1
|
Sinha V, Singh A, Singh A, Saraswati SSK, Rana AK, Kalra K, Natarajan K. Potassium ion channel Kir2.1 negatively regulates protective responses to Mycobacterium bovis BCG. J Leukoc Biol 2024; 116:644-656. [PMID: 38489665 DOI: 10.1093/jleuko/qiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tuberculosis caused by the pathogen Mycobacterium tuberculosis leads to increased mortality and morbidity worldwide. The prevalence of highly drug-resistant strains has reinforced the need for greater understanding of host-pathogen interactions at the cellular and molecular levels. Our previous work demonstrated critical roles of calcium ion channels in regulating protective responses to mycobacteria. In this report, we deciphered the roles of inwardly rectifying K+ ion channel Kir2.1 in epithelial cells. Data showed that infection of epithelial cells (and macrophages) increases the surface expression of Kir2.1. This increased expression of Kir2.1 results in higher intracellular mycobacterial survival, as either inhibiting or knocking down Kir2.1 results in mounting of a higher oxidative burst leading to a significant attenuation of mycobacterial survival. Further, inhibiting Kir2.1 also led to increased expression of T cell costimulatory molecules accompanied with increased activation of MAP kinases and transcription factors nuclear factor κB and phosphorylated CREB. Furthermore, inhibiting Kir2.1 induced increased autophagy and apoptosis that could also contribute to decreased bacterial survival. Interestingly, an increased association of heat shock protein 70 kDa with Kir2.1 was observed. These results showed that mycobacteria modulate the expression and function of Kir2.1 in epithelial cells to its advantage.
Collapse
Affiliation(s)
- Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Shakuntala Surender Kumar Saraswati
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| |
Collapse
|
2
|
Zhang J, Dong F, Ju G, Pan X, Mao X, Zhang X. Sodium Houttuyfonate Alleviates Monocrotaline-induced Pulmonary Hypertension by Regulating Orai1 and Orai2. Am J Respir Cell Mol Biol 2024; 71:332-342. [PMID: 38709251 DOI: 10.1165/rcmb.2023-0015oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/06/2024] [Indexed: 05/07/2024] Open
Abstract
An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.
Collapse
MESH Headings
- Animals
- Monocrotaline/toxicity
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/drug therapy
- ORAI1 Protein/metabolism
- ORAI1 Protein/genetics
- Sulfites/pharmacology
- Rats
- Male
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- ORAI2 Protein/metabolism
- Rats, Sprague-Dawley
- Calcium/metabolism
- Calcium Signaling/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Alkanes
Collapse
Affiliation(s)
- Jun Zhang
- School of Medicine, Lishui University, Lishui, China
| | - Fang Dong
- School of Medicine, Lishui University, Lishui, China
| | - Gaojia Ju
- School of Pharmacy, Fujian Medical University, Fuzhou, China; and
| | - Xinli Pan
- School of Medicine, Lishui University, Lishui, China
| | - Xinwu Mao
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| | - Xiaowen Zhang
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| |
Collapse
|
3
|
He J, Wang K, Wang B, Cui Y, Zhang Q. Effect of the TGF-β/BMP Signaling Pathway on the Proliferation of Yak Pulmonary Artery Smooth Muscle Cells under Hypoxic Conditions. Animals (Basel) 2024; 14:2072. [PMID: 39061534 PMCID: PMC11274247 DOI: 10.3390/ani14142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
To survive in low-oxygen environments, yaks effectively avoid hypoxia-induced pulmonary arterial hypertension through vascular remodeling. The TGF-β/BMP signaling pathway plays a key role in maintaining the homeostasis of pulmonary artery smooth muscle cells (PASMCs). However, little is known about the molecular regulatory mechanisms by which the TGF-β/BMP signaling pathway contributes to the proliferation of yak PASMCs. In this study, yak PASMCs were cultured in vitro, and a hypoxia model was constructed to investigate the effect of TGFβ/BMP signaling on yak PASMC proliferation. Hypoxia treatment increased the proliferation of yak PASMCs significantly. As the duration of hypoxia increased, the expression levels of TGF-β1 and the phosphorylation levels of Smad2/3 were upregulated significantly. The BMP signaling pathway was transiently activated by hypoxia, with increases in BMPR2 expression and Smad1/5 phosphorylation, and these changes were gradually reversed with prolonged hypoxia exposure. In addition, exogenous TGF-β1 activated the TGF-β signaling pathway, increased the phosphorylation levels of the downstream proteins Smad2 and Smad3, and increased the proliferation and migration rates of yak PASMCs significantly. Finally, treatment with noggin (an inhibitor of BMP signaling) significantly reduced BMPR2 protein expression levels and Smad1/5 phosphorylation levels and increased yak PASMC proliferation and migration rates. In summary, these results revealed that under hypoxic conditions, the dynamic regulation of the TGF-β/BMP signaling pathway promotes the proliferation of yak PASMCs.
Collapse
Affiliation(s)
- Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (Y.C.); (Q.Z.)
| | - Kejin Wang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730070, China;
| | - Biao Wang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (Y.C.); (Q.Z.)
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (Y.C.); (Q.Z.)
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (Y.C.); (Q.Z.)
| |
Collapse
|
4
|
Zhou R, Li R, Ding Q, Zhang Y, Yang H, Han Y, Liu C, Liu J, Wang S. OPN silencing reduces hypoxic pulmonary hypertension via PI3K-AKT-induced protective autophagy. Sci Rep 2024; 14:8670. [PMID: 38622371 PMCID: PMC11018812 DOI: 10.1038/s41598-024-59367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.
Collapse
Affiliation(s)
- Rui Zhou
- Qinghai University Medical Department, Xining, 810016, China
| | - Ran Li
- Zhengzhou Medical and Health Vocational College, Zhengzhou, 452385, China
| | - Qi Ding
- Pathology Department of Tianjin Huanghe Hospital, Tianjin, 300110, China
| | - Yuwei Zhang
- Department of Public Health, School of Medical, Qinghai University, Xining, 810016, China
| | - Hui Yang
- Qinghai University Medical Department, Xining, 810016, China
| | - Ying Han
- Qinghai University Medical Department, Xining, 810016, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Disease, Qinghai University, Xining, 810001, China
| | - Jie Liu
- Qinghai University Medical Department, Xining, 810016, China
| | - Shenglan Wang
- Qinghai University Medical Department, Xining, 810016, China.
| |
Collapse
|
5
|
Wang HJ, Ma L, Yu Q. Cited2 inhibited hypoxia-induced proliferation and migration of PASMCs via the TGF-β1/Cited2/PPARγ pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:509-517. [PMID: 38419888 PMCID: PMC10897560 DOI: 10.22038/ijbms.2023.74455.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Objectives Proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) contribute to hypoxia-induced pulmonary hypertension (HPH). The transcription factor Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2) has been implicated in the control of tumor cells and mesenchymal stem cell (MSC) and cardiomyocyte growth or migration. Whether Cited2 is involved in the proliferation and migration of PASMCs and the underlying mechanisms deserve to be explored. Materials and Methods Cited2 expression was detected in rat PASMCs under hypoxia conditions and HPH rat models. The effect of Cited2 on the proliferation and migration of PASMC was detected by overexpression or knockdown of the Cited2 gene. After PAMSCs were treated with recombinant TGF-β1 and the lentivirus vector overexpressing Cited2, expression of peroxisome proliferator-activated receptor gamma (PPARγ) was examined by western blotting. Results We revealed that hypoxia down-regulated the expression of Cited2 in PASMCs and rat pulmonary arteries. Cited2 overexpression inhibited the proliferation and migration of PASMCs under hypoxia, while Cited2 knockdown induced the proliferation and migration of PASMCs. Cited2 inhibits the negative regulation of the TGF-β1 pathway on PPARγ to inhibit the proliferation and migration of PASMCs. Conclusion These findings suggest that increased Cited2 expression contributes to the inhibition of PASMCs proliferation and migration by regulating TGF-β1-mediated target gene expression in HPH and provides a new target for molecular therapy of HPH.
Collapse
Affiliation(s)
- Hong-Juan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Lan Ma
- Department of Plateau Medical Center, Qinghai University, Xining 810000, Qinghai, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
6
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Osteopontin in Pulmonary Hypertension. Biomedicines 2023; 11:biomedicines11051385. [PMID: 37239056 DOI: 10.3390/biomedicines11051385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. The underlying pathogenetic mechanisms remain poorly understood. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Moreover, preclinical studies in rodent models have implicated osteopontin in PH pathogenesis. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44. In this article, we provide a comprehensive overview of the current understanding of osteopontin regulation and its impact on pulmonary vascular remodeling, as well as consider research issues required for the development of therapeutics targeting osteopontin as a potential strategy for the management of PH.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|