressants in increasing cancer recurrence risk, mortality, and morbidity are also included. Further clinical experiments and mechanism analyses needed to be achieved. A full understanding of the underlying mechanisms of antidepressants-mediated anticarcinogenic effects may provide new clues for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Yunxi Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xu Chang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuyang Huang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dingwen He
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
Zinnah KMA, Munna AN, Seol JW, Park BY, Park SY. An Antidepressant Drug Increased TRAIL Receptor-2 Expression and Sensitized Lung Cancer Cells to TRAIL-induced Apoptosis. Anticancer Agents Med Chem 2023; 23:2225-2236. [PMID: 37859313 PMCID: PMC10788920 DOI: 10.2174/0118715206262252231004110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Yong Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| |
Collapse
|
8
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
9
|
Petrosyan E, Fares J, Cordero A, Rashidi A, Arrieta VA, Kanojia D, Lesniak MS. Repurposing autophagy regulators in brain tumors. Int J Cancer 2022; 151:167-180. [PMID: 35179776 PMCID: PMC9133056 DOI: 10.1002/ijc.33965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
Malignant brain tumors, such as glioblastoma multiforme (GBM) and brain metastases, continue to be an unmet medical challenge. Despite advances in cancer diagnostics and therapeutics, tumor cell colonization in the central nervous system renders most treatment options ineffective. This is primarily due to the selective permeability of the blood-brain barrier (BBB), which hinders the crossing of targeting agents into the brain. As such, repositioning medications that demonstrate anticancer effects and possess the ability to cross the BBB can be a promising option. Antidepressants, which are BBB-permeable, have been reported to exhibit cytotoxicity against tumor cells. Autophagy, specifically, has been identified as one of the common key mediators of antidepressant's antitumor effects. In this work, we provide a comprehensive overview of US Food and Drug Administration (FDA)-approved antidepressants with reported cytotoxic activities in different tumor models, where autophagy dysregulation was demonstrated to play the main part. As such, imipramine, maprotiline, fluoxetine and escitalopram were shown to induce autophagy, whereas nortriptyline, clomipramine and paroxetine were identified as autophagy inhibitors. Sertraline and desipramine, depending on the neoplastic context, were demonstrated to either induce or inhibit autophagy. Collectively, these medications were associated with favorable therapeutic outcomes in a variety of cancer cell models, including brain tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Víctor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
10
|
Baú-Carneiro JL, Akemi Guirao Sumida I, Gallon M, Zaleski T, Boia-Ferreira M, Bridi Cavassin F. Sertraline repositioning: an overview of its potential use as a chemotherapeutic agent after four decades of tumor reversal studies. Transl Oncol 2021; 16:101303. [PMID: 34911014 PMCID: PMC8681026 DOI: 10.1016/j.tranon.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Thirteen different neoplasms were shown to be susceptible to the antidepressant drug sertraline. The mechanisms of action through which sertraline can kill tumor cells are apoptosis, autophagy, and drug synergism. Sertraline inhibits TCTP, a tumor protein involved in cell survival pathways, responsible for reducing p53 levels. The testing of sertraline in vitro and in vivo resulted in reduced cell counting, shrinking of tumoral masses and increased survival rates. Dose extrapolation from animals to humans has shown a therapeutic index of sertraline that could support future clinical trials.
Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.
Collapse
Affiliation(s)
- João Luiz Baú-Carneiro
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | | | - Malu Gallon
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | - Tânia Zaleski
- Faculty of Medical Sciences, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil; Faculty of Biological Sciences, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil; Post Graduate Program of National Network's in Education, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marianna Boia-Ferreira
- Postdoctoral Program of Cellular and Molecular Biology, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | |
Collapse
|
11
|
Malard F, Jacquet E, Nhiri N, Sizun C, Chabrier A, Messaoudi S, Dejeu J, Betzi S, Zhang X, Thureau A, Lescop E. Revisiting the Molecular Interactions between the Tumor Protein TCTP and the Drugs Sertraline/Thioridazine. ChemMedChem 2021; 17:e202100528. [PMID: 34472703 DOI: 10.1002/cmdc.202100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/07/2022]
Abstract
TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported in vitro by SPR experiments to be in the ∼30-50 μM Kd range (Amson et al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent ∼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Amélie Chabrier
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | - Xu Zhang
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | | | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
13
|
Huang X, Ou C, Shu Y, Wang Y, Gong S, Luo R, Chen S, Wu Q, Gong C. A self-sustained nanoplatform reverses TRAIL-resistance of pancreatic cancer through coactivating of exogenous and endogenous apoptotic pathway. Biomaterials 2021; 272:120795. [PMID: 33836292 DOI: 10.1016/j.biomaterials.2021.120795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Since the 5-year survival rate of pancreatic cancer is only 10.0%, new therapies are urgently needed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically on tumor cells, nevertheless its clinical application was seriously restricted by resistance and short in vivo half-life. Herein, a novel multifunctional R6ST protein equipped with cell penetrating peptides R6, intrinsic apoptosis inducing tetrapeptide AVPI and soluble TRAIL was designed and constructed. Then, it was recruited to prepare self-sustained nanoplatform (SSN) to reverse TRAIL-resistance of pancreatic cancer through simultaneously promoting extrinsic and intrinsic apoptotic pathway, as well to elongate circulation time. Once administrated, high tumor accumulation and cellular uptake of SSN were achieved through prolonged circulation time, targeting ability of soluble TRAIL to death receptors and positive-charged R6, and further enhanced through reversed upregulation of death receptors on TRAIL-resistant tumor cells by the cumulated artesunate released in cytoplasm as a positive feedback loop. Furthermore, this loop simultaneously promoted extrinsic apoptosis of TRAIL fragment via the upregulated death receptors on TRAIL-resistant pancreatic cancer cells and intrinsic apoptosis of AVPI tetrapeptide via the efficient accumulation and uptake of R6ST on SSN. Hence, SSN exhibited synergistic antitumor effect and provided a new strategy for TRAIL-resistant pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xianzhou Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaqian Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co. Ltd., Chengdu, 610041, China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|