1
|
Zheng Q, Zhang D, Xing J. NRF1-induced mmu_circ_0001388/hsa_circ_0029470 confers ferroptosis resistance in ischemic acute kidney injury via the miR-193b-3p/TCF4/GPX4 axis. Life Sci 2024; 358:123190. [PMID: 39481837 DOI: 10.1016/j.lfs.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS Circular RNAs (circRNAs) are critical in the progression of ischemic acute kidney injury (AKI). Nevertheless, the specific functions and regulatory pathways of mmu_circ_0001388 and hsa_circ_0029470 remain elusive. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to assess the expression patterns of mmu_circ_0001388, hsa_circ_0029470, and miR-139b-3p. Protein expressions of nuclear respiratory factor 1 (NRF1), transcription factor 4 (TCF4), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family member 4 (ACSL4) were identified via immunoblotting. Furthermore, the functions and control mechanisms of mmu_circ_003062 and hsa_circ_0075663 were examined via diverse cell and animal studies, encompassing bioinformatics prediction, dual-luciferase reporter (DLR), chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization (FISH), flow cytometry (FCM), hematoxylin and eosin (H&E) staining, dihydroethidium (DHE), TUNEL, immunohistochemistry, and transmission electron microscopy (TEM), and Fe2+ assay. KEY FINDINGS Initially, the induction of mmu_circ_0001388 by NRF1 was observed in vitro and in vivo following ischemia/reperfusion (I/R) injury. Subsequently, knockdown or overexpression of mmu_circ_0001388 was found to either promote or inhibit ferroptosis caused by I/R in Boston University mouse proximal tubule (BUMPT) cells, respectively. From a mechanistic standpoint, mmu_circ_0001388 was found to function as a sponge for miR-193b-3p, which promoted TCF4 and subsequently enhanced GPX4, thereby suppressing ferroptosis. Finally, the overexpression of mmu_circ_0001388 was shown to ameliorate I/R-induced AKI in mice. In parallel, hsa_circ_0029470, homologous to mmu_circ_0001388, demonstrated an identical control pathway in human renal tubular epithelial (HK-2) cells. SIGNIFICANCE The NRF1/mmu_circ_0001388, hsa_circ_0029470/miR-193b-3p/TCF4/GPX4 axis is pivotal in regulating ferroptosis induced by ischemic AKI and holds potential as a therapeutic target.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Department of Nephrology, The Second Xiangyi Hospital of Central South University, Changsha 410000, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
2
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
3
|
Huang P, Meng L, Pang J, Huang H, Ma J, He L, Lin X. miR-208a-3p regulated by circUQCRC2 suppresses ischemia/reperfusion-induced acute kidney injury by inhibiting CELF2-mediated tubular epithelial cell apoptosis, inflammation and ferroptosis. Shock 2024; 61:942-950. [PMID: 38664873 DOI: 10.1097/shk.0000000000002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Background : Acute kidney injury (AKI) is a prevalent clinical syndrome with persistent kidney dysfunction. Renal ischemia/reperfusion (I/R) injury is a major cause of AKI. miR-208a-3p overexpression attenuated myocardial I/R injury. This study aims to investigate the role and mechanism of miR-208a-3p in I/R-induced AKI. Methods : AKI models were established using hypoxia/reoxygenation (H/R)-exposed tubule epithelial cell HK-2 and I/R-induced mice. The function and mechanism of miR-208a-3p were investigated by gain- or loss-of-function methods using real-time PCR, CCK-8, flow cytometry, ELISA, western blot, hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, detection of Fe 2+ , reactive oxygen species, blood urea nitrogen and creatinine, and luciferase reporter assay. Results : miR-208a-3p expression was suppressed, while the expression of CELF2 and circular RNA ubiquinol-cytochrome c reductase core protein 2 (circUQCRC2) was increased in both AKI models. miR-208a-3p upregulation or circUQCRC2 silencing increased the viability, decreased the levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), reduced apoptosis and contents of Fe 2+ and reactive oxygen species, elevated expression of GPX4 and SLC7A11, and reduced ACSL4 expression in H/R-stimulated HK-2 cells. In addition, miR-208a-3p improved kidney function by alleviating renal injury, apoptosis, inflammation, and ferroptosis in AKI mouse model. CELF2 was a target gene of miR-208a-3p, which was negatively modulated by circUQCRC2. Overexpression of CELF2 blocked the function of miR-208a-3p upregulation or circUQCRC2 silencing on H/R-treated HK-2 cells. Moreover, the effects of circUQCRC2 downregulation on H/R-injured cells were also reversed by miR-208a-3p inhibitor. Conclusions : miR-208a-3p regulated by circUQCRC2 could attenuate I/R-induced AKI by inhibiting CELF2-mediated tubular epithelial cell apoptosis, inflammation and ferroptosis. This study provides potential therapeutic targets for I/R-induced AKI.
Collapse
Affiliation(s)
- Peng Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research, Youjiang Medical University for Nationalities, Baise, China
| | - Jun Pang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haiting Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jing Ma
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Linlin He
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xu Lin
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Zheng Q, Li X, Xu X, Tang X, Hammad B, Xing J, Zhang D. The mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H axis mediates apoptosis in renal tubular cells in association with endoplasmic reticulum stress following ischemic acute kidney injury. Int Immunopharmacol 2024; 132:111956. [PMID: 38554447 DOI: 10.1016/j.intimp.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND While recent studies have suggested a potential involvement of circRNAs in acute kidney injury (AKI) after ischemia, mmu_circ_003062 role is undetermined. METHODS The levels of mmu_circ_003062, miR-490-3p, CACNA1H, GRP78, CHOP and hsa_circ_0075663 were detected by Relative qPCR in Boston University mouse proximal tubule (BUMPT) cells, mouse kidneys, and human renal tubular epithelial (HK-2) cells. Moreover, the levels of hsa_circ_0075663 in serum and urine of patients with AKI following cardiopulmonary resuscitation (CPR) were detected by absolute quantitative PCR. Western blot was used to detect the relative expression of the protein. The function and regulatory mechanism of mmu_circ_003062 and hsa_circ_0075663 were investigated through a series of in vitro and in vivo experiments, including bioinformatic prediction, luciferase reporter assays, FISH, FCM, TUNEL staining, and H&E staining. RESULTS It was found that mmu_circ_003062, hsa_circ_0075663 mediated apoptosis after ischemia/reperfusion (I/R) by interaction with miR-490-3p to enhance CACNA1H expression, thereby leading to the upregulation of endoplasmic reticulum stress (ERS)-relevant proteins GRP78 and CHOP. Ultimately, mmu_circ_003062 downregulation significantly ameliorated ischemic AKI by modulating the miR-490-3p/CACNA1H/GRP78 and CHOP pathway. Furthermore, the plasma and urinary levels of hsa_circ_0075663 in patients with AKI following CPR were significantly higher than non-AKI patients, exhibited a strongly correlation with serum creatinine. CONCLUSION The involvement of mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H/GRP78 and CHOP axis is significant in the development of ischemic AKI. Moreover, hsa_circ_0075663 has potential as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Xu
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bacha Hammad
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhai J, Wang C, Jin L, Liu M, Chen Y. Research progress on the relationship between epilepsy and circRNA. Brain Res 2024; 1830:148823. [PMID: 38403039 DOI: 10.1016/j.brainres.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This review aims to provide a comprehensive summary of the latest research progress regarding the relationship between epilepsy and circular RNA (circRNA). METHODS Relevant literature from the PubMed database was meticulously searched and reviewed. The selected articles focused on investigating the association between epilepsy and circRNA, including studies on expression patterns, diagnostic markers, therapeutic targets, and functional mechanisms. RESULTS Epilepsy, characterized by recurrent seizures, is a neurological disorder. Numerous studies have demonstrated significant alterations in the expression profiles of circRNA in epileptic brain tissues, animal models, and peripheral blood samples. These differential expressions of circRNA are believed to be closely linked with the occurrence and development of epilepsy. Moreover, circRNA has shown promising potential as diagnostic markers for epilepsy, as well as prognostic indicators for predicting disease outcomes. Furthermore, circRNA has emerged as a potential therapeutic target for epilepsy treatment, offering prospects for gene therapy interventions. CONCLUSION The dysregulation of circRNA expression in epilepsy suggests its potential involvement in the pathogenesis and progression of this disorder. Identifying specific circRNA molecules associated with epilepsy may pave the way for novel diagnostic approaches and therapeutic strategies. However, further investigations are imperative to elucidate the precise functional mechanisms of circRNA in epilepsy and validate its clinical utility.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
8
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Li T, Liu F, Tan Y, Peng Y, Xu X, Yang Y. PIM3 regulates myocardial ischemia/reperfusion injury via ferroptosis. Genes Genomics 2024; 46:161-170. [PMID: 38148455 DOI: 10.1007/s13258-023-01475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is closely related with cardiovascular diseases; however, the underlying pathogenic mechanisms remain not fully understood. This study sought to investigate the effect and mechanisms of PIM3 implicated in myocardial I/R injury using a rat model of myocardial I/R injury and a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) induction. METHODS The morphology changes were detected by HE staining while cell viability was accessed by the CCK-8 method. The characteristics of ferroptosis were evaluated by ROS production, MDA content, SOD level, iron content, TfR1, FTH1, and GPX4 expression. RESULTS Myocardial I/R operation increased myocardial tissue damage in rats, while OGD/R treatment reduced the viability of H9c2 cells. Both myocardial I/R operation and OGD/R stimulation increased ferroptosis, as demonstrated by elevated ROS, MDA, iron content, decreased SOD level, upregulation of TfR1, and downregulation of FTH1 and GPX4. Additionally, myocardial I/R modeling or OGD/R treatment enhanced the expression of PIM3. Silencing of PIM3 inhibited ferroptosis, which resulted in alleviated myocardial I/R-induced damage and improved H9c2 cell survival. CONCLUSIONS Our findings highlight a vital role of PIM3 in myocardial I/R injury, indicating that PIM3-targeting ferroptosis may be a promising target for the development of novel therapies of myocardial I/R injury-associated diseases.
Collapse
Affiliation(s)
- Ting Li
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Fangyao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ying Tan
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yutao Peng
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xuefeng Xu
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yushan Yang
- School of Resource, Environment and Safety Engineering, Univerity of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
11
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
12
|
Barreiro K, Dwivedi OP, Rannikko A, Holthöfer H, Tuomi T, Groop PH, Puhka M. Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles-From Pre-Analytical Obstacles to Biomarker Research. Genes (Basel) 2023; 14:1415. [PMID: 37510317 PMCID: PMC10379145 DOI: 10.3390/genes14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Endocrinology, Abdominal Centre, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
13
|
MiR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of airway smooth muscle cells by regulating the PTEN/Akt pathway. Allergol Immunopathol (Madr) 2023; 51:151-159. [PMID: 36916101 DOI: 10.15586/aei.v51i2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Recent studies have shown that the up-regulation of microRNA miR-328-3p expression increases seasonal allergy and asthma symptoms in children, but the specific mechanism remains unclear. Therefore, the aim of this study was to explore the role and mechanism of -miR-328-3p in transforming growth factor (TGF)-β1-induced airway smooth muscle cells (ASMCs). METHODS The effect of TGF-β1 on the expression of miR-328-3p in ASMCs was examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cells proliferation, migration, and inflammatory factors in TGF-β1-induced ASMCs were measured by cell counting kit-8 (CCK-8), transwell, and enzyme-linked immunosorbent assay (ELISA), respectively. Besides, TargetScan was used to predict phosphatase and tensin homolog (PTEN), the downstream target of miR-328-3p; double-luciferase reporter assay, western blot, and qRT-PCR were used to verify the targeting relationship between miR-328-3p and PTEN; western blot was also used to examine the effects of PTEN and miR-328-3p knockdown on the expression levels of PTEN, Akt, and p-Akt proteins. RESULTS The expression of miR-328-3p was up-regulated in TGF-β1-induced ASMCs. Knockdown of miR-328-3p significantly inhibited proliferation, migration, and inflammation of ASMCs induced by TGF-β1 and decreased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. The dual--luciferase reporter assay results confirmed that PTEN was a target gene of miR-328-3p. Moreover, inhibition of PTEN expression reversed the inhibitory effect of low miR-328-3p expression on -TGF-β1-induced ASMC's proliferation, migration, and inflammation. In comparison to the knockdown of miR-328-3p alone, the simultaneous knockdown of miR-328-3p with PTEN decreased PTEN protein expression levels and increased p-Akt/Akt ratio in TGF-β1-induced ASMCs. CONCLUSION Through regulating the expression of PTEN and the activity of Akt signaling pathway, miR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of ASMCs.
Collapse
|
14
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|