1
|
Qian X, Tan H, Liu X, Zhao W, Chan MD, Kim P, Zhou X. Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance. Genes (Basel) 2024; 15:718. [PMID: 38927654 PMCID: PMC11202835 DOI: 10.3390/genes15060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients' survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction with an increased contrast-enhancing lesion size at the tumor site or resection margins miming tumor recurrence on MRI. The accurate and reliable prognostication of GBM progression is urgently needed in the clinical management of GBM patients. Clinical data analysis indicates that the patients with PsP had superior overall and progression-free survival rates. In this study, we aimed to develop a prognostic model to evaluate the tumor progression potential of GBM patients following standard therapies. We applied a dictionary learning scheme to obtain imaging features of GBM patients with PsP or true tumor progression (TTP) from the Wake dataset. Based on these radiographic features, we conducted a radiogenomics analysis to identify the significantly associated genes. These significantly associated genes were used as features to construct a 2YS (2-year survival rate) logistic regression model. GBM patients were classified into low- and high-survival risk groups based on the individual 2YS scores derived from this model. We tested our model using an independent The Cancer Genome Atlas Program (TCGA) dataset and found that 2YS scores were significantly associated with the patient's overall survival. We used two cohorts of the TCGA data to train and test our model. Our results show that the 2YS scores-based classification results from the training and testing TCGA datasets were significantly associated with the overall survival of patients. We also analyzed the survival prediction ability of other clinical factors (gender, age, KPS (Karnofsky performance status), normal cell ratio) and found that these factors were unrelated or weakly correlated with patients' survival. Overall, our studies have demonstrated the effectiveness and robustness of the 2YS model in predicting the clinical outcomes of GBM patients after standard therapies.
Collapse
Affiliation(s)
- Xiaohua Qian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Hua Tan
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Xiaona Liu
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Weiling Zhao
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Pora Kim
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Xiaobo Zhou
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| |
Collapse
|
2
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
3
|
Blakstad H, Mendoza Mireles EE, Heggebø LC, Magelssen H, Sprauten M, Johannesen TB, Vik-Mo EO, Leske H, Niehusmann P, Skogen K, Helseth E, Emblem KE, Brandal P. Incidence and outcome of pseudoprogression after radiation therapy in glioblastoma patients: A cohort study. Neurooncol Pract 2024; 11:36-45. [PMID: 38222046 PMCID: PMC10785573 DOI: 10.1093/nop/npad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Differentiating post-radiation MRI changes from progressive disease (PD) in glioblastoma (GBM) patients represents a major challenge. The clinical problem is two-sided; avoid termination of effective therapy in case of pseudoprogression (PsP) and continuation of ineffective therapy in case of PD. We retrospectively assessed the incidence, management, and prognostic impact of PsP and analyzed factors associated with PsP in a GBM patient cohort. Methods Consecutive GBM patients diagnosed in the South-Eastern Norway Health Region from 2015 to 2018 who had received RT and follow-up MRI were included. Tumor, patient, and treatment characteristics were analyzed in relationship to re-evaluated MRI examinations at 3 and 6 months post-radiation using Response Assessment in Neuro-Oncology criteria. Results A total of 284 patients were included in the study. PsP incidence 3 and 6 months post-radiation was 19.4% and 7.0%, respectively. In adjusted analyses, methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter and the absence of neurological deterioration were associated with PsP at both 3 (p < .001 and p = .029, respectively) and 6 months (p = .045 and p = .034, respectively) post-radiation. For patients retrospectively assessed as PD 3 months post-radiation, there was no survival benefit of treatment change (p = .838). Conclusions PsP incidence was similar to previous reports. In addition to the previously described correlation of methylated MGMT promoter with PsP, we also found that absence of neurological deterioration significantly correlated with PsP. Continuation of temozolomide courses did not seem to compromise survival for patients with PD at 3 months post-radiation; therefore, we recommend continuing adjuvant temozolomide courses in case of inconclusive MRI findings.
Collapse
Affiliation(s)
- Hanne Blakstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eduardo Erasmo Mendoza Mireles
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Liv Cathrine Heggebø
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Mette Sprauten
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tom Børge Johannesen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Cancer Registry of Norway, Oslo, Norway
| | - Einar Osland Vik-Mo
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo
- University of Oslo, Oslo, Norway
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo
- Division of Cancer Medicine, Oslo University Hospital, Oslo
| | - Karoline Skogen
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Kyrre Eeg Emblem
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Wang W, Tugaoen JD, Fadda P, Toland AE, Ma Q, Elder JB, Giglio P, Otero JJ. Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences. Acta Neuropathol Commun 2023; 11:192. [PMID: 38049893 PMCID: PMC10694987 DOI: 10.1186/s40478-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/20/2023] [Indexed: 12/06/2023] Open
Abstract
Post-resection radiologic monitoring to identify areas of new or progressive enhancement concerning for cancer recurrence is critical during patients with glioblastoma follow-up. However, treatment-related pseudoprogression presents with similar imaging features but requires different clinical management. While pathologic diagnosis is the gold standard to differentiate true progression and pseudoprogression, the lack of objective clinical standards and admixed histologic presentation creates the needs to (1) validate the accuracy of current approaches and (2) characterize differences between these entities to objectively differentiate true disease. We demonstrated using an online RNAseq repository of recurrent glioblastoma samples that cancer-immune cell activity levels correlate with heterogenous clinical outcomes in patients. Furthermore, nCounter RNA expression analysis of 48 clinical samples taken from second neurosurgical resection supports that pseudoprogression gene expression pathways are dominated with immune activation, whereas progression is predominated with cell cycle activity. Automated image processing and spatial expression analysis however highlight a failure to apply these broad expressional differences in a subset of cases with clinically challenging admixed histology. Encouragingly, applying unsupervised clustering approaches over our segmented histologic images provides novel understanding of morphologically derived differences between progression and pseudoprogression. Spatially derived data further highlighted polarization of myeloid populations that may underscore the tumorgenicity of novel lesions. These findings not only help provide further clarity of potential targets for pathologists to better assist stratification of progression and pseudoprogression, but also highlight the evolution of tumor-immune microenvironment changes which promote tumor recurrence.
Collapse
Affiliation(s)
- Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Jonah Domingo Tugaoen
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - José Javier Otero
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
6
|
Haider AS, van den Bent M, Wen PY, Vogelbaum MA, Chang S, Canoll PD, Horbinski CM, Huse JT. Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro Oncol 2021; 22:450-456. [PMID: 31844891 DOI: 10.1093/neuonc/noz233] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regardless of subtype, diffuse gliomas of adulthood are characterized by inexorable progression through treatment. Cancer recurrence in the context of therapy is by no means unique to gliomas. For many tumors residing outside the central nervous system (CNS), tissue-based analyses are routinely employed to document the molecular and cellular features of disease recurrence. Such interventions are inconsistently applied for gliomas, however, and lack rigorous standardization when they are. While many of the reasons underlying these discrepancies reflect pragmatic realities inherent to CNS disease, the suboptimal employment of histological and molecular assessment at recurrence nevertheless represents a missed opportunity to proactively guide patient management and increase knowledge. Herein, we address this quandary by pairing a succinct description of the histological, biological, and molecular characteristics of recurrent glioma with recommendations for how to better standardize and implement quality pathological assessment into patient management. We hope this review will prompt thoughtful revision of standard operating procedures to maximize the utility of glioma re-biopsy.
Collapse
Affiliation(s)
- Ali S Haider
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A Vogelbaum
- Departments of Neurosurgery and Neuro-Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Peter D Canoll
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Craig M Horbinski
- Departments of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason T Huse
- Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 2020; 157:103188. [PMID: 33307200 DOI: 10.1016/j.critrevonc.2020.103188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
With new therapeutic protocols, more patients treated for glioblastoma have experienced a suspicious radiologic image of progression (pseudoprogression) during follow-up. Pseudoprogression should be differentiated from true progression because the disease management is completely different. In the case of pseudoprogression, the follow-up continues, and the patient is considered stable. In the case of true progression, a treatment adjustment is necessary. Presently, a pseudoprogression diagnosis certainly needs to be pathologically confirmed. Some important efforts in the radiological, histopathological, and genomic fields have been made to differentiate pseudoprogression from true progression, and the assessment of response criteria exists but remains limited. The aim of this paper is to highlight clinical and pathological markers to differentiate pseudoprogression from true progression through a literature review.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Département of Pathology, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Guido Ahle
- Departement of Neurology, Hôpitaux Civils de Colmar, 39 Avenue de la Liberté, 68024, Colmar, France
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Audrey Keller
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Pïcardie University Hospital, 1 rond point du Professeur Christian Cabrol, 80054 Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
8
|
Li M, Tang H, Chan MD, Zhou X, Qian X. DC-AL GAN: Pseudoprogression and true tumor progression of glioblastoma multiform image classification based on DCGAN and AlexNet. Med Phys 2020; 47:1139-1150. [PMID: 31885094 DOI: 10.1002/mp.14003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Pseudoprogression (PsP) occurs in 20-30% of patients with glioblastoma multiforme (GBM) after receiving the standard treatment. PsP exhibits similarities in shape and intensity to the true tumor progression (TTP) of GBM on the follow-up magnetic resonance imaging (MRI). These similarities pose challenges to the differentiation of these types of progression and hence the selection of the appropriate clinical treatment strategy. METHODS To address this challenge, we introduced a novel feature learning method based on deep convolutional generative adversarial network (DCGAN) and AlexNet, termed DC-AL GAN, to discriminate between PsP and TTP in MRI images. Due to the adversarial relationship between the generator and the discriminator of DCGAN, high-level discriminative features of PsP and TTP can be derived for the discriminator with AlexNet. We also constructed a multifeature selection module to concatenate features from different layers, contributing to more powerful features used for effectively discriminating between PsP and TTP. Finally, these discriminative features from the discriminator are used for classification by a support vector machine (SVM). Tenfold cross-validation (CV) and the area under the receiver operating characteristic (AUC) were applied to evaluate the performance of this developed algorithm. RESULTS The accuracy and AUC of DC-AL GAN for discriminating PsP and TTP after tenfold CV were 0.920 and 0.947. We also assessed the effects of different indicators (such as sensitivity and specificity) for features extracted from different layers to obtain a model with the best classification performance. CONCLUSIONS The proposed model DC-AL GAN is capable of learning discriminative representations from GBM datasets, and it achieves desirable PsP and TTP classification performance superior to other state-of-the-art methods. Therefore, the developed model would be useful in the diagnosis of PsP and TTP for GBM.
Collapse
Affiliation(s)
- Meiyu Li
- College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.,Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Michael D Chan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiaohua Qian
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
9
|
Ma Y, Wang Q, Dong Q, Zhan L, Zhang J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am J Cancer Res 2019; 9:1546-1553. [PMID: 31497342 PMCID: PMC6726978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023] Open
Abstract
Immunotherapy has achieved unprecedented clinical efficacy in patients with various types of advanced tumors; however, some patients experience delayed tumor shrinkage following an increase in tumor burden after such a therapeutic method. This phenomenon is called pseudoprogression and can lead to premature cessation of efficacious immunotherapeutic agents. Consequently, we summarized the available data on methods to differentiate pseudoprogression from true progression in patients who have been treated with immunotherapy including biomarkers, medical imaging techniques and biopsy. We also introduce hyperprogression and special pseudoprogression for improved evaluation of immunotherapy.
Collapse
Affiliation(s)
- Yiming Ma
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute No. 44, Xiaohe Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Qiwei Wang
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute No. 44, Xiaohe Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Qian Dong
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute No. 44, Xiaohe Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute No. 44, Xiaohe Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute No. 44, Xiaohe Road, Dadong District, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
10
|
Pierscianek D, Ahmadipour Y, Oppong MD, Rauschenbach L, Kebir S, Glas M, Sure U, Jabbarli R. Blood-Based Biomarkers in High Grade Gliomas: a Systematic Review. Mol Neurobiol 2019; 56:6071-6079. [PMID: 30719642 DOI: 10.1007/s12035-019-1509-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
High-grade gliomas (HGG) are the most common malignant primary brain tumor in adults. During the course of disease, several challenges occur, like measuring tumor burden, monitoring of treatment response, estimating the patient's prognosis, and distinguishing between true progression and pseudo-progression. So far, no blood-based biomarker has been established in the clinical routine to address these challenges. The aim of this systematic review was to analyze the present evidence on blood-based biomarkers for HGG. We systematically searched in PubMed, Web of Sciences, Scopus, and Cochrane Library databases for publications before 30th of March 2018 reporting on associations of blood-based biomarkers in HGG patients with different endpoints as overall survival, progression-free survival, and postoperative monitoring. Quality assessment of the studies according to QUIPS and STARD guidelines was performed. In accordance with the GRADE guidelines, level of evidence (I-IV) for each of the tested biomarkers was assessed. One thousand six hundred eighty unique records were identified. Of these, 170 original articles were included to this review. Four hundred fifteen different blood-based biomarkers analyzed in 15.041 patients with HGG as also their corresponding recurrent tumors. Ten predictive biomarkers reached level II of evidence. No biomarker achieved level I of evidence. In this review, 10 blood-based biomarkers were selected as most promising biomarkers for HGG: α2-Heremans-Schmid glycoprotein (AHSG), albumin, glucose, insulin-like growth factor- binding protein 2 (IGFBP-2), macrophage inflammatory protein 1δ (MIP-1 δ), macrophage inflammatory protein 3ß (MIP-3ß), neutrophil-lymphocyte ratio (NLR), red blood cell distribution width (RDW), soluble glycoprotein 130 (Sgp130), and chitinase-3-like protein 1 (YKL-40). To further assess the clinical significance of these biomarkers, the evaluation in a larger cohort of HGG and their corresponding subgroups would be necessary.
Collapse
Affiliation(s)
- Daniela Pierscianek
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany. .,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.
| | - Yahya Ahmadipour
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Sied Kebir
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital of Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital of Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
11
|
Histological and Immunohistological Features of Reccurences in Patients with High Grade Diffuse Astrocytic Tumors. Fam Med 2018. [DOI: 10.30841/2307-5112.4.2018.163293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett 2018; 16:6307-6314. [PMID: 30405766 PMCID: PMC6202485 DOI: 10.3892/ol.2018.9498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023] Open
Abstract
Polypeptide-N-acetyl-galactosaminlytransferase 7 (GALNT7), a member of the GalNAc-transferase family, has not been previously evaluated as a prognostic factor of glioblastoma (GBM) or low-grade glioma (LGG). Based on The Cancer Genome Atlas database and bioinformatics analyses, the expression of GALNT7 was demosntrated to be higher in GBM and LGG tissues than in normal brain tissue. The expression levels of GANLT7 were associated with age, tumor grade, survival rate, disease-free survival time and overall survival time. Gene correlation and gene-set enrichment analyses suggested that GALNT7 may affect the proliferative and invasive abilities of glioma cells through multiple signaling pathways, including regulation of the actin cytoskeleton, natural killer cell-mediated cytotoxicity, the janus kinase-signal transducer and activator of transcription (STAT) signaling pathway, cell adhesion molecules and extracellular matrix receptor interaction pathways. Furthermore, 5 target genes of GALNT7 involved in these signaling pathways were identified, including Crk, Rac family small GTPase 1, STAT3, poliovirus receptor and Tenascin C. In summary, high expression of GALNT7 was associated with poor prognosis of glioma, and may be used as an effective biomarker of glioma.
Collapse
|
13
|
Rowe LS, Butman JA, Mackey M, Shih JH, Cooley-Zgela T, Ning H, Gilbert MR, Smart DK, Camphausen K, Krauze AV. Differentiating pseudoprogression from true progression: analysis of radiographic, biologic, and clinical clues in GBM. J Neurooncol 2018; 139:145-152. [PMID: 29767308 PMCID: PMC7983158 DOI: 10.1007/s11060-018-2855-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/31/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Pseudoprogression (PsP) is a diagnostic dilemma in glioblastoma (GBM) after chemoradiotherapy (CRT). Magnetic resonance imaging (MRI) features may fail to distinguish PsP from early true progression (eTP), however clinical findings may aid in their distinction. METHODS Sixty-seven patients received CRT for GBM between 2003 and 2016, and had pre- and post-treatment imaging suitable for retrospective evaluation using RANO criteria. Patients with signs of progression within the first 12-weeks post-radiation (P-12) were selected. Lesions that improved or stabilized were defined as PsP, and lesions that progressed were defined as eTP. RESULTS The median follow up for all patients was 17.6 months. Signs of progression developed in 35/67 (52.2%) patients within P-12. Of these, 20/35 (57.1%) were subsequently defined as eTP and 15/35 (42.9%) as PsP. MRI demonstrated increased contrast enhancement in 84.2% of eTP and 100% of PsP, and elevated CBV in 73.7% for eTP and 93.3% for PsP. A decrease in FLAIR was not seen in eTP patients, but was seen in 26.7% PsP patients. Patients with eTP were significantly more likely to require increased steroid doses or suffer clinical decline than PsP patients (OR 4.89, 95% CI 1.003-19.27; p = 0.046). KPS declined in 25% with eTP and none of the PsP patients. CONCLUSIONS MRI imaging did not differentiate eTP from PsP, however, KPS decline or need for increased steroids was significantly more common in eTP versus PsP. Investigation and standardization of clinical assessments in response criteria may help address the diagnostic dilemma of pseudoprogression after frontline treatment for GBM.
Collapse
Affiliation(s)
- Lindsay S Rowe
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA.
| | - John A Butman
- Radiology and Imaging Sciences, National Institutes of Health, 10 Center Drive Magnuson Clinical Center, MSC 1182, Bethesda, MD, 20892, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Joanna H Shih
- Clinical Research Center, National Institutes of Health, 10 Center Drive Magnuson Clinical Center, Bethesda, MD, 20892, USA
| | - Theresa Cooley-Zgela
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Holly Ning
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Building 82, Room 235A, Bethesda, MD, 20892, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Andra V Krauze
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Barisano G, Bergamaschi S, Acharya J, Rajamohan A, Gibbs W, Kim P, Zada G, Chang E, Law M. Complications of Radiotherapy and Radiosurgery in the Brain and Spine. NEUROGRAPHICS (2011) 2018; 8:167-187. [PMID: 35388375 PMCID: PMC8981962 DOI: 10.3174/ng.1700066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Radiation therapy is an integral part of the standard of care for many patients with brain and spine tumors. Stereotactic radiation surgery is increasingly being used as an adjuvant therapy as well as a sole treatment. However, despite newer and more focused techniques, radiation therapy still causes significant neurotoxicity. In this article, we reviewed the scientific literature, presented cases of patients who had developed different complications related to conventional radiation therapy or radiosurgery (gamma knife), demonstrated the imaging findings, and discussed the relevant clinical information for the correct diagnoses. Radiation therapy can cause injury in different ways: directly damaging the structures included in the radiation portal, indirectly affecting the blood vessels, and increasing the chance of tumor development. We also divided radiation complications according to the time of occurrence: acute (0 to 4 weeks), early delayed (4 weeks to months), and late delayed (months to years). With the increasing application of radiation therapy for the treatment of CNS tumors, it is important for the neuroradiologist to recognize the many possible complications of radiation therapy. Although this may cause significant diagnostic challenges, understanding the pathophysiology, time course of onset, and imaging features may help institute early therapy and prevent possible deleterious outcomes. Learning Objectives To recognize the main complications of radiation therapy and stereotactic radiosurgery in the brain and spine, and to highlight the imaging findings to improve the diagnostic process and treatment planning.
Collapse
Affiliation(s)
- G Barisano
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - S Bergamaschi
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - J Acharya
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - A Rajamohan
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - W Gibbs
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - P Kim
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - G Zada
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - E Chang
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| | - M Law
- Departments of Radiology (G.B., S.B., J.A., A.R., W.G., P.K., M.L.), Neurosurgery (G.Z.), Radiation Oncology (E.C.), and Stevens Institute of Neuroimaging and Informatics (M.L.), University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Qian X, Tan H, Zhang J, Liu K, Yang T, Wang M, Debinskie W, Zhao W, Chan MD, Zhou X. Identification of biomarkers for pseudo and true progression of GBM based on radiogenomics study. Oncotarget 2018; 7:55377-55394. [PMID: 27421136 PMCID: PMC5342424 DOI: 10.18632/oncotarget.10553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
The diagnosis for pseudoprogression (PsP) and true tumor progression (TTP) of GBM is a challenging task in clinical practices. The purpose of this study is to identify potential genetic biomarkers associated with PsP and TTP based on the clinical records, longitudinal imaging features, and genomics data. We are the first to introduce the radiogenomics approach to identify candidate genes for PsP and TTP of GBM. Specifically, a novel longitudinal sparse regression model was developed to construct the relationship between gene expression and imaging features. The imaging features were extracted from tumors along the longitudinal MRI and provided diagnostic information of PsP and TTP. The 33 candidate genes were selected based on their association with the imaging features, reflecting their relation with the development of PsP and TTP. We then conducted biological relevance analysis for 33 candidate genes to identify the potential biomarkers, i.e., Interferon regulatory factor (IRF9) and X-ray repair cross-complementing gene (XRCC1), which were involved in the cancer suppression and prevention, respectively. The IRF9 and XRCC1 were further independently validated in the TCGA data. Our results provided the first substantial evidence that IRF9 and XRCC1 can serve as the potential biomarkers for the development of PsP and TTP.
Collapse
Affiliation(s)
- Xiaohua Qian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Hua Tan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jian Zhang
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Keqin Liu
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tielin Yang
- School of Life Science, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Maode Wang
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Waldemar Debinskie
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Weilin Zhao
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
16
|
Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol 2017; 20:939-953. [DOI: 10.1007/s12094-017-1816-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
17
|
Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: a Systematic Review and Meta-Analysis. Clin Neuroradiol 2017; 28:401-411. [PMID: 28466127 PMCID: PMC6105173 DOI: 10.1007/s00062-017-0584-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022]
Abstract
Background High-grade gliomas are the most common primary brain tumours. Pseudoprogression describes the false appearance of radiation-induced progression on MRI. A distinction should be made from true tumour progression to correctly plan treatment. However, there is wide variation of reported pseudoprogression. We thus aimed to establish the incidence of pseudoprogression and tumour progression in high-grade glioma patients with a systematic review and meta-analysis. Methods We searched PubMed, Embase and Web of Science on the incidence of pseudoprogression and tumour progression in adult high-grade glioma patients from 2005, the latest on 8 October 2014. Histology or imaging follow-up was used as reference standard. Extracted data included number of patients with worsening of imaging findings on T1 postcontrast or T2/FLAIR, pseudoprogression and tumour progression. Study quality was assessed. Heterogeneity was tested with I2. Pooling of the results was done with random models using Metaprop in STATA (StataCorp. Stata Statistical Software. College Station, TX: StataCorp LP). Results We identified 73 studies. MRI progression occurred in 2603 patients. Of these, 36% (95% confidence interval [CI] 33–40%) demonstrated pseudoprogression, 60% (95%CI 56–64%) tumour progression and unknown outcome was present in the remaining 4% of the patients (range 1–37%). Conclusion This meta-analysis demonstrated for the first time a notably high pooled incidence of pseudoprogression in patients with a form of progression across the available literature. This highlighted the full extent of the problem of the currently conventional MRI-based Response Assessment in Neuro-Oncology (RANO) criteria for treatment evaluation in high-grade gliomas. This underscores the need for more accurate treatment evaluation using advanced imaging to improve diagnostic accuracy and therapeutic approach. Electronic supplementary material The online version of this article (doi: 10.1007/s00062-017-0584-x) contains supplementary material, which is available to authorized users. It contains the characteristics of the included studies (supplementary table 1) and a full search strategy (see supplementary search strategy).
Collapse
|
18
|
Qian X, Tan H, Zhang J, Zhao W, Chan MD, Zhou X. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation. Med Phys 2017; 43:5889. [PMID: 27806598 PMCID: PMC5055548 DOI: 10.1118/1.4963812] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Pseudoprogression (PsP) can mimic true tumor progression (TTP) on magnetic resonance imaging in patients with glioblastoma multiform (GBM). The phenotypical similarity between PsP and TTP makes it a challenging task for physicians to distinguish these entities. So far, no approved biomarkers or computer-aided diagnosis systems have been used clinically for this purpose. METHODS To address this challenge, the authors developed an objective classification system for PsP and TTP based on longitudinal diffusion tensor imaging. A novel spatio-temporal discriminative dictionary learning scheme was proposed to differentiate PsP and TTP, thereby avoiding segmentation of the region of interest. The authors constructed a novel discriminative sparse matrix with the classification-oriented dictionary learning approach by excluding the shared features of two categories, so that the pooled features captured the subtle difference between PsP and TTP. The most discriminating features were then identified from the pooled features by their feature scoring system. Finally, the authors stratified patients with GBM into PsP and TTP by a support vector machine approach. Tenfold cross-validation (CV) and the area under the receiver operating characteristic (AUC) were used to assess the robustness of the developed system. RESULTS The average accuracy and AUC values after ten rounds of tenfold CV were 0.867 and 0.92, respectively. The authors also assessed the effects of different methods and factors (such as data types, pooling techniques, and dimensionality reduction approaches) on the performance of their classification system which obtained the best performance. CONCLUSIONS The proposed objective classification system without segmentation achieved a desirable and reliable performance in differentiating PsP from TTP. Thus, the developed approach is expected to advance the clinical research and diagnosis of PsP and TTP.
Collapse
Affiliation(s)
- Xiaohua Qian
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Hua Tan
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Jian Zhang
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Weilin Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| |
Collapse
|
19
|
Deng J, Wang Y. Quantitative magnetic resonance imaging biomarkers in oncological clinical trials: Current techniques and standardization challenges. Chronic Dis Transl Med 2017; 3:8-20. [PMID: 29063052 PMCID: PMC5627686 DOI: 10.1016/j.cdtm.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Radiological imaging plays an important role in oncological trials to provide imaging biomarkers for disease staging, stratifying patients, defining dose setting, and evaluating the safety and efficacy of new candidate drugs and innovative treatment. This paper reviews the techniques of most commonly used quantitative magnetic resonance imaging (qMRI) biomarkers (dynamic contrast enhanced, dynamic susceptibility contrast, and diffusion weighted imaging) and their applications in oncological trials. Challenges of incorporating qMRI biomarkers in oncological trials are discussed including understanding biological mechanisms revealed by MRI biomarkers, consideration of rigorous trial design and standardized implementation of qMRI protocols.
Collapse
Affiliation(s)
- Jie Deng
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
20
|
Kucharczyk MJ, Parpia S, Whitton A, Greenspoon JN. Evaluation of pseudoprogression in patients with glioblastoma. Neurooncol Pract 2016; 4:120-134. [PMID: 31386017 DOI: 10.1093/nop/npw021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Management of glioblastoma is complicated by pseudoprogression, a radiological phenomenon mimicking progression. This retrospective cohort study investigated the incidence, prognostic implications, and most clinically appropriate definition of pseudoprogression. Methods Consecutive glioblastoma patients treated at the Juravinski Hospital and Cancer Centre, Hamilton, Ontario between 2004 and 2012 with temozolomide chemoradiotherapy and with contrast-enhanced MRI at standard imaging intervals were included. At each imaging interval, patient responses as per the RECIST (Response Evaluation Criteria in Solid Tumors), MacDonald, and RANO (Response Assessment in Neuro-Oncology) criteria were reported. Based on each set of criteria, subjects were classified as having disease response, stable disease, pseudoprogression, or true progression. The primary outcome was overall survival. Results The incidence of pseudoprogression among 130 glioblastoma patients treated with chemoradiotherapy was 15%, 19%, and 23% as defined by RANO, MacDonald, and RECIST criteria, respectively. Using the RANO definition, median survival for patients with pseudoprogression was 13.0 months compared with 12.5 months for patients with stable disease (hazard ratio [HR]=0.70; 95% confidence interval [CI], 0.35-1.42). Similarly, using the MacDonald definition, median survival for the pseudoprogression group was 11.8 months compared with 12.0 months for the stable disease group (HR=0.86; 95% CI, 0.47-1.58). Furthermore, disease response compared with stable disease was also similar using the RANO (HR=0.52; 95% CI, 0.20-1.35) and MacDonald (HR=0.51: 95% CI, 0.20-1.31) definitions. Conclusions Of all conventional glioblastoma response criteria, the RANO criteria gave the lowest incidence of pseudoprogression. Regardless of criteria, patients with pseudoprogression did not have statistically significant difference in survival compared with patients with stable disease.
Collapse
Affiliation(s)
- Michael Jonathan Kucharczyk
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, Canada (M.J.K.; A.W.; J.N.G.), Ontario Clinical Oncology Group, McMaster University, 771 Concession Street, Hamilton, Ontario, Canada (S.P.)
| | - Sameer Parpia
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, Canada (M.J.K.; A.W.; J.N.G.), Ontario Clinical Oncology Group, McMaster University, 771 Concession Street, Hamilton, Ontario, Canada (S.P.)
| | - Anthony Whitton
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, Canada (M.J.K.; A.W.; J.N.G.), Ontario Clinical Oncology Group, McMaster University, 771 Concession Street, Hamilton, Ontario, Canada (S.P.)
| | - Jeffrey Noah Greenspoon
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, Canada (M.J.K.; A.W.; J.N.G.), Ontario Clinical Oncology Group, McMaster University, 771 Concession Street, Hamilton, Ontario, Canada (S.P.)
| |
Collapse
|
21
|
Li H, Li J, Cheng G, Zhang J, Li X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 2016; 151:31-36. [PMID: 27764705 DOI: 10.1016/j.clineuro.2016.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/04/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed to investigate the potential association between IDH mutation and O6-methyl-guanine methyl transferase (MGMT) gene promoter methylation and pseudoprogression disease (psPD) in glioblastoma multiforme (GBM) patients after concurrent temozolomide (TMZ)-based chemoradiotherapy. METHODS A total of 157 GBM patients who received concurrent TMZ-based chemoradiotherapy were included in this retrospective study. The association between psPD and a number of demographic and genetic factors, including IDH mutation and MGMT promoter methylation, were analyzed based on logistic regression, Cox regression, and multivariate analysis. RESULTS Of the 157 GBM patients, 145 (92.36%) patients, including 38 patients with psPD, 38 patients with early progression (ePD), and 69 patients with non-progression (non-PD), were followed up for six to 56 months. We identified a higher rate of MGMT promoter methylation and IDH1 mutation in psPD patients compared with ePD patients (P=0.002). In addition, MGMT promoter methylation and IDH1 mutation predicted a high probability of psPD development in GBM patients (P=0.001 and P<0.001, respectively). MGMT promoter methylation, IDH1 mutation, Karnofsky performance score (KPS) ≥70, and psPD were associated with a significantly longer overall survival of GBM patients (P=0.001, 0.001, 0.002, and P<0.001, respectively). Both of MGMT promoter methylation and IDH mutation had a cumulative effect on the OS of GBM patients. GBM patients with psPD (39.2±2.1months, P<0.001) had a longer median survival (MS) than GBM patients with ePD (11.9±1.1months) or with non-PD (24.4±2.4months). CONCLUSION MGMT promoter methylation and IDH1 mutation were associated with PsPD and predicted a longer median survival in GBM patients after TMZ-based chemoradiotherapy. Genetic analyses of the MGMT promoter and IDH1 may allow us to effectively treat GBM patients.
Collapse
Affiliation(s)
- Hailong Li
- Department of Neurosurgery, Navy General Hospital, Beijing 100048, China
| | - Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Gang Cheng
- Department of Neurosurgery, Navy General Hospital, Beijing 100048, China
| | - Jianning Zhang
- Department of Neurosurgery, Navy General Hospital, Beijing 100048, China
| | - Xuezhen Li
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China.
| |
Collapse
|
22
|
Belliveau JG, Bauman G, Macdonald DR. Detecting tumor progression in glioma: current standards and new techniques. Expert Rev Anticancer Ther 2016; 16:1177-1188. [PMID: 27661768 DOI: 10.1080/14737140.2016.1240621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The post-treatment monitoring of glioma patients remains an area of active research and development. Conventional imaging with MRI is a highly sensitive modality for detecting and monitoring primary and secondary brain tumors and includes multi-parametric sequences to better characterize the disease. Standardized schemes for measuring response to treatment are in wide clinical use; however, the introduction of new therapeutics have introduced new patterns of response that can confound interpretation of conventional MRI and can cause uncertainty in the proper management following therapy. Areas covered: A summary of current and evolving techniques for assessing glioma response in this era of new therapies that address these challenges are presented in this review. While this review focuses more on clinical and early clinical methodologies for MRI and nuclear medicine techniques some promising pre-clinical techniques are also presented. Expert commentary: While successful single institution results have been widely reported in the literature, any new methodologies must be undertaken in multi-center settings. Additionally, the need for standardization of protocols in quantitative measured are an important area that must be addressed for new and promising techniques to be implemented to a wide array of patients.
Collapse
Affiliation(s)
- Jean-Guy Belliveau
- a Department of Medical Biophysics , University of Western Ontario , London , ON , Canada
| | - Glenn Bauman
- b Department of Medical Biophysics and Oncology , University of Western Ontario , London , ON , Canada
| | - David R Macdonald
- c Department of Oncology , University of Western Ontario , London , ON , Canada
| |
Collapse
|
23
|
Carceller F, Fowkes LA, Khabra K, Moreno L, Saran F, Burford A, Mackay A, Jones DTW, Hovestadt V, Marshall LV, Vaidya S, Mandeville H, Jerome N, Bridges LR, Laxton R, Al-Sarraj S, Pfister SM, Leach MO, Pearson ADJ, Jones C, Koh DM, Zacharoulis S. Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. J Neurooncol 2016; 129:109-21. [PMID: 27180091 DOI: 10.1007/s11060-016-2151-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/07/2016] [Indexed: 02/01/2023]
Abstract
Pseudoprogression (PsP) is a treatment-related phenomenon which hinders response interpretation. Its prevalence and clinical impact have not been evaluated in children/adolescents. We assessed the characteristics, risk factors and prognosis of PsP in children/adolescents and young-adults diagnosed with non-brainstem high grade gliomas (HGG) and diffuse intrinsic pontine gliomas (DIPG). Patients aged 1-21 years diagnosed with HGG or DIPG between 1995 and 2012 who had completed radiotherapy were eligible. PsP was assessed according to study-specific criteria and correlated with first-line treatment, molecular biomarkers and survival. Ninety-one patients (47 HGG, 44 DIPG) were evaluable. Median age: 10 years (range, 2-20). Eleven episodes of PsP were observed in 10 patients (4 HGG, 6 DIPG). Rates of PsP: 8.5 % (HGG); 13.6 % (DIPG). Two episodes of PsP were based on clinical findings alone; nine episodes had concurrent radiological changes: increased size of lesions (n = 5), new focal enhancement (n = 4). Temozolomide, MGMT methylation or H3F3A mutations were not found to be associated with increased occurrence of PsP. For HGG, 1-year progression-free survival (PFS) was 41.9 % no-PsP versus 100 % PsP (p = 0.041); differences in 1-year overall survival (OS) were not significant. For DIPG, differences in 1-year PFS and OS were not statistically significant. Hazard ratio (95 %CI) of PsP for OS was 0.551 (0.168-1.803; p = 0.325) in HGG; and 0.308 (0.107-0.882; p = 0.028) in DIPG. PsP occurred in both pediatric HGG and DIPG patients at a comparable rate to adult HGG. PsP was associated with improved 1-yr PFS in HGG patients. PsP had a protective effect upon OS in DIPG patients.
Collapse
Affiliation(s)
- Fernando Carceller
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.
| | - Lucy A Fowkes
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Komel Khabra
- Research Data Management and Statistics Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Lucas Moreno
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Clinical Research Unit - Pediatric Phase I-II Clinical Trials, Pediatric Oncology-Hematology Service, Hospital Niño Jesús, Av. de Menéndez Pelayo, num 65, 28009, Madrid, Spain
| | - Frank Saran
- Department of Neuro Oncology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Anna Burford
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Alan Mackay
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121, Heidelberg, Germany
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121, Heidelberg, Germany
| | - Lynley V Marshall
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Sucheta Vaidya
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Henry Mandeville
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Neil Jerome
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Leslie R Bridges
- Department of Cellular Pathology, St George's Hospital, Blackshaw Road, London, SW17 0QT, UK
| | - Ross Laxton
- Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121, Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Martin O Leach
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Andrew D J Pearson
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Chris Jones
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Stergios Zacharoulis
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Division of Clinical Studies and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| |
Collapse
|
24
|
Delgado-Goñi T, Ortega-Martorell S, Ciezka M, Olier I, Candiota AP, Julià-Sapé M, Fernández F, Pumarola M, Lisboa PJ, Arús C. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR IN BIOMEDICINE 2016; 29:732-743. [PMID: 27061401 DOI: 10.1002/nbm.3521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Characterization of glioblastoma (GB) response to treatment is a key factor for improving patients' survival and prognosis. MRI and magnetic resonance spectroscopic imaging (MRSI) provide morphologic and metabolic profiles of GB but usually fail to produce unequivocal biomarkers of response. The purpose of this work is to provide proof of concept of the ability of a semi-supervised signal source extraction methodology to produce images with robust recognition of response to temozolomide (TMZ) in a preclinical GB model. A total of 38 female C57BL/6 mice were used in this study. The semi-supervised methodology extracted the required sources from a training set consisting of MRSI grids from eight GL261 GBs treated with TMZ, and six control untreated GBs. Three different sources (normal brain parenchyma, actively proliferating GB and GB responding to treatment) were extracted and used for calculating nosologic maps representing the spatial response to treatment. These results were validated with an independent test set (7 control and 17 treated cases) and correlated with histopathology. Major differences between the responder and non-responder sources were mainly related to the resonances of mobile lipids (MLs) and polyunsaturated fatty acids in MLs (0.9, 1.3 and 2.8 ppm). Responding tumors showed significantly lower mitotic (3.3 ± 2.9 versus 14.1 ± 4.2 mitoses/field) and proliferation rates (29.8 ± 10.3 versus 57.8 ± 5.4%) than control untreated cases. The methodology described in this work is able to produce nosological images of response to TMZ in GL261 preclinical GBs and suitably correlates with the histopathological analysis of tumors. A similar strategy could be devised for monitoring response to treatment in patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- T Delgado-Goñi
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - S Ortega-Martorell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - M Ciezka
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - I Olier
- Institute for Science and Technology in Medicine, Keele University, Stoke-On-Trent, UK
- Centre for Health Informatics, Institute of Population Health University of Manchester, Manchester, UK
| | - A P Candiota
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - F Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Pumarola
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - P J Lisboa
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - C Arús
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Abstract
This review covers important topics relating to the imaging evaluation of glioblastoma multiforme after therapy. An overview of the Macdonald and Response Assessment in Neuro-Oncology criteria as well as important questions and limitations regarding their use are provided. Pseudoprogression and pseudoresponse as well as the use of advanced magnetic resonance imaging techniques such as perfusion, diffusion, and spectroscopy in the evaluation of the posttherapeutic brain are also reviewed.
Collapse
|
26
|
Gzell C, Wheeler H, Huang D, Gaur P, Chen J, Kastelan M, Back M. Proliferation Index Predicts Survival after Second Craniotomy within 6 Months of Adjuvant Radiotherapy for High-grade Glioma. Clin Oncol (R Coll Radiol) 2015; 28:215-22. [PMID: 26382848 DOI: 10.1016/j.clon.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 01/21/2023]
Abstract
AIMS To determine pathological features that predict survival in patients having repeat craniotomy within 6 months of radiotherapy for high-grade glioma (HGG). MATERIALS AND METHODS HGG patients (World Health Organization grade 3/4) managed with repeat craniotomy within 6 months of completing radiotherapy between 2008 and 2012 were included. Based on the presence of residual tumour cells, the pathology was reported as pathological progression or pathological pseudoprogression. The proliferation index (Ki67) was reported and compared with initial pathology as a percentage change. Tumour necrosis was estimated as a percentage of the specimen. Overall survival was calculated in months. RESULTS Of 327 patients managed with HGG, 27 patients underwent repeat craniotomy within 6 months of radiotherapy. The median survival after reoperation was 11 months (95% confidence interval 1-22). Ki67 at reoperation of 0%, 1-9% and >10% was associated with survival with a median survival of 13, 13 and 3 months, respectively (P = 0.007). Change in Ki67 was also associated with median survival, with <50% reduction median survival 3 months, 50-80% median survival 7 months and >80% reduction median survival 13 months, P = 0.02. Widespread treatment-related necrosis improved outcome, with >80% necrosis having a median survival of 13 months versus 3 months in those with <80% necrosis (P = 0.003). CONCLUSION The presence of residual tumour at repeat craniotomy within 6 months of radiotherapy is not an independent indicator of prognosis. Patients with residual tumour that had a low Ki67 had a similar median survival as those with only treatment necrosis. Reduced proliferation of residual tumour cells and widespread necrosis may be more important indicators for future outcome.
Collapse
Affiliation(s)
- C Gzell
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - H Wheeler
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| | - D Huang
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - P Gaur
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - J Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - M Kastelan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - M Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurooncol 2015; 123:141-50. [PMID: 25894594 DOI: 10.1007/s11060-015-1774-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/02/2015] [Indexed: 01/29/2023]
Abstract
Pseudoprogression (psPD) refers to an increase in size or appearance of new areas of MRI contrast enhancement soon after completing chemoradiation, timely diagnosis of which has been a challenge. Given that tissue sampling of the MRI changes would be expected to accurately distinguish psPD from true progression when MRI changes are first seen, we examined the utility of surgery in diagnosing psPD and influencing patient outcome. We retrospectively reviewed data from adults with GBM who had MRI changes suggestive of progression within 3 months of chemoRT; of these, 34 underwent surgical resection. Three subsets-tumor, psPD or mixed-were identified based on histology and immunohistochemistry in the surgical group and by imaging characteristics in the nonsurgical group. A cohort of patients with stable disease post-chemoRT served as control. PFS and OS were determined using the Kaplan-Meier method and log rank analysis. Concordance for psPD between radiological interpretation and subsequent histological diagnosis was seen in only 32% of cases (11/34) 95%CI 19-49%. A large proportion of patients had a histologically "mixed" pattern with tumor and treatment effect. No significant differences in PFS or OS were seen among the three subtypes. Surgical sampling and histologic review of MRI changes after chemoRT may not serve as a gold standard to distinguish psPD from true progression in GBM patients. Refinement of the histological criteria, careful intraoperative selection of regions of interest and advanced imaging modalities are needed for early differentiation of PsPD from progression to guide clinical management.
Collapse
|
28
|
A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression. Proteome Sci 2015; 13:12. [PMID: 25866482 PMCID: PMC4393599 DOI: 10.1186/s12953-015-0066-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUNDS Pseudoprogression disease (PsPD) is commonly observed during glioblastoma (GBM) follow-up after adjuvant therapy. Because it is difficult to differentiate PsPD from true early progression of GBM, we have used a quantitative proteomics strategy to identify molecular signatures and develop predictive markers of PsPD. RESULTS An initial screening of three PsPD and three GBM patients was performed, and from which 530 proteins with significant fold changes were identified. By conducting biological functional analysis of these proteins, we found evidence that the protein synthesis network and the cellular growth and proliferation network were most significantly affected. Moreover, six of the proteins (HNRNPK, ELAVL1, CDH2, FBLN1, CALU and FGB) involved in the two networks were validated (n = 18) in the same six samples and in twelve additional samples using immunohistochemistry methods and the western blot analysis. The receiver operating characteristic (ROC) curve analysis in distinguishing PsPD patients from GBM patients yielded an area under curve (AUC) value of 0.90 (95% confidence interval (CI), 0.662-0.9880) for CDH2 and.0.92 (95% CI, 0.696-0.995) for CDH2 combined with ELAVL1. CONCLUSIONS The results of the present study both revealed the biological signatures of PsPD from a proteomics perspective and indicated that CDH2 alone or combined with ELAVL1 could be potential biomarkers with high accuracy in the diagnosis of PsPD.
Collapse
|
29
|
Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients. Transl Oncol 2014; 7:752-8. [PMID: 25500085 PMCID: PMC4311040 DOI: 10.1016/j.tranon.2014.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue–labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings.
Collapse
|
30
|
Kruser TJ, Mehta MP, Robins HI. Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother 2013; 13:389-403. [PMID: 23545054 DOI: 10.1586/ern.13.7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last decade, pseudoprogression as a clinically significant entity affecting both glioma patient management and the conduct of clinical trials has been recognized as a significant issue. The authors have summarized the literature relative to the incidence, chronological sequence, therapy-relatedness, impact of O-6-methylguanine-DNA methyltransferase methylation status and clinical features of pseudoprogression. Evidence regarding numerous neuroradiologic techniques to differentiate pseudoprogression from tumor recurrence is summarized. The implications of pseudoprogression on prognosis and clinical trial design are substantial, and are reviewed. Relative to this, the overlapping terms pseudoprogression and radiation necrosis are clarified to produce an appropriate basis for future consideration and research regarding this important biological phenomenon.
Collapse
Affiliation(s)
- Tim J Kruser
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | | | | |
Collapse
|
31
|
Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloëguen Y, Cloughesy TF. Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 2013; 13:347. [PMID: 23529375 PMCID: PMC3631110 DOI: 10.1007/s11910-013-0347-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since 1990, the primary criteria used for assessing response to therapy in high-grade gliomas were those developed by Macdonald and colleagues, which incorporated 2-dimensional area measurements of contrast-enhancing tumor regions, corticosteroid dosing, and clinical assessment to arrive at a designation of response, stable disease, or progression. Recent advances in imaging technology and targeted therapeutics, however, have exposed limitations of the Macdonald criteria and have highlighted the need for reevaluation of response assessment criteria. In 2010, the Response Assessment in Neuro-Oncology (RANO) Working Group published updated criteria to address this need and to standardize response assessment for high-grade gliomas. In 2009, prior to the publication of the RANO criteria, the randomized, placebo-controlled, multicenter, phase 3 AVAglio trial was designed and initiated to investigate the effectiveness of radiotherapy and temozolomide with or without bevacizumab in newly diagnosed glioblastoma. The AVAglio protocol enacted specific measures to adapt the Macdonald criteria to the frontline treatment setting and to antiangiogenic agent evaluation, including the incorporation of a T2/fluid-attenuated inversion recovery component, qualitative assessment of irregularly shaped contrast-enhancing lesions, and a decision tree for confirming or ruling out pseudoprogression. Moreover, the protocol outlines practical means by which these adapted response criteria can be implemented in the clinic. This article describes the evolution of radiographic response criteria for high-grade gliomas and highlights the similarities and differences between those implemented in the AVAglio study and those subsequently published by RANO.
Collapse
Affiliation(s)
- Olivier L Chinot
- Aix-Marseille University, AP-HM, Service de Neuro-Oncologie, CHU Timone, 264 Rue Saint Pierre, 13005, Marseille, France.
| | | | | | | | | | | |
Collapse
|
32
|
Early Pseudoprogression following Chemoradiotherapy in Glioblastoma Patients: The Value of RANO Evaluation. JOURNAL OF ONCOLOGY 2013; 2013:690585. [PMID: 24000284 PMCID: PMC3755387 DOI: 10.1155/2013/690585] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
Abstract
Introduction. The aim of this study was to determine the frequency of pseudoprogression in a cohort of glioblastoma (GBM) patients following radiotherapy/temozolomide (RT/TMZ) by comparing Macdonald criterial to Response Assessment in Neuro-Oncology (RANO) criteria. The impact on prognosis and survival analysis was also studied. Materials and Methods. All patients receiving RT/TMZ for newly diagnosed GBM from January 2005 to December 2009 were retrospectively evaluated, and demographic, clinical, radiographic, treatment, and survival data were reviewed. Updated RANO criteria were used for the evaluation of the pre-RT and post-RT MRI and compared to classic Macdonald criteria. Survival data was evaluated using the Kaplan-Meier and log-rank analysis. Results and Discussion. 70 patients were available for full radiological response assessment. Early progression was confirmed in 42 patients (60%) according to Macdonald criteria and 15 patients (21%) according to RANO criteria. Pseudoprogression was identified in 10 (23.8%) or 2 (13.3%) patients in Macdonald and RANO groups, respectively. Cumulative survival of pseudoprogression group was higher than that of true progression group and not statistically different from the non-progressive disease group. Conclusion. In this cohort, the frequency of pseudoprogression varied between 13% and 24%, being overdiagnosed by older Macdonald criteria, which emphasizes the importance of RANO criteria and new radiological biomarkers for correct response evaluation.
Collapse
|
33
|
Histopathological correlates with survival in reoperated glioblastomas. J Neurooncol 2013; 113:485-93. [PMID: 23666202 DOI: 10.1007/s11060-013-1141-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/28/2013] [Indexed: 01/15/2023]
Abstract
The addition of concomitant and adjuvant chemotherapy to radiation therapy after surgical resection has increased significantly the survival of patients with glioblastoma (GB). In conjunction, there has been an increasing fraction of patients who present with new enlarged areas of contrast enhancement and edema on post-treatment imaging that improve without further treatment. It remains to be established how this phenomenon, commonly termed pseudoprogression, can be distinguished from true tumor recurrence defined as the histological presence of active high-grade tumor, as well as its prognostic significance. Data for over 500 patients undergoing surgery for recurrent GB were reviewed. Pathological specimens were categorized as those that contained active high-grade glioma in any amount, and those that did not. Patient survival was compared between these two groups, and independent associations were assessed using Cox proportionate hazards regression analysis. 59 patients met the study criteria including complete pathological and follow-up data. Mean age was 53 ± 11 years. Median survival from suspected recurrence and initial diagnosis were 8 [5-14] and 20 [12-30] months. Seventeen patients (29 %) had no evidence of active high-grade tumor and 42 (71 %) had at least focal active high-grade glioma. Pathologic pseudoprogression at re-operation (p = 0.03) and gross total resection (p = 0.01) were independently associated with survival. The histopathological features defined here and used to assess the tumor at reoperation were independently associated with survival. These findings may be important in designing treatment strategies and clinical trial endpoints for patients with GB.
Collapse
|
34
|
Tran DKT, Jensen RL. Treatment-related brain tumor imaging changes: So-called "pseudoprogression" vs. tumor progression: Review and future research opportunities. Surg Neurol Int 2013; 4:S129-35. [PMID: 23682339 PMCID: PMC3654777 DOI: 10.4103/2152-7806.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 12/04/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) has a dismal prognosis despite aggressive therapy. Initial diagnosis and measurement of response to treatment is usually determined by measurement of gadolinium-enhanced tumor volume with magnetic resonance imaging (MRI). Unfortunately, many GBM treatment modalities can cause changes in tumor gadolinium enhancement patterns that mimic tumor progression. The lack of a definitive imaging modality to distinguish posttreatment radiographic imaging changes (PTRIC), including pseudoprogression and radiation necrosis, from true tumor progression presents a major unmet clinical need in the management of GBM patients. Methods: The authors discuss current modalities available for differentiating PTRIC and tumor progression, describe development of an animal model of PTRIC, and consider potential molecular and cellular pathways involved in the development of PTRIC. Results: An animal model using glioma cells transfected with a luciferase reporter has been developed, and after conventional GBM therapy, this animal model can be evaluated with posttreatment bioluminescence imaging and various MR tumor imaging modalities. Conclusions: Posttreatment radiographic changes that mimic tumor progression can influence clinicians to make treatment decisions that are inappropriate for the patient's actual clinical condition. Several imaging modalities have been used to try to distinguish PTRIC and true progression, including conventional MRI, perfusion MRI, MR spectroscopy, and positron emission tomography (PET); however, none of these modalities has consistently and reliably distinguished PTRIC from tumor growth. An animal model using glioma cells transfected with a luciferase reporter may enable mechanistic studies to determine causes and potential treatments for PTRIC.
Collapse
|
35
|
Wei H, Huang J, Yang J, Zhang X, Lin L, Xue E, Chen Z. Ultrasound exposure improves the targeted therapy effects of galactosylated docetaxel nanoparticles on hepatocellular carcinoma xenografts. PLoS One 2013; 8:e58133. [PMID: 23469265 PMCID: PMC3585934 DOI: 10.1371/journal.pone.0058133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/30/2013] [Indexed: 01/18/2023] Open
Abstract
Purpose The distribution of targeted nanoparticles in tumor tissue is affected by a combination of various factors such as the physicochemical properties of the nanoparticles, tumor hemoperfusion and tumor vascular permeability. In this study, the impact of the biological effects of ultrasound on nanoparticle targeting to liver carcinoma was explored. Methods The copolymer MePEG-PLGA was used to prepare the galactosylated docetaxel nanoparticles (GDN), and the physical and chemical properties as well as the acute toxicity were then assayed. The impact of ultrasound exposure (UE) on tumor hemoperfusion was observed by contrast-enhanced ultrasonography (CEUS), and the distribution of docetaxel in tumors and liver were detected by high performance liquid chromatography (HPLC). In the GDN combined with UE treatment group, the mice were injected intravenously with GDN, followed by ultrasound exposure on the human hepatocellular carcinoma xenografts. Twenty-eight days post-administration, the tumor growth inhibition rate was calculated, and the expression of Survivin and Ki67 in tumor tissues were determined by immunohistochemistry assay and quantitative real-time PCR. Results The mean size of prepared liver-targeting nanoparticles GDN was 209.3 nm, and the encapsulation efficiency was 72.28%. The median lethal dose of GDN was detected as 219.5 mg/kg which was about four times higher than that of docetaxel. After ultrasound exposure, the tumor peak - base intensity difference value, examined by CEUS, increased significantly. The drug content in the tumor was 1.96 times higher than in the GDN treated control. In vivo, GDN intravenous injection combined with ultrasound exposure therapy achieved the best anti-tumor effect with a tumor growth inhibition rate of 74.2%, and the expression of Survivin and Ki67 were significantly decreased as well. Conclusion Ultrasound exposure can improve targeting nanoparticles accumulation in the tumor, and achieve a synergism antitumor effect on the hepatocellular carcinoma xenografts.
Collapse
Affiliation(s)
- Hongfen Wei
- Department of Ultrasonography, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
- Department of Ultrasonography, Affiliated Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Jing Huang
- Department of Ultrasonography, People’s Hospital of Zhuhai City, Zhuhai, China
| | - Jing Yang
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Xiujuan Zhang
- Department of Ultrasonography, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Liwu Lin
- Department of Ultrasonography, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ensheng Xue
- Department of Ultrasonography, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhikui Chen
- Department of Ultrasonography, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
- * E-mail:
| |
Collapse
|
36
|
Agarwal A, Kumar S, Narang J, Schultz L, Mikkelsen T, Wang S, Siddiqui S, Poptani H, Jain R. Morphologic MRI features, diffusion tensor imaging and radiation dosimetric analysis to differentiate pseudo-progression from early tumor progression. J Neurooncol 2013; 112:413-20. [PMID: 23417357 DOI: 10.1007/s11060-013-1070-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/05/2013] [Indexed: 01/20/2023]
Abstract
Pseudo-progression (PsP) refers to the paradoxical increase of contrast enhancement within 12 weeks of chemo-radiation therapy in gliomas attributable to treatment effects rather than early tumor progression (ETP). This study was performed to evaluate the utility of morphologic imaging features, diffusion tensor imaging (DTI) and radiation dosimetric analysis of magnetic resonance imaging (MRI) changes in differentiating PsP from ETP. Serial MRI examinations of 163 patients treated for high-grade glioma were reviewed. 46 patients showed a recurrent or progressive enhancing lesion within 12 weeks of radiotherapy. We used an in-house modified scoring system based on 20 different morphologic features (modified VASARI features) to assess the MRI studies. DTI analyses were performed in 24 patients. MRI changes were defined as recurrent volume (Vrec) and registered with pretreatment computed tomography dataset, and the actual dose received by the Vrec during treatment was calculated using dose-volume histograms. Bidimensional product of T2-FLAIR signal abnormality and enhancing component was larger in the ETP group. DTI metrics revealed no significant difference between the two groups. There was no statistically significant difference in the location of Vrec between PsP and ETP groups. Morphologic MRI features and DTI have a limited role in differentiating between PsP and ETP. The larger sizes of the T2-FLAIR signal abnormality and the enhancing component of the lesion favor ETP. There was no correlation between the pattern of MRI changes and radiation dose distribution between PsP and ETP groups.
Collapse
Affiliation(s)
- Ajay Agarwal
- Division of Neuroradiology, Department of Radiology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|