1
|
Hui Z, Lai-Fa W, Xue-Qin W, Ling D, Bin-Sheng H, Li JM. Mechanisms and therapeutic potential of chinonin in nervous system diseases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1405-1420. [PMID: 38975978 DOI: 10.1080/10286020.2024.2371040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.
Collapse
Affiliation(s)
- Zhang Hui
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Wang Lai-Fa
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Wang Xue-Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Deng Ling
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - He Bin-Sheng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Ming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
2
|
Xu F, Li Z, Jiang Y, Liao T, Aschner M, Wei Q. Ononin delays the development of osteoarthritis by down-regulating MAPK and NF-κB pathways in rat models. PLoS One 2024; 19:e0310293. [PMID: 39480787 PMCID: PMC11527302 DOI: 10.1371/journal.pone.0310293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is featured as cartilage loss, joint pain and loss of labor, which the inflammatory reaction may play critical roles. Ononin is an isoflavone isolating from medicinal plants and has anti-inflammatory effects. Our study investigated the anti-inflammation response of ononin on OA. METHODS Anterior cruciate ligament transection (ACLT)-induced OA operation was used to establish research model, then treated with ononin for 8 weeks. The condition of joint injury was assessed using pathological staining. The concentration of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum were measured by Elisa kit. The expression of collagen II and matrix metalloproteinase 13 (MMP-13) proteins to assess cartilage metabolism level by immunohistochemistry and Western blot. We detected the expression of proteins involved in the MAPK and NF-κB signaling pathways. Finally, we used molecular docking to assess the affinity of ononin for the target proteins ERK1/2, JNK1/2, p38 and p65. RESULTS Our results confirmed that ononin ameliorated cartilage impairment through histopathological analysis by improving the morphological structures and cartilage tidal lines and decreasing Osteoarthritis Research Society International (OARSI) scores in OA rats. Moreover, ononin inhibited the secretion of above factors in OA rats. Furthermore, ononin has been shown to improve cartilage content levels in OA rats. In addition, ononin inhibited the reactivity of MAPK and NF-κB pathways in OA rats. And molecular docking indicated the ligand molecules could stably bind to the proteins of above receptors. CONCLUSION Our results demonstrated that ononin may ameliorate cartilage damage and inflammatory response in OA rats by downgrading MAPK and NF-κB pathways, thus identifying ononin as a potential novel drug to treat OA.
Collapse
Affiliation(s)
- Fang Xu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yueming Jiang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Liao
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Qingjun Wei
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Chen W, Xiao J, Zhou Y, Liu W, Jian J, Yang J, Chen B, Ye Z, Liu J, Xu X, Jiang T, Wang H, Liu W. Curcumenol regulates Histone H3K27me3 demethylases KDM6B affecting Succinic acid metabolism to alleviate cartilage degeneration in knee osteoarthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155922. [PMID: 39126921 DOI: 10.1016/j.phymed.2024.155922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cartilage metabolism dysregulation is a crucial driver in knee osteoarthritis (KOA). Modulating the homeostasis can mitigate the cartilage degeneration in KOA. Curcumenol, derived from traditional Chinese medicine Curcuma Longa L., has demonstrated potential in enhancing chondrocyte proliferation and reducing apoptosis. However, the specific mechanism of Curcumenol in treating KOA remains unclear. This study aimed to demonstrate the molecular mechanism of Curcumenol in treating KOA based on the transcriptomics and metabolomics, and both in vivo and in vitro experimental validations. MATERIALS AND METHODS In this study, a destabilization medial meniscus (DMM)-induced KOA mouse model was established. And the mice were intraperitoneally injected with Curcumenol at 4 and 8 mg/kg concentrations. The effects of Curcumenol on KOA cartilage and subchondral was evaluated using micro-CT, histopathology, and immunohistochemistry (IHC). In vitro, OA chondrocytes were induced with 10 μg/mL lipopolysaccharide (LPS) and treated with Curcumenol to evaluate the proliferation, apoptosis, and extracellular matrix (ECM) metabolism through CCK8 assay, flow cytometry, and chondrocyte staining. Furthermore, transcriptomics and metabolomics were utilized to identify differentially expressed genes (DEGs) and metabolites. Finally, integrating multi-omics analysis, virtual molecular docking (VMD), and molecular dynamics simulation (MDS), IHC, immunofluorescence (IF), PCR, and Western blot (WB) validation were conducted to elucidate the mechanism by which Curcumenol ameliorates KOA cartilage degeneration. RESULTS Curcumenol ameliorated cartilage destruction and subchondral bone loss in KOA mice, promoted cartilage repair, upregulated the expression of COL2 while downregulated MMP3, and improved ECM synthesis metabolism. Additionally, Curcumenol also alleviated the damage of LPS on the proliferation activity and suppressed apoptosis, promoted ECM synthesis. Transcriptomic analysis combined with weighted gene co-expression network analysis (WGCNA) identified a significant downregulation of 19 key genes in KOA. Metabolomic profiling showed that Curcumenol downregulates the expression of d-Alanyl-d-alanine, 17a-Estradiol, Glutathione, and Succinic acid, while upregulating Sterculic acid and Azelaic acid. The integrated multi-omics analysis suggested that Curcumenol targeted KDM6B to regulate downstream protein H3K27me3 expression, which inhibited methylation at the histone H3K27, consequently reducing Succinic acid levels and improving KOA cartilage metabolism homeostasis. Finally, both in vivo and in vitro findings indicated that Curcumenol upregulated KDM6B, suppressed H3K27me3 expression, and stimulated collagen II expression and ECM synthesis, thus maintaining cartilage metabolism homeostasis and alleviating KOA cartilage degeneration. CONCLUSION Curcumenol promotes cartilage repair and ameliorates cartilage degeneration in KOA by upregulating KDM6B expression, thereby reducing H3K27 methylation and downregulating Succinic Acid, restoring metabolic stability and ECM synthesis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jiacong Xiao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yi Zhou
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510045, Guangdong, China
| | - Jiyong Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Bohao Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhilong Ye
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jun Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Xuemeng Xu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Tao Jiang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China; Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| |
Collapse
|
4
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Li J, Sun Y, Li G, Cheng C, Sui X, Wu Q. The Extraction, Determination, and Bioactivity of Curcumenol: A Comprehensive Review. Molecules 2024; 29:656. [PMID: 38338400 PMCID: PMC10856406 DOI: 10.3390/molecules29030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite different pharmacological activities being reported, the clinical usage of curcumenol remains under investigation. To further determine the characteristics of curcumenol, the extraction, determination, and bioactivity of the compound are summarized in this review. Existing research has reported that curcumenol exerts different pharmacological effects in regard to a variety of diseases, including anti-inflammatory, anti-oxidant, anti-bactericidal, anti-diabetic, and anti-cancer activity, and also ameliorates osteoporosis. This review of curcumenol provides a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinbing Sui
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- Zhuhai M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhong G, Cai X, Wei R, Wei S, Cao X. Curcumenol improves renal function in 5/6 nephrectomy-induced chronic renal failure rats via the SIRT1/NF-κB pathway. Anat Rec (Hoboken) 2023; 306:3189-3198. [PMID: 36495299 DOI: 10.1002/ar.25137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/14/2023]
Abstract
The present work aimed to explore the protective effects of curcumenol and evaluate its pharmacological mechanisms in 5/6 nephrectomy-induced chronic renal failure (CRF). Rats with CRF were administrated curcumenol and the effects on renal functions were investigated. Renal function examinations were carried out, whereas serum levels of inflammatory mediators, including NF-κB, MCP-1 and IL-1β were analyzed by ELISA. The mRNA expression levels of SIRT1, p65 and IκBα were measured by qRT-PCR, and the SIRT1 protein levels were analyzed by western blot and immunohistochemistry. Our results indicated that curcumenol significantly improved the renal functions in the CRF rats. Compared to the sham group, serum levels of NF-κB, MCP-1, IL-1β, and the mRNA expression levels of p65 were significantly increased (p < 0.01), whereas the mRNA expression level of IκBα was significantly decreased (p < 0.01) and the SIRT1 levels were dramatically down-regulated (p < 0.05) in the CRF groups. Treatment with curcumenol remarkably inhibited inflammatory responses as reflected by the reduced levels of inflammatory mediators (p < 0.01) and SIRT1 up-regulation (p < 0.05). Our findings suggested that curcumenol could improve the renal function in 5/6 nephrectomy-induced CRF rats, and the mechanisms might involve suppressing the associated inflammation and modulating the SIRT1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guanghui Zhong
- Department of Nephrology, Ningbo Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Xudong Cai
- Department of Nephrology, Ningbo Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Renxiong Wei
- Department of Clinical Laboratory, Ningbo Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Sheng Wei
- Department of Nephrology, Ningbo Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Xiaodan Cao
- Department of Clinical Laboratory, Ningbo Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
7
|
Houeze EA, Wang Y, Zhou Q, Zhang H, Wang X. Comparison study of Beninese and Chinese herbal medicines in treating COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116172. [PMID: 36773790 PMCID: PMC9911150 DOI: 10.1016/j.jep.2023.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide use of natural remedies is an alternative therapeutic solution to strengthen immunity, fight, and prevent this disease. The rapid spread of the coronavirus disease worldwide has promoted the search for therapeutic solutions following different approaches. China and Benin have seen the use of natural remedies such as Chinese herbal medicine and local endemic plants as alternative solutions in treating COVID-19. AIM OF THE STUDY The present study was designed to identify the prevalence of medicinal plant use in four municipalities of Benin most affected by COVID-19 and compare them with traditional Chinese medicine and finally verify the efficacy of the main components of the six plants most frequently used, via in vitro experiments. MATERIALS AND METHODS This study targeting market herbalists and traditional healers was conducted in the form of an ethnomedicinal survey in four representative communities (Cotonou, Abomey-Calavi, Zè, and Ouidah) of southern Benin. The chemical compositions of the six most commonly used herbs were investigated using network pharmacology. Network-based global prediction of disease genes and drug, target, function, and pathway enrichment analysis of the top six herbs was conducted using databases including IPA and visualised using Cytoscape software. The natural botanical drugs involved three medicines and three formulas used in the treatment of COVID-19 in China from the published literature were compared with the top six botanical drugs used in Benin to identify similarities between them and guide the clinical medication in both countries. Finally, the efficacy of the common ingredients in six plants was verified by measuring the viability of BEAS-2B cells and the release of inflammatory factors after administration of different ingredients. Binding abilities of six components to COVID-19 related targets were verified by molecular docking. RESULTS According to the medication survey investigation, the six most used herbs were Citrus aurantiifolia (13.18%), Momordica charantia (7.75%), Ocimum gratissimum (7.36%), Crateva adansonii (6.59%), Azadirachta indica (5.81%), and Zanthoxylum zanthoxyloides (5.42%). The most represented botanical families were Rutaceae, Lamiaceae, Cucurbitaceae, Meliaceae, and Capparaceae. The network pharmacology of these six herbal plants showed that the flavonoids quercetin, kaempferol, and β-sitosterol were the main active ingredients of the Benin herbal medicine. Chinese and Beninese herbal medicine are similar in that they have the same targets and pathways in inflammation and oxidative stress relief. Mild COVID-19-related targets come from C. aurantiifolia and M. charantia, and severe COVID-19-related targets come from A. indica A. Juss. Cell viability and enzyme-linked immunosorbent assay results confirmed that six major compounds could protect BEAS-2B cells against injury by inhibiting the expression of inflammatory factors, among which quercetin and isoimperatorin were more effective. Docking verified that the six compounds have good binding potential with COVID-19 related targets. CONCLUSIONS These results suggest that Benin herbal medicine and Chinese herbal medicine overlap in compounds, targets, and pathways to a certain extent. Among the commonly used plants in Benin, C. aurantiifolia and M. charantia may have a good curative effect on the treatment of mild COVID-19, while for severe COVID-19, A. indica can be added on this basis.
Collapse
Affiliation(s)
- Elisabeth A Houeze
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoying Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
8
|
Mulberroside A alleviates osteoarthritis via restoring impaired autophagy and suppressing MAPK/NF-κB/PI3K-AKT-mTOR signaling pathways. iScience 2023; 26:105936. [PMID: 36698724 PMCID: PMC9868682 DOI: 10.1016/j.isci.2023.105936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a trauma-/age-related degenerative disease characterized by chronic inflammation as one of its pathogenic mechanisms. Mulberroside A (MA), a natural bioactive withanolide, demonstrates anti-inflammatory properties in various diseases; however, little is known about the effect of MA on OA. We aim to examine the role of MA on OA and to identify the potential mechanisms through which it protects articular cartilage. In vitro, MA improved inflammatory response, anabolism, and catabolism in IL-1β-induced OA chondrocytes. The chondroprotective effects of MA were attributed to suppressing the MAPK, NF-κB, and PI3K-AKT-mTOR signaling pathways, as well as promoting the autophagy process. In vivo, intra-articular injection of MA reduced the cartilage destruction and reversed the change of anabolic and catabolic-related proteins in destabilized medial meniscus (DMM)-induced OA models. Thus, the study indicates that MA exhibits a chondroprotective effect and might be a promising agent for OA treatment.
Collapse
|
9
|
Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Makeen HA, Albratty M. Potential role of nutraceuticals via targeting a Wnt/β-catenin and NF-κB pathway in treatment of osteoarthritis. J Food Biochem 2022; 46:e14427. [PMID: 36165556 DOI: 10.1111/jfbc.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is a disease due to the aging of the articular cartilage, a post-mitotic tissue that stays functioning until primary homeostatic processes fail. Because of pain and disability, OA significantly influences national healthcare expenses and patient quality of life. It is a whole-joint illness characterized by inflammatory and oxidative signaling pathways and significant epigenetic alterations that cause cartilage extracellular matrix degradation. The canonical Wnt pathway (Wnt/β-catenin pathway) and nuclear factor kappa B (NF-κB) signaling pathways may function in joint tissues by modulating the activity of synovial cells, osteoblasts, and chondrocytes. However, finding innovative ways to treat osteoarthritis and get the joint back to average balance is still a struggle. Nutraceuticals are dietary supplements that promote joint health by balancing anabolic and catabolic signals. New therapeutic methods for OA treatment have been developed based on many research findings that show nutraceuticals have strong anti-inflammation, antioxidant, anti-bone resorption, and anabolic properties. For the treatment of osteoarthritis, we explore the possible involvement of nutraceuticals that target the Wnt/β-catenin and NF-κB pathways. PRACTICAL APPLICATIONS: In keeping with the aging population, osteoarthritis is becoming more widespread. In this extensive research, we studied the role of the Wnt/β-catenin and NF-κB pathway in OA formation and progression. Nutraceuticals that target these OA-related signaling pathways are a viable therapy option. Wnt/β-catenin and NF-κB signaling pathway are inhibited by polyphenols, flavonoids, alkaloids, and vitamins from the nutraceutical category, making them possible therapeutic drugs for OA therapy.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Yan M, Bo X, Zhang X, Zhang J, Liao Y, Zhang H, Cheng Y, Guo J, Cheng J. Mangiferin Alleviates Postpartum Depression-Like Behaviors by Inhibiting MAPK Signaling in Microglia. Front Pharmacol 2022; 13:840567. [PMID: 35721155 PMCID: PMC9204178 DOI: 10.3389/fphar.2022.840567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Postpartum depression (PPD), a severe mental health disorder, is closely associated with decreased gonadal hormone levels during the postpartum period. Mangiferin (MGF) possesses a wide range of pharmacological activities, including anti-inflammation. Growing evidence has suggested that neuroinflammation is involved in the development of depression. However, the role of MGF in the development of PPD is largely unknown. In the present study, by establishing a hormone-simulated pregnancy PPD mouse model, we found that the administration of MGF significantly alleviated PPD-like behaviors. Mechanistically, MGF treatment inhibited microglial activation and neuroinflammation. Moreover, we found that MGF treatment inhibited mitogen-activated protein kinase (MAPK) signaling in vivo and in vitro. Together, these results highlight an important role of MGF in microglial activation and thus give insights into the potential therapeutic strategy for PPD treatment.
Collapse
Affiliation(s)
- Meichen Yan
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xuena Bo
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xinchao Zhang
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jingdan Zhang
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Haiyan Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Junxia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front Pharmacol 2022; 13:905966. [PMID: 35795557 PMCID: PMC9252100 DOI: 10.3389/fphar.2022.905966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low back pain (LBP) caused by intervertebral disc degeneration (IVDD) is accredited to the release of inflammatory cytokines followed by biomechanical and structural deterioration. In our study, we used a plant-derived medicine, curcumenol, to treat IVDD. A cell viability test was carried out to evaluate the possibility of using curcumenol. RNA-seq was used to determine relative pathways involved with curcumenol addition. Using TNFα as a trigger of inflammation, the activation of the NF-κB signaling pathway and expression of the MMP family were determined by qPCR and western blotting. Nucleus pulposus (NP) cells and the rats’ primary NP cells were cultured. The catabolism status was evaluated by an ex vivo model. A lumbar instability mouse model was carried out to show the effects of curcumenol in vivo. In general, RNA-seq revealed that multiple signaling pathways changed with curcumenol addition, especially the TNFα/NF-κB pathway. So, the NP cells and primary NP cells were induced to suffer inflammation with the activated TNFα/NF-κB signaling pathway and increased expression of the MMP family, such as MMP3, MMP9, and MMP13, which would be mitigated by curcumenol. Owing to the protective effects of curcumenol, the height loss and osteophyte formation of the disc could be prevented in the lumbar instability mouse model in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- *Correspondence: Tangjun Zhou, ; Jie Zhao,
| |
Collapse
|