1
|
Varadarajan S, Madapusi BT, Narasimhan M, Pandian CD, Dhanapal S. Anticancer Effects of Carica papaya L. and Benzyl Isothiocyanate on an Oral Squamous Cell Carcinoma Cell Line: An In Vitro Study. J Contemp Dent Pract 2022; 23:839-844. [PMID: 37283020 DOI: 10.5005/jp-journals-10024-3384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AIM The study aimed to assess the anticancer effects of leaves of the male and female plant and seeds Carica papaya L. extract and the active compound benzyl isothiocyanate on oral squamous cell carcinoma (OSCC) cell line. MATERIALS AND METHODS Extracts of CO2 strain C. papaya L. seeds were prepared using water, ethanol, and ethanol:water by maceration, and benzyl isothiocyanate was quantified. Alkaloid fractions of leaves of male and female plants of C. papaya L. were prepared and quantified. The anticancer effects of the test substances on the SCC-25 cell line were assessed by MTT, apoptosis assay, cell cycle analysis, and determination of mitochondrial membrane potential. RESULTS The ethanol:water extract of C. papaya L. (seeds) demonstrated the highest quantity of benzyl isothiocyanate. Male plant leaves demonstrated greater alkaloid content. The leaves of the male plant exhibited apoptosis induction and S-phase arrest, whereas the leaves of the female plant and seeds of C. papaya L. demonstrated G2M-phase arrest and apoptosis induction. CONCLUSION C. papaya L. and benzyl isothiocyanate demonstrated anticancer effects. There was a difference in the anticancer effects of leaves of male and female plants of C. papaya L. CLINICAL SIGNIFICANCE The anticancer effects of papaya leaves and seeds could be further explored to develop an adjunct therapy for oral cancer to improve prognosis and reduce recurrence rates.
Collapse
Affiliation(s)
- Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India, Phone: +91 9884748487, e-mail:
| | - Balaji Thodur Madapusi
- Adjunct Professor, Research, Tagore Medical and Dental College, Melakkottaiyur Post, Rathinamangalam, Tamil Nadu, India
| | - Malathi Narasimhan
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 2019; 14:e0210274. [PMID: 30657763 PMCID: PMC6338369 DOI: 10.1371/journal.pone.0210274] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Advanced colorectal cancer (CRC) survival rates are still low despite advances in cytotoxic and targeted therapies. The development of new effective or alternative therapies is therefore urgently needed. Bromelain, an extract of pineapple, was shown to have anticancer effects, but its mechanisms in CRC have not been fully explored. Therefore, the roles of bromelain in CRC progression were investigated using different CRC cell lines, a zebrafish model, and a xenograft mouse model. The anticancer mechanisms were explored by assessing the role of bromelain in inducing reactive oxygen species (ROS), superoxide, autophagosomes, and lysosomes. The role of bromelain in the induction of apoptosis was also assessed. It was found that bromelain inhibited CRC cell growth in cell lines and tumor growth in the zebrafish and xenograft mouse models. It also induced high levels of ROS and superoxide, plus autophagosome and lysosome formation. High levels of apoptosis were also induced, which were associated with elevated amounts of apoptotic proteins like apoptotic induction factor, Endo G, and caspases-3, -8, and -9 according to a qPCR analysis. In a Western blot analysis, increases in levels of ATG5/12, beclin, p62, and LC3 conversion rates were found after bromelain treatment. Levels of cleaved caspase-3, caspase-8, caspase-9, and poly(ADP ribose) polymerase (PARP)-1 increased after bromelain exposure. This study explored the role of bromelain in CRC while giving insights into its mechanisms of action. This compound can offer a cheap alternative to current therapies.
Collapse
Affiliation(s)
- Tung-Cheng Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Li Wei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Precious Takondwa Makondi
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- * E-mail: (CH);(YC)
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CH);(YC)
| |
Collapse
|
3
|
Liu CC, Lin WW, Wu CC, Hsu SL, Wang CY, Chung JG, Chiang CS. Lauryl Gallate Induces Apoptotic Cell Death through Caspase-dependent Pathway in U87 Human Glioblastoma Cells In Vitro. In Vivo 2018; 32:1119-1127. [PMID: 30150434 PMCID: PMC6199588 DOI: 10.21873/invivo.11354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The treatment of human glioma tumor is still an unmet medical need. Natural products are always promising resources for discovery of anticancer drugs. Lauryl gallate (LG) is one of the derivatives of gallic acid, widely present in plants, that has been shown to induce anticancer activities in many human cancer cell lines; however, it has not been studied in human glioma cell lines. Thus, the effects of LG on human glioblastoma U87 cells were investigated in the present in vitro study. MATERIALS AND METHODS Cell morphology and viability were examined by phase-contrast microscopy. Annexin V/Propidium iodide (PI) double staining were performed and assayed by flow cytometry to confirm that viable cell number reduction was due to the induction of apoptosis. Furthermore, U87 cells were exposed to LG in various concentrations and were analyzed by caspase activity assay. To further confirm that LG induced apoptotic cell death, the expression of apoptosis-associated proteins in LG-treated U87 cells was tested by western blot. RESULTS LG induced morphological changes and decreased viability in U87 cells. Annexin V/PI double staining revealed that LG induced apoptotic cell death in U87 cells in a dose-dependent manner. The increased activities of caspase-2, -3, -8 and -9 demonstrated that LG induced U87 cell apoptosis through a caspase-dependent pathway. In terms of molecular level, LG increased pro-apoptotic proteins Bax and Bak and decreased anti-apoptotic protein Bcl-2 in U87 cells. Furthermore, LG also suppressed the expression of p-Akt, Pak1, Hif-1α and Hif-2α, β-catenin and Tcf-1 in U87 cells. CONCLUSION These results suggest that LG induced apoptotic cell death via the caspase-dependent pathway in U87 cells.
Collapse
Affiliation(s)
- Chia-Chi Liu
- Department of Biochemical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
- Department of Life Science, Tunghai University, Taichung, Taiwan, R.O.C
| | - Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Yen Wang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
- Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Chi-Shiun Chiang
- Department of Biochemical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| |
Collapse
|
4
|
Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H, Chen R, Fu X, Lin D. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:280-301. [PMID: 29155174 DOI: 10.1016/j.jep.2017.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis (Cornaceae), known in Chinese as "Shanzhuyu," is a frequently used traditional Chinese medicine. It tastes sour and is astringent and slightly warm in nature. Its fruits have long been used to treat kidney deficiency, high blood pressure, waist and knee pain, dizziness, tinnitus, impotence, spermatorrhea, menorrhagia, and other diseases in China. The main distribution areas are Shanxi and Gansu. AIM OF THE STUDY This review focused on the ethnopharmacological uses of the herb. We also focus on the phytochemical, pharmacological, and toxicological studies on C. officinalis. The recent analytical methods developed for the quality control of the herb's constituents are also reviewed. Additionally, future trends and prospects in the study of this herb are proposed. MATERIALS AND METHODS Information on C. officinalis was gathered by searching the internet (PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Web of Science, Google Scholar, and Baidu Scholar) and libraries. RESULTS This review compiled the ethnopharmacological uses, including the classic prescriptions and historical applications. Approximately 300 chemical compounds have been isolated and identified from C. officinalis. The major active components of the plant are organic acids and iridoids, among which morroniside and loganin have been extensively investigated. The fruit of the plant has been used in treating many diseases in traditional medicine. Scientific studies indicated the herb's wide range of pharmacological activities, such as hepatic and renal protection, antidiabetes activity, cardioprotection, antioxidation, neuroprotection, antitumor activity, anti-inflammation, analgesic effects, antiaging activity, antiamnesia, antiosteoporosis, and immunoregulation. The analytical methods developed for the quantitative and qualitative determination of various compounds in the herb were further reviewed. CONCLUSIONS In this paper, we reviewed various studies conducted on C. officinalis, especially in areas of its ethnopharmacological use, as well as on its phytochemistry, pharmacology, and modern analytical methods used. Some of the herb's ethnomedical indications have been confirmed by the herb's pharmacological effects, such as its hepatic and renal protection and the antidiabetic effects. In particular, the crude extract and its chemical composition have exerted good therapeutic effect in diabetic treatment. C. officinalis entails additional attention on its pharmacological effects and drug development to expand its effective use clinically. Many advanced technologies are used for quality testing, but the detection component is exceedingly scarce for synthetically evaluating the quality of C. officinalis herbs. Thus, further research is necessary to investigate the quality control and toxicology of the plant, to further elucidate its clinical use, and to control herbal quality.
Collapse
Affiliation(s)
- Jun Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Lei Yin
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongfeng Quan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Rong Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| | - Dingbo Lin
- Oklahoma State University, United States.
| |
Collapse
|
5
|
Lin JF, Tsai TF, Yang SC, Lin YC, Chen HE, Chou KY, Hwang TIS. Benzyl isothiocyanate induces reactive oxygen species-initiated autophagy and apoptosis in human prostate cancer cells. Oncotarget 2017; 8:20220-20234. [PMID: 28423628 PMCID: PMC5386757 DOI: 10.18632/oncotarget.15643] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 12/03/2016] [Indexed: 11/25/2022] Open
Abstract
Benzyl isothiocyanate (BITC) in cruciferous plants, which are part of the human diet, has been shown to induce apoptosis in various types of cancer. In this study, we show that BITC effectively suppresses the growth of cultured human prostate cancer cells (CRW-22Rv1 and PC3) by causing mitochondrial membrane potential loss, caspase 3/7 activation and DNA fragmentation. Furthermore, BITC induces ROS generation in these cells. The induction of apoptosis by BITC was significantly attenuated in the presence of N-acetylcysteine (NAC) and catalase (CAT), well-studied ROS scavengers. The induction of autophagy in BITC-treated cells were also diminished by the application of NAC or CAT. In addition, BITC-induced apoptosis and autophagy were both enhanced by the pretreatment of catalase inhibitor, 3-Amino-1,2,4-triazole (3-AT). Pretreatment with specific inhibitors of autophagy (3-methyladenine or bafilomycin A1) or apoptosis (Z-VAD-FMK) reduced BITC-induced autophagy and apoptosis, respectively, but did not abolish BITC-induced ROS generation. In conclusion, the present study provides evidences that BITC caused prostate cancer cell death was dependent on the ROS status, and clarified the mechanism underlying BITC-induced cell death, which involves the induction of ROS production, autophagy and apoptosis, and the relationship between these three important processes.
Collapse
Affiliation(s)
- Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Shan-Che Yang
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Yi-Chia Lin
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 242, Taiwan.,Department of Urology, Taipei Medical University, Taipei, 111, Taiwan
| |
Collapse
|
6
|
Novío S, Cartea ME, Soengas P, Freire-Garabal M, Núñez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on Prostate Cancer. Molecules 2016; 21:E626. [PMID: 27187332 PMCID: PMC6272898 DOI: 10.3390/molecules21050626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.
Collapse
Affiliation(s)
- Silvia Novío
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Manuel Freire-Garabal
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Jesús Núñez-Iglesias
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
7
|
Cho HJ, Lim DY, Kwon GT, Kim JH, Huang Z, Song H, Oh YS, Kang YH, Lee KW, Dong Z, Park JHY. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest. Int J Mol Sci 2016; 17:264. [PMID: 26907265 PMCID: PMC4783993 DOI: 10.3390/ijms17020264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.
Collapse
Affiliation(s)
- Han Jin Cho
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| | - Ji Hee Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, China.
| | - Hyerim Song
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Yoon Sin Oh
- Department of Molecular Medicine, School of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799, Korea.
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
8
|
Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci 2015; 72:4593-612. [PMID: 26346492 PMCID: PMC11113907 DOI: 10.1007/s00018-015-2031-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.
Collapse
Affiliation(s)
- Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Roles of autophagy induced by natural compounds in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121826. [PMID: 25821782 PMCID: PMC4364006 DOI: 10.1155/2015/121826] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment.
Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.
Collapse
|
10
|
Ho E, Beaver LM, Williams DE, Dashwood RH. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv Nutr 2011; 2:497-510. [PMID: 22332092 PMCID: PMC3226387 DOI: 10.3945/an.111.001032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR, USA.
| | - Laura M. Beaver
- Linus Pauling Institute,Department of Nutrition and Exercise Sciences, and
| | - David E. Williams
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Roderick H. Dashwood
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| |
Collapse
|
11
|
Rajendran P, Ho E, Williams DE, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 2011; 3:4. [PMID: 22247744 PMCID: PMC3255482 DOI: 10.1186/1868-7083-3-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.
Collapse
Affiliation(s)
- Praveen Rajendran
- Cancer Chemoprotection Program, Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis OR 97331, USA
| | | | | | | |
Collapse
|