1
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
2
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
3
|
Zhang Z, Bi F, Huang Y, Guo W. Construction of dental pulp decellularized matrix by cyclic lavation combined with mechanical stirring and its proteomic analysis. Biomed Mater 2024; 19:045002. [PMID: 38653259 DOI: 10.1088/1748-605x/ad4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yibing Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
4
|
Barajaa MA, Otsuka T, Ghosh D, Kan HM, Laurencin CT. Development of porcine skeletal muscle extracellular matrix-derived hydrogels with improved properties and low immunogenicity. Proc Natl Acad Sci U S A 2024; 121:e2322822121. [PMID: 38687784 PMCID: PMC11087813 DOI: 10.1073/pnas.2322822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Hydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100. To mitigate immunogenicity associated with animal-derived ECM, all decellularized tissues were enzymatically treated with α-galactosidase to cleave the primary xenoantigen-the α-Gal antigen. Subsequently, the impact of the different decellularization protocols on the resultant hydrogels was thoroughly investigated. All methods significantly reduced total DNA content in hydrogels. Moreover, α-galactosidase treatment was crucial for cleaving α-Gal antigens, suggesting that conventional decellularization methods alone are insufficient. MD preserved total protein, collagen, sulfated glycosaminoglycan, laminin, fibronectin, and growth factors more efficiently than other protocols. The decellularization method impacted hydrogel gelation kinetics and ultrastructure, as confirmed by turbidimetric and scanning electron microscopy analyses. MD hydrogels demonstrated high cytocompatibility, supporting satellite stem cell recruitment, growth, and differentiation into multinucleated myofibers. In contrast, the SDC and Triton X-100 protocols exhibited cytotoxicity. Comprehensive in vivo immunogenicity assessments in a subcutaneous xenotransplantation model revealed MD hydrogels' biocompatibility and low immunogenicity. These findings highlight the significant influence of the decellularization protocol on hydrogel properties. Our results suggest that combining MD with α-galactosidase treatment is an efficient method for preparing low-immunogenic smECM-derived hydrogels with enhanced properties for skeletal muscle regenerative engineering and clinical applications.
Collapse
Affiliation(s)
- Mohammed A. Barajaa
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam34212, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT06030
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT06030
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT06030
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
5
|
Wang JB, Wu J, Zhang J, Guan LA, Feng HB, Zhu KY, Zhang Y, Zhao WJ, Peng Q, Meng B, Yang S, Sun H, Cheng YD, Zhang L. Bibliometric and visualized analysis of hydrogels in organoids research. Regen Ther 2024; 25:395-404. [PMID: 38435088 PMCID: PMC10905953 DOI: 10.1016/j.reth.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Over the past decades, there has been ongoing effort to develop complex biomimetic tissue engineering strategies for in vitro cultivation and maintenance of organoids. The defined hydrogels can create organoid models for various organs by changing their properties and various active molecules. An increasing number of researches has been done on the application of hydrogels in organoids, and a large number of articles have been published on the topic. Although there have been existing reviews describing the application of hydrogels in the field of organoids, there is still a lack of comprehensive studies summarizing and analyzing the overall research trends in this field. The citation can be used as an indicator of the scientific influence of an article in its field. This study aims to evaluate the application of hydrogels in organoids through bibliometric analysis, and to predict the hotspots and developing trends in this field.
Collapse
Affiliation(s)
- Jia-bo Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
- Huai'an 82 Hospital, Huai'an 223001, China
| | - Jie Wu
- Huai'an 82 Hospital, Huai'an 223001, China
| | - Jian Zhang
- Huai'an 82 Hospital, Huai'an 223001, China
| | - Li-an Guan
- Huai'an 82 Hospital, Huai'an 223001, China
| | | | - Ke-yan Zhu
- The Fifth People's Hospital of Huai'an, Huai'an 223001, China
| | - Yu Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Wen-jie Zhao
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Qing Peng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Bo Meng
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Sheng Yang
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Hua Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | | | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
6
|
Anitua E, Zalduendo M, Troya M, Tierno R, Alkhraisat MH. Cellular composition modifies the biological properties and stability of platelet rich plasma membranes for tissue engineering. J Biomed Mater Res A 2023; 111:1710-1721. [PMID: 37318048 DOI: 10.1002/jbm.a.37579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Scaffolds should provide structural support for tissue regeneration, allowing their gradual biodegradation and interacting with cells and bioactive molecules to promote remodeling. Thus, the scaffold's intrinsic properties affect cellular processes involved in tissue regeneration, including migration, proliferation, differentiation, and protein synthesis. In this sense, due to its biological effect and clinical potential, Platelet Rich Plasma (PRP) fibrin could be considered a successful scaffold. Given the high variability in commercial PRPs formulations, this research focused on assessing the influence of cellular composition on fibrin membrane stability and remodeling cell activity. The stability and biological effect were evaluated at different time points via D-dimer, type I collagen and elastase quantification in culture media conditioned by Plasma Rich in Growth Factors - Fraction 1 (PRGF-F1), Plasma Rich in Growth Factors - Whole Plasma (PRGF-WP) and Leukocyte-rich Platelet Rich Plasma (L-PRP) membranes, and by gingival fibroblast cells seeded on them, respectively. Ultrastructure of PRP membranes was also evaluated. Histological analyses were performed after 5 and 18 days. Additionally, the effect of fibrin membranes on cell proliferation was determined. According to the results, L-PRP fibrin membranes degradation was complete at the end of the study, while PRGF membranes remained practically unchanged. Considering fibroblast behavior, PRGF membranes, in contrast to L-PRP ones, promoted extracellular matrix biosynthesis at the same time as fibrinolysis and enhanced cell proliferation. In conclusion, leukocytes in PRP fibrin membranes drastically reduce scaffold stability and induce behavioral changes in fibroblasts by reducing their proliferation rate and remodeling ability.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
| | - Mar Zalduendo
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
| | - María Troya
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
| | - Roberto Tierno
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
| | | |
Collapse
|
7
|
Mei Q, Zheng R, Li J, Ma X, Wang L, Wei Y, Luo X, Guan J, Zhang X. Transcriptomic analysis reveals differentially expressed genes and key immune pathways in the spleen of the yak (Bos grunniens) at different growth stage. Gene 2023; 884:147743. [PMID: 37640116 DOI: 10.1016/j.gene.2023.147743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Yak is one of the rare and unique cattle species on the Qinghai-Tibetan Plateau, which has strong adaptability to the extreme environment of the plateau. The spleens are important functional organs that enable animals to adapt to their external environment and are vital in the growth and development process. To further investigate changes in immune function during yak development, we compared the transcriptome profiles of spleen tissues among juvenile (1-day old), youth (15-months old), and prime (5-years old) yaks. Immunology of spleen development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. In this work, we found 6378 genes with significant differences between the spleen of juvenile yak and youth yak, with the largest difference between groups. There were 3144 genes with significant differences between the spleen of young yak and prime yak, with the smallest differences between groups. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the functional annotation of these genes. GO and KEGG analysis showed that some of them were related to growth, disease, immune, and metabolism. However, the genetic mechanism underlying the adaptability of yak spleens at different ages to harsh plateau environments remains unknown. These findings are important for studying the mechanisms of spleen development in yaks of different age groups.
Collapse
Affiliation(s)
- Qundi Mei
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Rui Zheng
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Xuefeng Ma
- Chongqing Institute for Food and Drug Control, Chongqing 404100, China.
| | - Li Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, Chengdu 610066, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
9
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
10
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
11
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Amirazad H, Baradar Khoshfetrat A, Zarghami N. A dual synergistic effect of titanium and curcumin co-embedded on extracellular matrix hydrogels of decellularized bone: Potential application in osteoblastic differentiation of adipose-derived mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:372-397. [PMID: 36071650 DOI: 10.1080/09205063.2022.2123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This research aims to design and fabricate a novel hydrogel-based composite as a functional biomimetic and biocompatible scaffold for amended osteoblastic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). The extracellular matrix (ECM) hydrogel is an ideal scaffold in tissue engineering in terms of its structure mimics natural tissue. In this study, the fresh bovine femur was demineralized and decellularized; next, ECM hydrogel was obtained by digesting these matrices. Then, TiO2 and curcumin-loaded hydrogel (Hy/Ti/Cur) was fabricated besides TiO2-loaded hydrogel (Hy/Ti) and curcumin-loaded hydrogel (Hy/Cur). Comparing the scanning electron microscopy (SEM) images of the pure network hydrogel and the rough morphology of Hy/Ti/Cur revealed that curcumin and titanium dioxide were successfully loaded into the hydrogel. In addition, FTIR spectroscopy and X-ray diffraction (XRD) validated these findings. The findings of the hydrogels' swelling test indicated the favourable impact of curcumin and titanium dioxide in hydrogels, which enhances water absorption capacity. Our results showed that the hydrogels were cytocompatible, and the cell viability on the hydrogels was elevated compared to the control. The synergistic effect of TiO2 and Cur co-embedded on ECM hydrogel (Hy/Ti/Cur) stimulates bone differentiation markers, such as Runt-related transcription factor 2 (RUNX-2) and osteocalcin (OCN) in ADMSCs cultured in normal and osteogenic medium. Moreover, Alkaline Phosphatase (ALP) activity and calcium deposition of ADMSCs cultured on engineered hydrogels were increased. These experiments showed that newly fabricated hydrogel has the potential to induce osteogenesis, which is recommended as an attractive scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
14
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
15
|
Marzaro M, Pozzato G, Tedesco S, Algeri M, Pozzato A, Tomao L, Montano I, Torroni F, Balassone V, Contini ACI, Guerra L, D’Angelo T, Federici di Abriola G, Lupoi L, Caristo ME, Boškoski I, Costamagna G, Francalanci P, Astori G, Bozza A, Bagno A, Todesco M, Trovalusci E, Oglio LD, Locatelli F, Caldaro T. Decellularized esophageal tubular scaffold microperforated by quantum molecular resonance technology and seeded with mesenchymal stromal cells for tissue engineering esophageal regeneration. Front Bioeng Biotechnol 2022; 10:912617. [PMID: 36267444 PMCID: PMC9576845 DOI: 10.3389/fbioe.2022.912617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Current surgical options for patients requiring esophageal replacement suffer from several limitations and do not assure a satisfactory quality of life. Tissue engineering techniques for the creation of customized “self-developing” esophageal substitutes, which are obtained by seeding autologous cells on artificial or natural scaffolds, allow simplifying surgical procedures and achieving good clinical outcomes. In this context, an appealing approach is based on the exploitation of decellularized tissues as biological matrices to be colonized by the appropriate cell types to regenerate the desired organs. With specific regard to the esophagus, the presence of a thick connective texture in the decellularized scaffold hampers an adequate penetration and spatial distribution of cells. In the present work, the Quantum Molecular Resonance® (QMR) technology was used to create a regular microchannel structure inside the connective tissue of full-thickness decellularized tubular porcine esophagi to facilitate a diffuse and uniform spreading of seeded mesenchymal stromal cells within the scaffold. Esophageal samples were thoroughly characterized before and after decellularization and microperforation in terms of residual DNA content, matrix composition, structure and biomechanical features. The scaffold was seeded with mesenchymal stromal cells under dynamic conditions, to assess the ability to be repopulated before its implantation in a large animal model. At the end of the procedure, they resemble the original esophagus, preserving the characteristic multilayer composition and maintaining biomechanical properties adequate for surgery. After the sacrifice we had histological and immunohistochemical evidence of the full-thickness regeneration of the esophageal wall, resembling the native organ. These results suggest the QMR microperforated decellularized esophageal scaffold as a promising device for esophagus regeneration in patients needing esophageal substitution.
Collapse
Affiliation(s)
| | | | | | - Mattia Algeri
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Luigi Tomao
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ilaria Montano
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Filippo Torroni
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Valerio Balassone
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Luciano Guerra
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Tommaso D’Angelo
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Lorenzo Lupoi
- Cen.Ri.S. Policlinico Gemelli UNICATT Rome, Rome, Italy
| | | | - Ivo Boškoski
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Digestive Endoscopy Unit, Rome, Italy
- Università Cattolica del Sacro Cuore, Centre For Endoscopic Research Therapeutics and Training (CERTT), Rome, Italy—CERTT Gemelli, Rome, Italy
- *Correspondence: Ivo Boškoski,
| | - Guido Costamagna
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Digestive Endoscopy Unit, Rome, Italy
- Università Cattolica del Sacro Cuore, Centre For Endoscopic Research Therapeutics and Training (CERTT), Rome, Italy—CERTT Gemelli, Rome, Italy
| | | | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Angela Bozza
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
- Consorzio Per la Ricerca Sanitaria (CORIS) of the Veneto Region, Padova, Italy
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Martina Todesco
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Emanuele Trovalusci
- Pediatric Surgery Department AULSS2 Treviso, University of Padova, Padova, Italy
| | - Luigi Dall’ Oglio
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Roma, Italy
| | - Tamara Caldaro
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
16
|
Record Ritchie RD, Salmon SL, Hiles MC, Metzger DW. Lack of immunogenicity of xenogeneic DNA from porcine biomaterials. Surg Open Sci 2022; 10:83-90. [PMID: 36039075 PMCID: PMC9418979 DOI: 10.1016/j.sopen.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rae D. Record Ritchie
- Cook Biotech, Inc, 1425 Innovation Place, West Lafayette, IN, USA 47906
- Corresponding author at: 1425 Innovation Place, West Lafayette, IN 47906. Tel.: + 1-765-497-3355; fax: + 1-765-497-2361.
| | - Sharon L. Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, MC-151, Albany, NY, USA 12208-3479
| | - Michael C. Hiles
- Cook Biotech, Inc, 1425 Innovation Place, West Lafayette, IN, USA 47906
| | - Dennis W. Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, MC-151, Albany, NY, USA 12208-3479
| |
Collapse
|
17
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
18
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
19
|
Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 2022; 16:1. [PMID: 34986859 PMCID: PMC8734306 DOI: 10.1186/s13036-021-00282-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Autologous bone grafts are commonly used as the gold standard to repair and regenerate diseased bones. However, they are strongly associated with postoperative complications, especially at the donor site, and increased surgical costs. In an effort to overcome these limitations, tissue engineering (TE) has been proposed as an alternative to promote bone repair. The successful outcome of tissue engineering depends on the microstructure and composition of the materials used as scaffold. Decellularized bone matrix-based biomaterials have been applied as bioscaffolds in bone tissue engineering. These biomaterials play an important role in providing the mechanical and physical microenvironment needed by cells to proliferate and survive. Decellularized extracellular matrix (dECM) can be used as a powder, hydrogel and electrospun scaffolds. These bioscaffolds mimic the native microenvironment due to their structure similar to the original tissue. The aim of this review is to highlight the bone decellularization techniques. Herein we discuss: (1) bone structure; (2) properties of an ideal scaffold; (3) the potential of decellularized bone as bioscaffolds; (4) terminal sterilization of decellularized bone; (5) cell removing confirmation in decellularized tissues; and (6) post decellularization procedures. Finally, the improvement of bone formation by dECM and the immunogenicity aspect of using the decellularized bone matrix are presented, to illustrate how novel dECM-based materials can be used as bioscaffold in tissue engineering. A comprehensive understanding of tissue engineering may allow for better incorporation of therapeutic approaches in bone defects allowing for bone repair and regeneration.
Collapse
Affiliation(s)
- Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nosratollah Zarghami
- Deparment of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin Universioty, Istanbul, Turkey
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
|
21
|
van de Vyver M, Idensohn PJ, Niesler CU. A regenerative approach to the pharmacological management of hard-to-heal wounds. Biochimie 2022; 194:67-78. [PMID: 34982983 DOI: 10.1016/j.biochi.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
A wound is considered hard-to-heal when, despite the appropriate clinical analysis and intervention, the wound area reduces by less than a third at four weeks and complete healing fails to occur within 12 weeks. The most prevalent hard-to-heal wounds are associated with underlying metabolic diseases or vascular insufficiency and include arterial, venous, pressure and diabetic foot ulcers. Their common features include an abnormal immune response and extended inflammatory phase, a subdued proliferation phase due to cellular insufficiencies and finally an almost non-existent remodeling phase. Advances in wound care technology, tested in both pre-clinical models and clinical trials, have paved the way for improved treatment options, focused on regeneration. These interventions have been shown to limit the extent of ongoing inflammatory damage, decrease bacterial load, promote angiogenesis and deposition of granulation tissue, and stimulate keratinocyte migration thereby promoting re-epithelialization in these wounds. The current review discusses these hard-to-heal wounds in the context of their underlying pathology and potential of advanced treatment options, which if applied promptly as a standard of care, could reduce morbidity, promote quality of life, and alleviate the burden on a strained health system.
Collapse
Affiliation(s)
- M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - P J Idensohn
- CliniCare Medical Centre, Ballito, KwaZulu-Natal, South Africa; School of Nursing, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa
| |
Collapse
|
22
|
Chu TL, Tripathi G, Bae SH, Lee BT. In-vitro and in-vivo hemostat evaluation of decellularized liver extra cellular matrix loaded chitosan/gelatin spongy scaffolds for liver injury. Int J Biol Macromol 2021; 193:638-646. [PMID: 34710480 DOI: 10.1016/j.ijbiomac.2021.10.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023]
Abstract
Individually, Chitosan (C) and Gelatin (G) are increasingly being used for the simulation and testing of surgical procedures. In the present study, at combination of chitosan/gelatin (CG) was optimized and later enriched by the loading decellularized liver extracellular matrix powder (dLECM) prepared from porcine liver, we hypothesized CG-dLECM combination would enhance wound healing and reduce postoperative complications after liver surgery. Varying concentration of dLECM (1, 4, and 8 mg/ml) were loaded into CG, and evaluation was done to get the optimized composition. Preliminary analysis on the microstructure, in-vitro degradation, and blood clot kinetics and in-vitro cytocompatibility showed that the CG with 4 mg/ml dLECM (CG-E4) was the most suitable composition for further consideration. The prepared CG-E4 spongy scaffold enhances fast post-operative recovery with a higher blood absorption and fast clotting time (~50 s). In addition, CG-E4 spongy scaffold implanted at rat liver wound showed desired biocompatibility as evidenced by reduced wound size, earlier bioabsorption and accelerated liver regeneration. In the present study, we demonstrated that, CG with dLECM spongy scaffold as a potential hemostatic material in the prevention of excessive hemorrhage during surgeries.
Collapse
Affiliation(s)
- Thanh Lan Chu
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
23
|
Sánchez-Porras D, Caro-Magdaleno M, González-Gallardo C, García-García ÓD, Garzón I, Carriel V, Campos F, Alaminos M. Generation of a Biomimetic Substitute of the Corneal Limbus Using Decellularized Scaffolds. Pharmaceutics 2021; 13:1718. [PMID: 34684011 PMCID: PMC8541096 DOI: 10.3390/pharmaceutics13101718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization. However, the method that best preserved the transparency and composition of the limbus extracellular matrix was the use of 0.1% SDS applied to the half-thickness limbus. Recellularization with the limbal epithelial cell line SIRC and human adipose-derived mesenchymal stem cells (hADSCs) was able to generate a stratified epithelium able to express the limbal markers p63, pancytokeratin, and crystallin Z from day 7 in the case of SIRC and after 14-21 days of induction when hADSCs were used. Laminin and collagen IV expression was detected at the basal lamina of both cell types at days 14 and 21 of follow-up. Compared with control native limbi, tissues recellularized with SIRC showed adequate picrosirius red and alcian blue staining intensity, whereas limbi containing hADSCs showed normal collagen staining intensity. These preliminary results suggested that the limbal substitutes generated in this work share important similarities with the native limbus and could be potentially useful in the future.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Manuel Caro-Magdaleno
- Division of Ophthalmology, University Hospital Virgen Macarena, Universidad de Sevilla, E41009 Seville, Spain;
| | | | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
- Doctoral Programme in Biomedicine, Escuela Internacional de Posgrado, Universidad de Granada, E18071 Granada, Spain
| | - Ingrid Garzón
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| |
Collapse
|