1
|
Foroutan Kahangi M, Tavakolpour V, Samiei Mosleh I, Oraee-Yazdani S, Kouhkan F. Involvement of oncomiRs miR-23, miR-24, and miR-27 in the regulation of alternative polyadenylation in glioblastoma via CFIm25 cleavage factor. Metab Brain Dis 2024; 39:1269-1281. [PMID: 39190234 DOI: 10.1007/s11011-024-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. The cleavage factor Im 25 (CFIm25), a crucial component of the CFIm complex, plays a key role in regulating the length of the mRNA 3'-UTR and has been implicated in various cancers, including GBM. This study sought to investigate the regulatory influence of specific microRNAs (miRNAs) on CFIm25 expression in GBM, a highly aggressive brain tumor. Bioinformatics analysis identified miRNA candidates targeting CFIm25 mRNA, and gene expression profiles from the NCBI database (GSE90603) were used for further analysis. Expression levels of CFIm25 and selected miRNAs were assessed using qRT-PCR in GBM clinical samples (n = 20) and non-malignant brain tissues (n = 5). Additionally, the MTT assay was performed to examine the effect of miRNA overexpression on U251 cell viability. Lentivectors expressing the identified miRNAs were employed to experimentally validate their regulatory role on CFIm25 in U251 cell lines, and Western blot analysis was conducted to determine CFIm25 protein levels. We observed significantly increased levels of miR-23, miR-24, and miR-27 expression, associated with a marked reduction in CFIm25 expression in GBM samples compared to non-malignant brain tissues. In particular, overexpression of miR-23, miR-24, and miR-27 in U251 cells resulted in CFIm25 downregulation at both the mRNA and protein levels, while their inhibition increased CFIm25 and reduced cell proliferation. These observations strongly implicate miR-23, miR-24, and miR-27 in regulating CFIm25 expression in GBM, emphasizing their potential as promising therapeutic targets for enhancing treatment responses in glioblastoma.
Collapse
Affiliation(s)
- Mozhgan Foroutan Kahangi
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Tavakolpour
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Iman Samiei Mosleh
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Staszkiewicz R, Sobański D, Pulka W, Gładysz D, Gadzieliński M, Strojny D, Grabarek BO. Variances in the Expression Profile of Circadian Clock-Related Genes in Astrocytic Brain Tumors. Cancers (Basel) 2024; 16:2335. [PMID: 39001398 PMCID: PMC11240661 DOI: 10.3390/cancers16132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
This study explores the role of circadian clock genes in the progression of astrocytic tumors, a prevalent type of brain tumor. The aim was to assess the expression patterns of these genes in relation to the tumor grade. Using microarray analysis, qRT-PCR, and methylation-specific PCR, we examined gene expression, DNA methylation patterns, and microRNA interactions in tumor samples from 60 patients. Our results indicate that the expression of key circadian clock genes, such as clock circadian regulator (CLOCK), protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), protein kinase AMP-activated non-catalytic subunit beta 1 (PRKAB1), protein kinase AMP-activated non-catalytic subunit beta 2 (PRKAB2), period circadian regulator 1 (PER1), period circadian regulator 2 (PER2) and period circadian regulator 3 (PER3), varies significantly with the tumor grade. Notably, increased CLOCK gene expression and protein levels were observed in higher-grade tumors. DNA methylation analysis revealed that the promoter regions of PER1-3 genes were consistently methylated, suggesting a mechanism for their reduced expression. Our findings also underscore the complex regulatory mechanisms involving miRNAs, such as hsa-miR-106-5p, hsa-miR-20b-5p, and hsa-miR-30d-3p, which impact the expression of circadian clock-related genes. This underscores the importance of circadian clock genes in astrocytic tumor progression and highlights their potential as biomarkers and therapeutic targets. Further research is needed to validate these results and explore their clinical implications.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
| | - Wojciech Pulka
- Department of Neurosurgery, Neurotraumatology and Spinal Surgery, Regional Hospital in Elblag, 82-300 Elblag, Poland;
| | - Dorian Gładysz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Marcin Gadzieliński
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemysl, 37-700 Przemysl, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-054 Rudna Mala, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
| |
Collapse
|
3
|
Dagostino R, Gottlieb A. Tissue-specific atlas of trans-models for gene regulation elucidates complex regulation patterns. BMC Genomics 2024; 25:377. [PMID: 38632500 PMCID: PMC11022497 DOI: 10.1186/s12864-024-10317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Deciphering gene regulation is essential for understanding the underlying mechanisms of healthy and disease states. While the regulatory networks formed by transcription factors (TFs) and their target genes has been mostly studied with relation to cis effects such as in TF binding sites, we focused on trans effects of TFs on the expression of their transcribed genes and their potential mechanisms. RESULTS We provide a comprehensive tissue-specific atlas, spanning 49 tissues of TF variations affecting gene expression through computational models considering two potential mechanisms, including combinatorial regulation by the expression of the TFs, and by genetic variants within the TF. We demonstrate that similarity between tissues based on our discovered genes corresponds to other types of tissue similarity. The genes affected by complex TF regulation, and their modelled TFs, were highly enriched for pharmacogenomic functions, while the TFs themselves were also enriched in several cancer and metabolic pathways. Additionally, genes that appear in multiple clusters are enriched for regulation of immune system while tissue clusters include cluster-specific genes that are enriched for biological functions and diseases previously associated with the tissues forming the cluster. Finally, our atlas exposes multilevel regulation across multiple tissues, where TFs regulate other TFs through the two tested mechanisms. CONCLUSIONS Our tissue-specific atlas provides hierarchical tissue-specific trans genetic regulations that can be further studied for association with human phenotypes.
Collapse
Affiliation(s)
- Robert Dagostino
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Song Y, Chen B, Jiao H, Yi L. Long noncoding RNA UNC5B-AS1 suppresses cell proliferation by sponging miR-24-3p in glioblastoma multiforme. BMC Med Genomics 2024; 17:83. [PMID: 38594690 PMCID: PMC11003007 DOI: 10.1186/s12920-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huili Jiao
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
5
|
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguín P. Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 2023; 24:709. [PMID: 37996818 PMCID: PMC10668469 DOI: 10.1186/s12864-023-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. RESULTS Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops. CONCLUSIONS This study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.
Collapse
Affiliation(s)
- Adar Aharon-Yariv
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada.
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Heart & Stroke, Richard Lewar Centre of Excellence, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
The miR-27a-3p/FTO axis modifies hypoxia-induced malignant behaviors of glioma cells. Acta Biochim Biophys Sin (Shanghai) 2023; 55:103-116. [PMID: 36718644 PMCID: PMC10157519 DOI: 10.3724/abbs.2023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
<p indent="0mm">Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system (CNS) tumors. N6-methyladenine (m6A) RNA modification is a main type of RNA modification in eukaryotic cells. In this study, we find that the m6A RNA methylation eraser FTO is dramatically downregulated in glioma samples and cell lines, particularly in intermediate and core regions and hypoxia-challenged glioma cells. <italic>In vitro</italic>, FTO overexpression inhibits the hypoxia-induced capacities of glioma cells to proliferate, migrate and invade, and decreases the percentage of cells with m6A RNA methylation. <italic>In vivo</italic>, FTO overexpression inhibits tumor growth in the xenograft model and decreases the protein levels of migration markers, including Vimentin and Twist. miR-27a-3p is upregulated within glioma intermediate and core regions and hypoxia-challenged glioma cells. miR-27a-3p inhibits the expression of FTO via direct binding to FTO. miR-27a-3p overexpression promotes hypoxia-challenged glioma cell aggressiveness, whereas FTO overexpression partially diminishes the oncogenic effects of miR-27a-3p overexpression. FTO overexpression promotes the nuclear translocation of FOXO3a and upregulates the expression levels of the <sc>FOXO3a</sc> downstream targets BIM, BNIP3, BCL-6, and PUMA, possibly by interacting with FOXO3a. Conclusively, FTO serves as a tumor suppressor in glioma by suppressing hypoxia-induced malignant behaviors of glioma cells, possibly by promoting the nuclear translocation of FOXO3a and upregulating FOXO3a downstream targets. miR-27a-3p is a major contributor to FTO downregulation in glioma under hypoxia. </p>.
Collapse
|
8
|
Bhowmick R, Sarkar RR. Identification of potential microRNAs regulating metabolic plasticity and cellular phenotypes in glioblastoma. Mol Genet Genomics 2023; 298:161-181. [PMID: 36357622 DOI: 10.1007/s00438-022-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
MicroRNAs (miRNAs) play important role in regulating cellular metabolism, and are currently being explored in cancer. As metabolic reprogramming in cancer is a major mediator of phenotypic plasticity, understanding miRNA-regulated metabolism will provide opportunities to identify miRNA targets that can regulate oncogenic phenotypes by taking control of cellular metabolism. In the present work, we studied the effect of differentially expressed miRNAs on metabolism, and associated oncogenic phenotypes in glioblastoma (GBM) using patient-derived data. Networks of differentially expressed miRNAs and metabolic genes were created and analyzed to identify important miRNAs that regulate major metabolism in GBM. Graph network-based approaches like network diffusion, backbone extraction, and different centrality measures were used to analyze these networks for identification of potential miRNA targets. Important metabolic processes and cellular phenotypes were annotated to trace the functional responses associated with these miRNA-regulated metabolic genes and associated phenotype networks. miRNA-regulated metabolic gene subnetworks of cellular phenotypes were extracted, and important miRNAs regulating these phenotypes were identified. The most important outcome of the study is the target miRNA combinations predicted for five different oncogenic phenotypes that can be tested experimentally for miRNA-based therapeutic design in GBM. Strategies implemented in the study can be used to generate testable hypotheses in other cancer types as well, and design context-specific miRNA-based therapy for individual patient. Their usability can be further extended to other gene regulatory networks in cancer and other genetic diseases.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Zhang B, Sun C, Liu Y, Bai F, Tu T, Liu Q. Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8215842. [PMID: 35847592 PMCID: PMC9279077 DOI: 10.1155/2022/8215842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
Background Exosomes derived from cardiac microvascular endothelial cells (CMECs) under hypoxia can mediate cardiac repair functions and alleviate pyroptosis and oxidative stress during ischemia-reperfusion (I/R) injury. This study is aimed at investigating the effect and mechanism of miR-27b-3p underlying hypoxic CMECs-derived exosomes against I/R injury. Methods CMECs were isolated from the left ventricle of Sprague-Dawley rats, followed by culturing under hypoxic conditions or pretreatment with the miR-27b-3p inhibitor. CMECs-derived exosomes were added into H9C2 cells before hypoxia/reoxygenation (H/R) or injected into the rat heart before I/R injury. An in vivo I/R injury model was established by ligating and releasing the left anterior descending coronary artery. Expression of pyroptosis-related factors was detected using Western blot, and heart infarcted size was determined by the 2,3,5-triphenyl-2H-tetrazpinolium chloride staining method. Dual-Luciferase Reporter assays were performed to analyze the interactions of nmiR-27b-3p-forkhead box O1 (Foxo1) and Gasdermin D- (GSDMD-) Foxo1. Chromatin-immunoprecipitation (ChIP) assays were performed to validate the interactions between forkhead box O1 (Foxo1) and Gasdermin D (GSDMD) and Foxo1-mediated histone acetylation of GSDMD. Results CMECs were successfully identified from left ventricle of Sprague-Dawley rats. The expressions of Foxo1 and pyroptosis-related proteins (GSDMD, NLPR3, cleaved caspase 1, IL-1β, and IL-18) were upregulated in the rat heart after I/R injury. Treatment of CMEC-derived exosomes, especially that under hypoxic conditions, significantly reduced pyroptosis in the rat heart. miR-27b-3p was significantly upregulated in CMEC-derived exosomes under hypoxic conditions, and miR-27b-3p inhibition in exosomes alleviated its cytoprotection and inhibited oxidative stress in H9C2 cells. Treatment with Foxo1 overexpression plasmids aggravated in vitro H/R and in vivo I/R injury by upregulating pyroptosis-related proteins. Further experiments validated that miR-27b-3p negatively targeted Foxo1, which bound to the promoter region of GSDMD. Conclusions These results demonstrated a great therapeutic efficacy of miR-27b-3p overexpression in hypoxic CMEC-derived exosomes in preventing the development of myocardial damage post I/R injury through inhibiting Foxo1/GSDMD signaling-induced oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Baojian Zhang
- Cardiac Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Sun
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Bai
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Zhao G, Yu H, Ding L, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G, Qi L. microRNA-27a-3p delivered by extracellular vesicles from glioblastoma cells induces M2 macrophage polarization via the EZH1/KDM3A/CTGF axis. Cell Death Dis 2022; 8:260. [PMID: 35568721 PMCID: PMC9107457 DOI: 10.1038/s41420-022-01035-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM) cell-derived extracellular vesicles (EVs) have been demonstrated to modulate tumor microenvironment. In the present study, we attempted to discuss the role of hsa-microRNA-27a-3p (miR-27a-3p) delivered by GBM-EVs in M2 macrophage polarization. The isolated GBM-EVs were co-cultured with macrophages. After co-culture under normoxia/hypoxia, the effect of EV-derived hsa-miR-27a-3p on GBM cell biological processes was analyzed. Additionally, the target genes of hsa-miR-27a-3p were predicted. Moreover, the binding of enhancer of zeste homologue 1 (EZH1) to lysine-specific demethylase 3A (KDM3A) promoter region and the interaction between KDM3A and connective tissue growth factor (CTGF) were analyzed. GBM mouse models were established to verify the functions of EV-derived hsa-miR-27a-3p in vivo. We found increased hsa-miR-27a-3p in GBM tissues as well as GBM-EVs, which induced M2 polarization, thus promoting proliferative, migrative and invasive potentials of GBM cells. hsa-miR-27a-3p targeted EZH1 and promoted KDM3A expression to elevate the CTGF expression. GBM-EV-delivered hsa-miR-27a-3p promoted the KDM3A-upregulated CTGF by downregulating EZH1, thereby promoting M2 macrophage polarization and development of GBM in vivo. We demonstrated that EV-derived hsa-miR-27a-3p may promote M2 macrophage polarization to induce GBM.
Collapse
Affiliation(s)
- Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.,Jilin Medical University, Jilin, 132013, China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Lijuan Ding
- Department of Oncological Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Weiyao Wang
- Jilin Medical University, Jilin, 132013, China
| | - Huan Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yao Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Lingsha Qin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Guangce Deng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Buqing Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Guofeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
11
|
Lei Y, Huang Y, Lin J, Sun S, Che K, Shen J, Liao J, Chen Y, Chen K, Lin Z, Lin X. Mxi1 participates in the progression of lung cancer via the microRNA-300/KLF9/GADD34 Axis. Cell Death Dis 2022; 13:425. [PMID: 35501353 PMCID: PMC9061846 DOI: 10.1038/s41419-022-04778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023]
Abstract
The purpose of the current study was to define the role of MAX interactor 1 (Mxi1) in the pathogenesis of lung cancer and its underlying molecular mechanism. Bioinformatics analysis was performed to identify important regulatory pathway related to lung cancer. Dual luciferase reporter and ChIP assays were adopted to validate the interaction among Mxi1, miR-300 and KLF9. Loss- and gain-of-function studies were conducted to determine the roles of Mxi1, miR-300, and KLF9 in cell proliferation, migration, and invasion in vitro and their effects on myeloid-derived suppressor cell (MDSC) recruitment in vivo. Mxi1 was poorly expressed in lung cancer tissues and cells and its poor expression was associated with poor prognosis. Mxi1 inhibited miR-300 by suppressing its transcription. miR-300 suppressed the expression of KLF9, and KLF9 negatively regulated GADD34 expression in lung cancer cells. Mxi1 or KLF9 elevation or miR-300 repression inhibited lung cancer cell proliferation, as evidenced by reduced Ki67 and PCNA expression, and lowered invasion and migration. In vivo findings revealed that silencing KLF9 induced tumor growth by enhancing MDSC-mediated immunosuppression through upregulation of GADD34. Collectively, these findings suggest that Mxi1 can inhibit lung cancer progression by regulating the miR-300/KLF9 axis and GADD34-mediated immunosuppression.
Collapse
Affiliation(s)
- Yujie Lei
- grid.285847.40000 0000 9588 0960Department of Thoracic Surgery, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China ,grid.285847.40000 0000 9588 0960The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China
| | - Yunchao Huang
- grid.285847.40000 0000 9588 0960Department of Thoracic Surgery, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China ,grid.285847.40000 0000 9588 0960The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China
| | - Jianbin Lin
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| | - Shihui Sun
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| | - Keda Che
- grid.285847.40000 0000 9588 0960Department of Thoracic Surgery, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China ,grid.285847.40000 0000 9588 0960The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China
| | - Junting Shen
- grid.285847.40000 0000 9588 0960Department of Thoracic Surgery, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China ,grid.285847.40000 0000 9588 0960The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China
| | - Jun Liao
- grid.285847.40000 0000 9588 0960Department of Thoracic Surgery, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China ,grid.285847.40000 0000 9588 0960The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, 650106 P.R. China
| | - Yangming Chen
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| | - Kai Chen
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| | - Zhaoxian Lin
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| | - Xing Lin
- grid.415108.90000 0004 1757 9178Department of Thoracic Surgery, Provincial Clinical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, 350001 P.R. China
| |
Collapse
|
12
|
Deciphering of Adult Glioma Vulnerabilities through Expression Pattern Analysis of GABA, Glutamate and Calcium Neurotransmitter Genes. J Pers Med 2022; 12:jpm12040633. [PMID: 35455749 PMCID: PMC9030730 DOI: 10.3390/jpm12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Adult infiltrating gliomas are highly aggressive tumors of the central nervous system with a dismal prognosis despite intensive multimodal therapy (chemotherapy and/or radiotherapy). In this study, we studied the expression, methylation and interacting miRNA profiles of GABA-, glutamate- and calcium-related genes in 661 adult infiltrating gliomas available through the TCGA database. Neurotransmitter-based unsupervised clustering identified three established glioma molecular subgroups that parallel major World Health Organization glioma subclasses (IDH-wildtype astrocytomas, IDH-mutant astrocytomas, IDH-mutant oligodendroglioma). In addition, this analysis also defined a novel, neurotransmitter-related glioma subgroup (NT-1), mostly comprised of IDH-mutated gliomas and characterized by the overexpression of neurotransmitter-related genes. Lower expression of neurotransmission-related genes was correlated with increased aggressivity in hypomethylated IDH-wildtype tumors. There were also significant differences in the composition of the tumor inflammatory microenvironment between neurotransmission-based tumor categories, with lower estimated pools of M2-phenotype macrophages in NT-1 gliomas. This multi-omics analysis of the neurotransmission expression landscape of TCGA gliomas—which highlights the existence of neurotransmission-based glioma categories with different expression, epigenetic and inflammatory profiles—supports the existence of operational neurotransmitter signaling pathways in adult gliomas. These findings could shed new light on potential vulnerabilities to exploit in future glioma-targeting drug therapies.
Collapse
|
13
|
Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
|
14
|
Yuan C, Zhou J, Zhou L, Wang L, Pan Y. Role of MiR-27a-3p in Intervertebral Disc Degeneration through Targeting RASSF5 via MST1/LATS1 and RAS/RAC1 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4457673. [PMID: 35295173 PMCID: PMC8920666 DOI: 10.1155/2022/4457673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Background The apoptosis of nucleus pulposus (NP) cells reduces the number of nucleus pulposus cells in intervertebral disc tissue, resulting in intervertebral disc degeneration (IDD). MicroRNAs (miRNAs) play an important regulatory role in abnormal cell proliferation and apoptosis. Methods The miR-27a-3p expressions in degenerative NP tissue and cells were measured via qPCR. The impacts of miR-27a-3p on the proliferation and apoptosis of human NP cells were evaluated by flow cytometry assays, MTT assays, and western blot analyses. In addition, target scan and luciferase reporter assay were applied to confirm that RASSF5 was directly binding to miR-27a-3p. Western blot was applied to assess the relationship between miR-27a-3p, RASSF5 and MST1/LATS1, and RAS/RAC1 signaling pathway. Results MiR-27a-3p was downregulated in degenerative NP tissues and cells by comparison with the control group. MiR-27a-3p overexpression enhanced cell proliferation and suppressed apoptosis of NP cells, while the above factors showed an opposite tendency after in the miR-27a-3p inhibitor group. The western blot experiment similarly suggested mir-27a-3p apparently downregulated apoptosis-related proteins (Bax and caspase-3) and upregulated antiapoptotic proteins (Bcl-2). In addition, RASSF5 was confirmed to be directly regulated by miR-27a-3p using the luciferase reporter assay. Overexpressed RASSF5 could reverse the effects caused by miR-27a-3p mimic. Finally, miR-27a-3p could downregulate RASSF5 and affected the MST1/LATS1 and RAS/RAC1 pathway. Conclusion MiR-27a-3p may target RASSF5 and enhance cell proliferation and imped cell apoptosis of the nucleus pulposus cells via the MST1/LATS1 and RAS/RAC1 pathway, lessening the degeneration of intervertebral discs.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lei Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Liran Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yong Pan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
15
|
The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Mol Ther Oncolytics 2022; 24:205-217. [PMID: 35071744 PMCID: PMC8760463 DOI: 10.1016/j.omto.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Even with optimal surgery, many early-stage non-small cell lung cancer (NSCLC) patients die of recurrence. Unfortunately, there are no precise predictors for postoperative recurrence in early-stage NSCLC, and the recurrence mechanism is still unclear. In this study, we found that simultaneous overexpression of all miRNAs in the miR-23a/27a/24-2 cluster was closely associated with postoperative recurrence, β-catenin upregulation and promoter methylation of p16 and CDH13 in early-stage NSCLC patients. In addition, in vitro and in vivo experiments show that overexpression or inhibition of all miRNAs in the miR-23a/27a/24-2 cluster significantly stimulated or inhibited NSCLC cell stemness, tumorigenicity and metastasis. Furthermore, we demonstrated that the miR-23a/27a/24-2 cluster miRNAs activated Wnt/β-catenin signaling by targeting their suppressors and stimulated promoter methylation-induced silencing of p16 and CDH13 by affecting DNA methylation-related genes expression. Our findings suggest that simultaneous high expression of all miRNAs in the miR-23a/27a/24-2 cluster represents a new biomarker for predicting postoperative recurrence in early-stage NSCLC. The miR-23a/27a/24-2 cluster miRNAs stimulate early-stage NSCLC progression through simultaneously stimulating Wnt/β-catenin signaling, and promoter methylation-induced tumor suppressor genes silencing. In addition, simultaneous inhibition of all miRNAs in the miR-23a/27a/24-2 cluster may be a useful strategy for treatment of early-stage NSCLC recurrence.
Collapse
|
16
|
Extracellular vesicles carry miR-27a-3p to promote drug resistance of glioblastoma to temozolomide by targeting BTG2. Cancer Chemother Pharmacol 2022; 89:217-229. [PMID: 35039898 DOI: 10.1007/s00280-021-04392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common central nervous system tumor. Temozolomide (TMZ) is a commonly used drug for GBM management. This study explored the mechanism of extracellular vesicles (EVs) regulating TMZ-resistance in GBM. METHODS LN229 cells were inducted into TMZ-resistant LN229r strain by stepwise induction. After the intervention of miR-27a-3p expression, cell viability of GBM cells treated with different concentrations of TMZ was detected by MTT and IC50 value was calculated. Cell proliferation and apoptosis were detected by colony formation and flow cytometry. EVs extracted from LN18 cells were identified and the internalization of EVs by LN229r cells was evaluated. The 100 μmol/L TMZ-treated LN229r cells were treated with EVs or EVs with downregulated miR-27a-3p to verify the effect of EVs-carried miR-27a-3p on TMZ resistance. The binding relation between BTG2 and miR-27a-3p was verified. miR-27a-3p and BTG2 expressions in GBM cells and EVs were detected by RT-qPCR. The BTG2 effect on TMZ-resistance in GBM was verified. The xenograft tumor nude mouse model was established by injecting LN229r cells and treated with EVs and 100 μmol/L TMZ. RESULTS miR-27a-3p was highly expressed in LN229r cells. IC50 value and proliferation of LN229r cells with silenced miR-27a-3p were decreased and apoptosis was increased, indicating that miR-27a-3p silencing reduced the drug-resistant cell LN229r resistance to TMZ. LN18-derived EVs could be internalized by LN229r cells, and release its encapsulated miR-27a-3p into LN229r cells and increase miR-27a-3p expression. EV treatment increased LN229r cell proliferation and reduced apoptosis, while EVs with silenced miR-27a-3p showed the opposite trend. miR-27a-3p targeted BTG2. BTG2 overexpression reduced LN229r cell resistance to TMZ. In vivo, after EVs treatment, tumor volume and weight, Ki67-positive rate, and miR-27a-3p were increased, while BTG2 expression was decreased. CONCLUSION GBM-derived EVs were internalized by GBM cells, released miR-27a-3p into GBM cells, upregulated miR-27a-3p expression, and targeted BTG2, thus promoting TMZ resistance.
Collapse
|
17
|
Madrigal T, Hernández-Monge J, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Candelaria M, Luna-Maldonado F, Calderón González KG, Díaz-Chávez J. Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer. Front Cell Dev Biol 2021; 9:695723. [PMID: 34957087 PMCID: PMC8697023 DOI: 10.3389/fcell.2021.695723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The p53 roles have been largely described; among them, cell proliferation and apoptosis control are some of the best studied and understood. Interestingly, the mutations on the six hotspot sites within the region that encodes the DNA-binding domain of p53 give rise to other very different variants. The particular behavior of these variants led to consider p53 mutants as separate oncogene entities; that is, they do not retain wild type functions but acquire new ones, namely Gain-of-function p53 mutants. Furthermore, recent studies have revealed how p53 mutants regulate gene expression and exert oncogenic effects by unbalancing specific microRNAs (miRNAs) levels that provoke epithelial-mesenchymal transition, chemoresistance, and cell survival, among others. In this review, we discuss recent evidence of the crosstalk between miRNAs and mutants of p53, as well as the consequent cellular processes dysregulated.
Collapse
Affiliation(s)
- Tzitzijanik Madrigal
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Departamento de Ciencias Biológicas y de La Salud, UAM Iztapalapa, Mexico City, Mexico
| | - Jesús Hernández-Monge
- Cátedra-CONACyT Laboratorio de Biomarcadores Moleculares, Instituto de Física, UASLP, San Luis Potosí, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Myrna Candelaria
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Karla G Calderón González
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, UASLP, San Luis Potosi, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
18
|
The role of melatonin in angio-miR-associated inhibition of tumorigenesis and invasion in human glioblastoma tumour spheroids. Tissue Cell 2021; 73:101617. [PMID: 34418770 DOI: 10.1016/j.tice.2021.101617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022]
Abstract
Micro-RNA (miRNA)-based regulation of hypoxia, angiogenesis and tumour growth provides promising targets for effective therapy in malignant glioblastoma multiforme (GBM). Accumulating evidence suggests a potential role of melatonin in miRNA expression in cancer cells. Despite these findings, the melatonin-miRNA interaction in GBM and the effect of this interaction on GBM tumour development and invasion are not clearly understood. The aim of the present study was to evaluate the effects of melatonin on human GBM tumour spheroid tumorigenesis and invasion in vitro, and to analyse the interaction between 36 angio-miRNAs and the HIF1/VEGF/MMP9 axis, which is known to be associated with the antitumour effect of melatonin. We found that melatonin is able to selectively induce cell death in single-layer U87-MG cells (a GBM cell line) in a dose- and time-dependent manner, as characterized by MTT assay. The use of tumour spheroids and a Matrigel invasion assay revealed that melatonin impairs tumorigenesis, and it significantly reduced both the tumour spheroid area and invasion rate, especially at the 0.5 mM and 1 mM concentrations. This inhibition was accompanied by strong reductions in hypoxia-inducible factor 1-α (HIF1-α) and vascular endothelial growth factor (VEGF) gene expression and protein levels in GBM tumour spheroids. In addition, melatonin significantly reduced the relative gene expression and protein levels of matrix metalloproteinase-9 (MMP-9). This study revealed that six differentially expressed angio-miRs (miR-15b, miR-18a-5p, miR-23a-3p, miR-92a-3p, miR-130a-5p, miR-200b-3p) may play important roles in GBM tumorigenesis and invasion, and all respond to melatonin therapy. Our results suggest that melatonin inhibits tumorigenesis and invasion of human GBM tumour spheroids, possibly by suppressing HIF1-α/VEGF/MMP9 signalling via regulation of angio-miRNAs.
Collapse
|
19
|
Qi Y, Ma N, Chen X, Wang Y, Zhang W, Wan J. CircRtn4 Acts as the Sponge of miR-24-3p to Promote Neurite Growth by Regulating CHD5. Front Mol Neurosci 2021; 14:660429. [PMID: 34305525 PMCID: PMC8294096 DOI: 10.3389/fnmol.2021.660429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules. After derived from precursor mRNA back-splicing, circRNAs play important roles in many biological processes. Recently, it was shown that several circRNAs were enriched in the mammalian brain with unclear functions. The expression of circRtn4 in the mouse brain was increased with the differentiation of primary neurons. In our study, knockdown of circRtn4 inhibited neurite growth, while overexpression of circRtn4 significantly increased neurite length. By dual-luciferase reporter assay and RNA antisense purification assay, circRtn4 was identified as a miRNA sponge for miR-24-3p. Moreover, knockdown of miR-24-3p increased neurite length, while overexpression of miR-24-3p significantly inhibited neurite growth. Furthermore, CHD5 was confirmed to be a downstream target gene of miR-24-3p. And CHD5 silence counteracted the positive effect of circRtn4 overexpression on neurite growth. In conclusion, circRtn4 may act as the sponge for miR-24-3p to promote neurite growth by regulating CHD5.
Collapse
Affiliation(s)
- Yue Qi
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
MiR-27a-3p enhances the cisplatin sensitivity in hepatocellular carcinoma cells through inhibiting PI3K/Akt pathway. Biosci Rep 2021; 41:228943. [PMID: 34096570 PMCID: PMC8661504 DOI: 10.1042/bsr20192007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in drug resistance, and it is reported that miR-27a-3p regulated the sensitivity of cisplatin in breast cancer, lung cancer and ovarian cancer. However, the relationship between miR-27a-3p and chemosensitivity of cisplatin in hepatocellular carcinoma (HCC) was unclear, especially the underlying mechanism was unknown. In the present study, we analyzed miR-27a-3p expression levels in 372 tumor tissues and 49 adjacent tissues in HCC samples from TCGA database, and found that the miR-27a-3p was down-regulated in HCC tissues. The level of miR-27a-3p was associated with metastasis, Child–Pugh grade and race. MiR-27a-3p was regarded as a favorable prognosis indicator for HCC patients. Then, miR-27a-3p was overexpressed in HepG2 cell, and was knocked down in PLC cell. Next, we conducted a series of in vitro assays, including MTT, apoptosis and cell cycle assays to observe the biological changes. Further, inhibitor rate and apoptosis rate were detected with pre- and post-cisplatin treatment in HCC. The results showed that overexpression of miR-27a-3p repressed the cell viability, promoted apoptosis and increased the percentage of cells in G0/G1 phase. Importantly, overexpression of miR-27a-3p significantly increased the inhibitor rate and apoptosis rate with cisplatin intervention. Besides, we found that miR-27a-3p added cisplatin sensitivity potentially through regulating PI3K/Akt signaling pathway. Taken together, miR-27a-3p acted as a tumor suppressor gene in HCC cells, and it could be useful for modulating cisplatin sensitivity in chemotherapy.
Collapse
|
21
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
22
|
Kuai F, Zhou L, Zhou J, Sun X, Dong W. Long non-coding RNA THRIL inhibits miRNA-24-3p to upregulate neuropilin-1 to aggravate cerebral ischemia-reperfusion injury through regulating the nuclear factor κB p65 signaling. Aging (Albany NY) 2021; 13:9071-9084. [PMID: 33675584 PMCID: PMC8034910 DOI: 10.18632/aging.202762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Purpose: The aim of this study was to investigate the role of the tumor necrosis factor and HNRNPL related immunoregulatory long non-coding RNA (THRIL) in cerebral ischemia-reperfusion injury. Methods: A rat middle cerebral artery occlusion/ischemia-reperfusion (MCAO/IR) model and an oxygen glucose deprivation/reoxygenation (OGD/R) cell model were constructed. THRIL was knocked down using siTHRIL. Neurological deficit score was detected based on the criteria of Zea-Longa. Brain region 2,3,5-Triphenyltetrazolium (TTC) staining and quantitative analysis of cerebral infarction volume, RT-qPCR, and fluorescence immunostaining were performed for assessing THRIL expression. MTT assay was used to detect the cell proliferation ability after transfection, TUNEL assay was applied to detect apoptosis, and western blot and ELISA detected related protein expression. A dual luciferase reporter system and RIP assay were used to confirm the target relationship. Results: THRIL was upregulated in both in vitro and in vivo models of brain ischemia-reperfusion injury. Knockdown of THRIL attenuated OGD/R neuronal apoptosis and OGD/R-induced inflammation. THRIL targeted and regulated the expression of miR-24-3p/neuropilin-1 (NRP1) axis. THRIL silencing significantly improved the neurological functioning of rats in the MCAO/R model by miR-24-3p/NRP1/NF-κB p65 signaling pathway. Conclusion: THRIL could aggravate cerebral ischemia-reperfusion injury by competitively binding to miR-24-3p to promote the upregulation of NRP1 and further promoted the activation of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Feng Kuai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Liang Zhou
- Department of orthopedic, The People's Hospital of Lianshui, Huai'an 223001, China
| | - Jianping Zhou
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Xuemei Sun
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
23
|
Bonnu CH, Ramadhani AN, Saputro RB, Sesotyosari SL, Danarto R, Astuti I, Haryana SM. The Potential of hsa-mir-106b-5p as Liquid Biomarker in Prostate Cancer Patients in Indonesia. Asian Pac J Cancer Prev 2021; 22:837-842. [PMID: 33773548 PMCID: PMC8286673 DOI: 10.31557/apjcp.2021.22.3.837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: This study aims to explore the potential of hsa-mir-106b-5p as a new liquid biomarker for prostate cancer sufferers in Indonesia. Methods: Analysis of hsa-mir-106b-5p expression of two tissue samples from BPH patients and two PCa patients used NanoString nCounter Expression Assay then validated by qRT-PCR using 10 patient urine samples for prostate cancer and BPH. Furthermore, analysis of the role of hsa-mir-106b-5p in prostate cancer was carried out bioinformatically. Results: The results of this study indicated that the expression of hsa-mir-106b-5p in prostate cancer tissue was 1.23 times higher than that of BPH and urine of Indonesian patients (1.72 times). Moreover, this miRNA was upregulated in prostate cancer cells compared to normal cells 1.37 times. The hsa-mir-106b-5p appeared to be involved in the development of prostate cancer through the binding of genes involved in endoplasmic reticulum stress pathways and tumor suppressor genes. Conclusion: hsa-mir-106b-5p could modulate prostate cancer by interfering with the endoplasmic reticulum stress repair pathways and decreasing the expression of tumor suppressor genes involved in many biological processes. These updates our understanding of the role of hsa-mir-106b-5p in cancer and its potential as a candidate of a biomarker for clinical diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Christin H Bonnu
- Department of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anggia N Ramadhani
- Department of Biomedical Science., Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | - Ranu B Saputro
- Department of Urology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Salsabila L Sesotyosari
- Department of Biomedical Science., Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | - R Danarto
- Department of Urology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia M Haryana
- Department of Histology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
24
|
Muñoz ER, Caccese JB, Wilson BE, Shuler KT, Santos FV, Cabán CT, Jeka JJ, Langford D, Hudson MB. Effects of purposeful soccer heading on circulating small extracellular vesicle concentration and cargo. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:122-130. [PMID: 33189894 PMCID: PMC7987560 DOI: 10.1016/j.jshs.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Considering the potential cumulative effects of repetitive head impact (HI) exposure, we need sensitive biomarkers to track short- and long-term effects. Circulating small extracellular vesicles (sEVs) (<200 nm) traffic biological molecules throughout the body and may have diagnostic value as biomarkers for disease. The purpose of this study was to identify the microRNA (miRNA) profile in circulating sEVs derived from human plasma following repetitive HI exposure. METHODS Healthy adult (aged 18-35 years) soccer players were randomly assigned to one of 3 groups: the HI group performed 10 standing headers, the leg impact group performed 10 soccer ball trapping maneuvers over 10 min, and the control group did not participate in any soccer drills. Plasma was collected before testing and 24 h afterward, and sEVs were isolated and characterized via nanoparticle tracking analysis. Next-generation sequencing was utilized to identify candidate miRNAs isolated from sEVs, and candidate microRNAs were analyzed via quantitative polymerase chain reaction. In silico target prediction was performed using TargetScan (Version 7.0; targetscan.org) and miRWalk (http://mirwalk.umm.uni-heidelberg.de/) programs, and target validation was performed using luciferase reporter vectors with a miR-7844-5p mimic in human embryonic kidney (HEK) 293T/17 cells. RESULTS Plasma sEV concentration and size were not affected across time and group following repetitive HI exposure. After 24 h, the HI read count from next-generation sequencing showed a 4-fold or greater increase in miR-92b-5p, miR-423-5p, and miR-24-3p and a 3-fold or greater decrease in miR-7844-5p, miR-144-5p, miR-221-5p, and miR-22-3p. Analysis of quantitative polymerase chain reaction revealed that leg impact did not alter the candidate miRNA levels. To our knowledge, miR-7844-5p is a previously unknown miRNA. We identified 8 miR-7844-5p mRNA targets: protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B), LIM and senescent cell antigen-like domains 1 (LIMS1), autophagy-related 12 (ATG12), microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), integrin subunit alpha-1 (ITGA1), mitogen-activated protein kinase 1 (MAPK1), glycogen synthase kinase 3β (GSK3β), and mitogen-activated protein kinase 8 (MAPK8). CONCLUSION Collectively, these data indicate repetitive HI exposure alters plasma sEV miRNA content, but not sEV size or number. Furthermore, for the first time we demonstrate that previously unknown miR-7844-5p targets mRNAs known to be involved in mitochondrial apoptosis, autophagy regulation, mood disorders, and neurodegenerative disease.
Collapse
Affiliation(s)
- Eric R Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Brittany E Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Kyle T Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Fernando V Santos
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Carolina T Cabán
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - John J Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Matthew B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
25
|
MiR-27a-3p/miR-27b-3p Promotes Neurofibromatosis Type 1 via Targeting of NF1. J Mol Neurosci 2021; 71:2353-2363. [PMID: 33570696 DOI: 10.1007/s12031-020-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The dysregulation of microRNAs (miRNAs) is a crucial molecular signature of disease development. The potential implication of miRNAs in neurofibromatosis type 1 (NF1) remains poorly investigated. The expression levels of miR-27a-3p, miR-27b-3p, and neurofibromin 1 (NF1) were detected by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The functional roles of miR-27a-3p and miR-27b-3p in NF1 were explored by CCK8 (Cell Counting Kit-8), 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), and transwell assays. Luciferase reporter, RNA pull-down, and RNA binding protein immunoprecipitation (RIP) assays were employed to study the probable target relationship between miRNA and messenger RNA (mRNA). MiR-27b-3p and miR-27a-3p were upregulated in dermal and plexiform human Schwann cells (HSC) from NF1 neurofibromas as well as cell lines of malignant peripheral nerve sheath tumors (MPNSTs). MiR-27a-3p/miR-27b-3p mimics promoted the proliferative, migratory, and invasive ability of dermal HSC and MPNST cell ST88-14, while inhibiting the apoptotic capacity. MiR-27a-3p/miR-27b-3p inhibitors elicited the opposite impacts on the above cellular behaviors in dermal HSC and ST88-14. Intriguingly, NF1 was revealed to be the target of both miR-27a-3p and miR-27b-3p, and was negatively modulated by them. MiR-27a-3p/miR-27b-3p upregulation suppressed the expression of NF1 in dermal HSC and ST88-14. Furthermore, NF1 depletion counterbalanced the functional alteration induced by miR-27a-3p/miR-27b-3p inhibition. Our study suggests that both miR-27b-3p and miR-27a-3p are involved in upstream molecular activity responsible for the depletion of NF1, representing promising targets for therapeutic application in NF1.
Collapse
|
26
|
He Z, Long J, Yang C, Gong B, Cheng M, Wang Q, Tang J. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging (Albany NY) 2020; 12:20285-20307. [PMID: 33085646 PMCID: PMC7655220 DOI: 10.18632/aging.103800] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 04/12/2023]
Abstract
Glioma is one of the most commonly diagnosed brain malignancies with a high cancer-related death rate in humans. The prognosis of glioma patients is still unsatisfactory. In the present study, we attempted to identify lncRNAs and miRNAs that might be related to NF-κB-mediated epithelial-mesenchymal transition in glioma cells based on online microarray expression profiles, and investigate the specific effects of lncRNA-miRNA-mRNA axes on glioma cell phenotypes. Herein, we identified lncRNA DGCR5 as a downregulated lncRNA in glioma that was negatively regulated by NF-κB1 in an NF-κB1 RE-dependent manner. LncRNA DGCR5 overexpression significantly inhibited the capacity of glioma cells to proliferate, migrate, and invade, whereas promoted the apoptosis of glioma cells. Moreover, lncRNA DGCR5 overexpression upregulated the epithelial marker E-cadherin while downregulating the mesenchymal marker VIM, as well as Snai2 and TWIST. Regarding the underlying molecular mechanisms, lncRNA DGCR5 could inhibit miR-21 and miR-23a expression, and miR-21 or miR-23a overexpression significantly reversed the tumor-suppressive effects of lncRNA DGCR5 overexpression. LncRNA DGCR5 exerted its tumor-suppressive effects through the DGCR5/miR-21/Smad7 and DGCR5/miR-23a/PTEN axes. In conclusion, lncRNA DGCR5 suppresses the capacity of glioma cells to migrate and invade via miR-21/Smad7, whereas it inhibits the proliferation and enhances the apoptosis of glioma cells through miR-23a/PTEN.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu 610072, Sichuan, China
| | - Juan Long
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Chen Yang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Bo Gong
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jian Tang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
27
|
Li R, Wu H, Jiang H, Wang Q, Dou Z, Ma H, Yan S, Yuan C, Yang N, Kong B. FBLN5 is targeted by microRNA‑27a‑3p and suppresses tumorigenesis and progression in high‑grade serous ovarian carcinoma. Oncol Rep 2020; 44:2143-2151. [PMID: 32901854 PMCID: PMC7550983 DOI: 10.3892/or.2020.7749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the most lethal gynecological malignancies; however, the precise molecular mechanisms have not been fully characterized. Fibulin-5 (FBLN-5) is an extracellular matrix (ECM) glycoprotein, and plays a crucial role in maintaining the stability of ECM structures, regulating cell proliferation and tumorigenesis. In the present study, the expression of FBLN-5, as determined by western blot analysis and immunohistochemistry, was significantly increased in normal fallopian tube (FT) samples compared with that in HGSOC samples, and decreased FBLN5 expression was associated with unfavorable prognosis of HGSOC. Functional characterization revealed that FBLN5 overexpression significantly inhibited migration, invasion and proliferation abilities of ovarian cancer cells in vitro. Furthermore, micro (mi)RNA-27a-3p (miR-27a-3p) was revealed to be increased in HGSOC, and dual-luciferase reporter assay indicated that miR-27a-3p was functioned as a negative regulator of FBLN5 by directly binding with its 3′-untranslated region. Collectively, FBLN5 expression was associated with prognosis, proliferation, and metastasis in HGSOC. We hypothesized that FBLN5 was targeted by miR-27a-3p and may serve as a biomarker and provide a new therapeutic approach for the treatment of HGSOC.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huiyang Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiuman Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhiyuan Dou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
28
|
Ciszkowicz E, Porzycki P, Semik M, Kaznowska E, Tyrka M. MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer. Int J Mol Sci 2020; 21:E5667. [PMID: 32784653 PMCID: PMC7460886 DOI: 10.3390/ijms21165667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of miRNAs has a fundamental role in the initiation, development and progression of prostate cancer (PCa). The potential of miRNA in gene therapy and diagnostic applications is well documented. To further improve miRNAs' ability to distinguish between PCa and benign prostatic hyperplasia (BPH) patients, nine miRNA (-21, -27b, -93, -141, -205, -221, -182, -375 and let-7a) with the highest reported differentiation power were chosen and for the first time used in comparative studies of serum and prostate tissue samples. Spearman correlations and response operating characteristic (ROC) analyses were applied to assess the capability of the miRNAs present in serum to discriminate between PCa and BPH patients. The present study clearly demonstrates that miR-93 and miR-375 could be taken into consideration as single blood-based non-invasive molecules to distinguish PCa from BPH patients. We indicate that these two miRNAs have six common, PCa-related, target genes (CCND2, MAP3K2, MXI1, PAFAH1B1, YOD1, ZFYVE26) that share the molecular function of protein binding (GO:0005515 term). A high diagnostic value of the new serum derived miR-182 (AUC = 0.881, 95% confidence interval, CI = 0.816-0.946, p < 0.0001, sensitivity and specificity were 85% and 79%, respectively) is also described.
Collapse
Affiliation(s)
- Ewa Ciszkowicz
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Paweł Porzycki
- Department of Urology, Municipal Hospital in Rzeszów, 35-241 Rzeszów, Poland;
| | - Małgorzata Semik
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Ewa Kaznowska
- Faculty of Medicine, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Mirosław Tyrka
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| |
Collapse
|
29
|
Xiao L, Li X, Mu Z, Zhou J, Zhou P, Xie C, Jiang S. FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma. Cancer Res 2020; 80:3945-3958. [PMID: 32680921 DOI: 10.1158/0008-5472.can-20-0132] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Malignant glioma constitutes one of the fatal primary brain tumors in adults. Such poor prognosis calls for a better understanding of cancer-related signaling pathways of this disease. Here we elucidate a MYC-miRNA-MXI1 feedback loop that regulates proliferation and tumorigenesis in glioma. MYC suppressed MXI1 expression via microRNA-155 (miR-155) and the microRNA-23a∼27a∼24-2 cluster (miR-23a cluster), whereas MXI1, in turn, inhibited MYC expression by binding to its promoter. Overexpression of miR-155 and the miR-23a cluster promoted tumorigenesis in U87 glioma cells. Furthermore, fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) RNA demethylase, regulated the loop by targeting MYC. The ethyl ester form of meclofenamic acid (MA2) inhibited FTO and enhanced the effect of the chemotherapy drug temozolomide on suppressing proliferation of glioma cells and negatively regulated the loop. These data collectively highlight a key regulatory circuit in glioma and provide potential targets for clinical treatment. SIGNIFICANCE: These findings elucidate a novel feedback loop that regulates proliferation in glioma and can be targeted via inhibition of FTO to enhance the efficacy of temozolomide.
Collapse
Affiliation(s)
- Li Xiao
- Department of Biology Sciences and Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaodi Li
- Department of Biology Sciences and Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zekun Mu
- Department of Biology Sciences and Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Zhou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Xie
- Department of Biology Sciences and Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songshan Jiang
- Department of Biology Sciences and Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Mirzaei R, Mohammadzadeh R, Mirzaei H, Sholeh M, Karampoor S, Abdi M, Alikhani MY, Kazemi S, Ahmadyousefi Y, Jalalifar S, Yousefimashouf R. Role of
microRNAs
in
Staphylococcus aureus
infection: Potential biomarkers and mechanism. IUBMB Life 2020; 72:1856-1869. [PMID: 32516518 DOI: 10.1002/iub.2325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of MedicineHamadan University of Medical Sciences Hamadan Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic SciencesKashan University of Medical Sciences Kashan Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Sajad Karampoor
- Department of Virology, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Milad Abdi
- Department of Microbiology, School of MedicineIran University of Medical Sciences Tehran Iran
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of MedicineHamadan University of Medical Sciences Hamadan Iran
| | - Sima Kazemi
- Department of Microbiology, School of MedicineHamadan University of Medical Sciences Hamadan Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical Sciences Hamadan Iran
- Research Center for Molecular MedicineHamadan University of Medical Sciences Hamadan Iran
| | - Saba Jalalifar
- Department of Microbiology, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of MedicineHamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
31
|
Li X, Zhou S, Fan T, Feng X. lncRNA DGCR 5/miR‑27a‑3p/BNIP3 promotes cell apoptosis in pancreatic cancer by regulating the p38 MAPK pathway. Int J Mol Med 2020; 46:729-739. [PMID: 32626951 PMCID: PMC7307863 DOI: 10.3892/ijmm.2020.4632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Long non‑coding RNA (lncRNA) DGCR5 has been identified as a tumor suppressor in several types of cancer. However, its biological functions in pancreatic cancer (PaCa) have not yet been fully elucidated. The present study was designed to investigate the role of lncRNA DGCR5 in the regulation of PaCa cell apoptosis. For this purpose, lncRNA DGCR5, miR‑27a‑3p and Bcl‑2/adenovirus E1B‑19kDa‑interacting protein 3 (BNIP3) expression levels were examined by reverse transcription‑quantitative (RT‑qPCR) and western blot analysis, respectively. RNA pull‑down assay was used to verify DGCR5 as a target of miR‑27a‑3p and dual luciferase reporter assay was used to clarify whether miR‑27a‑3p targets the BNIP3 3' UTR. In addition, PaCa cell apoptosis was assessed by flow cytometry. Recombinant plasmids and cell transfection were performed to modulate the endogenous expression of related genes. Thereafter, the role of DGCR5 in PaCa was analyzed using a nude mouse model of PaCa. lncRNA DGCR5 was found to be downregulated in PaCa tissues and cells. DGCR5 functioned as a decoy of miR‑27a‑3p, and BNIP3 was negatively regulated by miR‑27a‑3p. Following the transfection of DGCR5 plasmid into PaCa cells, the expression of miR‑27a‑3p was downregulated, and this downregulation was reversed following transfection with miR‑27a‑3p mimic. In addition, DGCR5 regulated the BNIP3 and p38 MAPK pathways via miR‑27a‑3p and promoted PaCa cell apoptosis via the miR‑27a‑3p/BNIP3 pathway. The results of in vivo experiments also indicated the positive effects of DGCR5 on a nude mouse model of PaCa. On the whole, the findings of the present study indicate that lncRNA DGCR5 upregulates the BNIP3 and p38 MAPK pathways via miR‑27a‑3p to promote PaCa cell apoptosis, thereby attenuating PaCa development.
Collapse
Affiliation(s)
- Xianjie Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Shanxue Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Tianyi Fan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xuefeng Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
32
|
Han M, Li N, Li F, Wang H, Ma L. MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum Cell 2020; 33:641-651. [PMID: 32419118 DOI: 10.1007/s13577-020-00329-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
MiR-27b-3p has been reported to function as tumor suppressor in several tumors, including breast cancer and lung cancer. Recently, miR-27b-3p has been identified to be significantly down-regulated in esophageal cancer. However, the clinical significance and biological role of miR-27b-3p in esophageal squamous cell carcinoma (ESCC) still remain unclear. In this study, the expression levels of miR-27b-3p were significantly reduced in ESCC clinical tissues and ESCC cell lines (EC97069 and TE-1). Moreover, down-regulated expression of miR-27b-3p was associated with poor cell differentiation, TNM stage and lymph node metastasis. Specially, overexpression of miR-27b-3p significantly suppressed cell proliferation, migration and invasion in vitro using CCK-8 and transwell assays. Targetscan bioinformatics predictions and luciferase reporter assay confirmed that nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) was a direct target gene of miR-27b-3p. Nrf2 expression was significantly increased in ESCC tissues compared with adjacent tissues. Up-regulated expression of Nrf2 was correlated with TNM stage and lymph node metastasis. Functionally, knockdown of Nrf2 exhibited similar effects to overexpression of miR-27b-3p. Higher expression of ZO-1, E-cadherin and lower expression of N-cadherin, Vimentin and Claudin-1 were observed after miR-27b-3p overexpression of Nrf2 knockdown. Rescue experiments proved that miR-27b-3p suppressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) via suppression of Nrf2. Taken together, the newly identified miR-27b-3p/Nrf2 axis might represent a new candidate therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Mei Han
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Na Li
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Fanzhou Li
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Hua Wang
- Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lanying Ma
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
33
|
Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 2020; 15:e0232351. [PMID: 32353026 PMCID: PMC7192422 DOI: 10.1371/journal.pone.0232351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major social, communication and behavioural challenges. The cause of ASD is still unclear and it is assumed that environmental, genetic and epigenetic factors influence the risk of ASD occurrence. MicroRNAs (miRNAs) are short 21-25 nucleotide long RNA molecules which post-transcriptionally regulate gene expression. MiRNAs play an important role in central nervous system development; therefore, dysregulation of miRNAs is connected to changes in behaviour and cognition observed in many disorders including ASD. Based on previously published work, on diagnosing ASD using miRNAs, we hypothesized that miRNAs can be used as biomarkers in children with suspected developmental disorders (DD) including ASD within Bosnian-Herzegovinian (B&H) population. 14 selected miRNAs were tested on saliva of children with suspected developmental disorders including ASD. The method of choice was qRT-PCR as a relatively cheap method available in most diagnostic laboratories in low to mid-income countries (LMIC). Out of 14 analysed miRNAs, 6 were differentially expressed between typically developing children and children with some type of developmental disorder including autism spectrum disorder. Using the most optimal logistic regression, we were able to distinguish between ASD and typically developing (TD) children. We have found 5 miRNAs as potential biomarkers. From those, 3 were differentially expressed within the ASD cohort. All 5 miRNAs had shown good chi-square statistics within the logistic regression performed on all 14 analysed miRNAs. The accuracy of 5-miRNAs model training set was 90.2%, while the validation set had a 90% accuracy. This study has shown that miRNAs may be considered as biomarkers for ASD detection and may be used to identify children with ASD along with standard developmental screening tests. By combining these methods we may be able to reach a reliable and accessible diagnostic model for children with ASD in LMIC such as B&H.
Collapse
Affiliation(s)
- Emir Sehovic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lemana Spahic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | | | - Eldin Dzanko
- Education for All (EDUS), Sarajevo, Bosnia and Herzegovina
| | - Aida Hajdarpasic
- Department of Medical Biology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- * E-mail:
| |
Collapse
|
34
|
Ding F, Jiang K, Sheng Y, Li C, Zhu H. RETRACTED: LncRNA MIR7-3HG executes a positive role in retinoblastoma progression via modulating miR-27a-3p/PEG10 axis. Exp Eye Res 2020; 193:107960. [PMID: 32035086 DOI: 10.1016/j.exer.2020.107960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors since upon institutional inspection, the reproducibility of the CCK-8 assay was not sufficient and considered not to be valid and therefore could not support the conclusions of the article.
Collapse
Affiliation(s)
- Fengkui Ding
- Department of Ophthalmology, Jining No.1 People's Hospital, No.6 Jiankang Road, Jining, Shandong Province, 272011, PR China
| | - Kai Jiang
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, PR China
| | - Yanjuan Sheng
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250001, PR China
| | - Chuanbao Li
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Huaicheng Zhu
- Department of Ophthalmology, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272000, PR China.
| |
Collapse
|
35
|
miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer 2020; 122:1354-1366. [PMID: 32132656 PMCID: PMC7188668 DOI: 10.1038/s41416-020-0773-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metabolic reprogramming towards aerobic glycolysis in cancer supports unrestricted cell proliferation, survival and chemoresistance. The molecular bases of these processes are still undefined. Recent reports suggest crucial roles for microRNAs. Here, we provide new evidence of the implication of miR-27a in modulating colorectal cancer (CRC) metabolism and chemoresistance. METHODS A survey of miR-27a expression profile in TCGA-COAD dataset revealed that miR-27a-overexpressing CRCs are enriched in gene signatures of mitochondrial dysfunction, deregulated oxidative phosphorylation, mTOR activation and reduced chemosensitivity. The same pathways were analysed in cell lines in which we modified miR-27a levels. The response to chemotherapy was investigated in an independent cohort and cell lines. RESULTS miR-27a upregulation in vitro associated with impaired oxidative phosphorylation, overall mitochondrial activities and slight influence on glycolysis. miR-27a hampered AMPK, enhanced mTOR signalling and acted in concert with oncogenes and tumour cell metabolic regulators to force an aerobic glycolytic metabolism supporting biomass production, unrestricted growth and chemoresistance. This latter association was confirmed in our cohort of patients and cell lines. CONCLUSIONS We disclose an unprecedented role for miR-27a as a master regulator of cancer metabolism reprogramming that impinges on CRC response to chemotherapy, underscoring its theragnostic properties.
Collapse
|
36
|
Chen Y, Zhang X, An Y, Liu B, Lu M. LncRNA HCP5 promotes cell proliferation and inhibits apoptosis via miR-27a-3p/IGF-1 axis in human granulosa-like tumor cell line KGN. Mol Cell Endocrinol 2020; 503:110697. [PMID: 31891769 DOI: 10.1016/j.mce.2019.110697] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
This study aimed to reveal the potential roles of long non-coding RNA HCP5 (lncRNA HCP5) and its potential molecular mechanism in polycystic ovarian syndrome (PCOS). The human granulosa-like tumor cell line KGN was used for assessing the effects of HCP5 in the proliferation and apoptosis of granulosa cells (GCs). The results showed that downregulation of HCP5 suppressed cell proliferation through arresting cell cycle progression at G1 phase, and induced the apoptosis via activating mitochondrial pathway, while overexpression of HCP5 played the opposite effects in KGN cells. We predicted and confirmed miR-27a-3p was a directly target to HCP5 and it could directly bind with insulin-like growth factor-1 (IGF-1). Next, we performed gain- and loss-of-functions approaches by transfecting miR-27a-3p inhibitor into HCP5 knocking down cells and transfecting miR-27a-3p mimics into HCP5 overexpressing cells. The results demonstrated that downregulation and upregulation of miR-27a-3p could block the effects on the proliferation and apoptosis mediated by silencing and overexpressing HCP5 in KGN cells. Additionally, miR-27a-3p inhibitor remarkably reversed the IGF-1 decrease regulated by knocking down HCP5 and miR-27a-3p mimics inhibited the IGF-1 increase modulated by overexpressing HCP5 in KGN cells. Furthermore, we observed that the promoted cell vitality and reduced apoptosis mediated by enforced expression of HCP5 could be alleviated when the KGN cells transfected with IGF-1 siRNA. Our findings indicate that HCP5 might be a potential regulatory factor for development of PCOS through regulating the miR-27a-3p/IGF-1 axis.
Collapse
Affiliation(s)
- Yongqian Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaolei Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuan An
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Bin Liu
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Meisong Lu
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
37
|
Li K, Zhu X, Chen X, Wang X. MicroRNA‑27a‑3p promotes epithelial‑mesenchymal transition by targeting NOVA alternative splicing regulator 1 in gastric cancer. Mol Med Rep 2020; 21:1615-1622. [PMID: 32016460 DOI: 10.3892/mmr.2020.10949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2019] [Indexed: 11/05/2022] Open
Abstract
NOVA alternative splicing regulator 1 (NOVA1) dysregulation has been detected in the gastric cancer microenvironment. Decreased NOVA1 expression has been linked to the progression and poor prognosis of gastric cancer; however, the role of NOVA1 in regulating epithelial‑mesenchymal transition (EMT) remains unclear in this disease. Experimental evidence has shown that miR‑27a‑3p is a potential oncogene in gastric cancer. In the present study, we observed that miR‑27a‑3p expression was increased in gastric cancer and was inversely associated with overall survival. Overexpression of miR‑27a‑3p promoted EMT in AGS gastric cancer cells. Additionally, overexpression of miR‑27a‑3p inhibited NOVA1 expression, while silencing of NOVA1 promoted EMT in AGS cells. A total of 108 gastric cancer samples were examined for NOVA1 expression by immunohistochemistry. Decreased NOVA1 expression was linked to lymph node metastasis, tumor‑node‑metastasis stage and shorter overall survival. Therefore, these results indicated that NOVA1 could be a potential tumor suppressive gene and that miR‑27a‑3p promotes EMT by targeting NOVA1 in gastric cancer.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangrong Zhu
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xihua Chen
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xiongtie Wang
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| |
Collapse
|
38
|
Neamati F, Asemi Z. The effects of melatonin on signaling pathways and molecules involved in glioma. Fundam Clin Pharmacol 2019; 34:192-199. [PMID: 31808968 DOI: 10.1111/fcp.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma is one of the most common brain tumors with high invasion and malignancy. Despite extensive research in this area and the use of new and advanced therapies, the survival rate in this disease is very low. In addition, resistance to treatment has also been observed in this disease. One of the reasons for rapid progression and failure in treatment for this disease is the presence of a class of cells with high proliferation and high differentiation, a class called glioblastoma stem-like cells shown as being the source of glioblastoma tumors. It has been reported that several oncogenes are expressed in this disease. One important issue in recognizing the pathogenesis of this disease, and which could improve the treatment process, is the identification of involved oncogenes as well as molecules that affect the reduction of the expression of these oncogenes. Melatonin regulates the biological rhythm and inhibits the proliferation of malignant glioma cells due to antioxidant and anti-apoptotic effects. Melatonin has been considered in biological processes and in signaling pathways involved in the development of glioma. The aim of this review is to investigate the effects of melatonin on signaling pathways and molecules involved in the progression of glioma.
Collapse
Affiliation(s)
- Foroogh Neamati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, 87159-88141, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, 87159-88141, I.R. Iran
| |
Collapse
|
39
|
Rao X, Wan L, Jie Z, Zhu X, Yin J, Cao H. Upregulated miR-27a-3p Indicates a Poor Prognosis in Pancreatic Carcinoma Patients and Promotes the Angiogenesis and Migration by Epigenetic Silencing of GATA6 and Activating VEGFA/VEGFR2 Signaling Pathway. Onco Targets Ther 2019; 12:11241-11254. [PMID: 31908490 PMCID: PMC6927607 DOI: 10.2147/ott.s220621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023] Open
Abstract
Background Abnormal miR-27a-3p expression has been frequently reported in several types of human cancer and contributes to tumor progression. However, the role and potential molecular mechanism of miR-27a-3p in the progression of pancreatic carcinoma have not been clarified. Materials and methods The expression of miR-27a-3p and GATA binding protein 6 (GATA6) in pancreatic carcinoma tissues and cell lines was evaluated by quantitative real-time PCR and Western blotting analysis. The relationship between clinical pathologic features and miR-27a-3p expression was analyzed with Chi-square test. The regulatory mechanism of miR-27a-3p on GATA6 was confirmed by luciferase reporter assay and bioinformatics analysis. The effects of miR-27a-3p by targeting GATA6 on cell angiogenesis and migration were assessed by capillary tube formation and wound healing assays. Results MiR-27a-3p expression was significantly upregulated in pancreatic carcinoma tissues and cell lines. Highly expressed miR-27a-3p was closely related to more lymph node metastasis, present peritoneal metastasis, and poor prognosis in patients with pancreatic carcinoma. MiR-27a-3p promoted migration and angiogenesis of pancreatic carcinoma cells by activating vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptor 2 (VEGFR2) expression. A significantly negative correlation between GATA6 mRNA and miR-27a-3 expression was found in pancreatic carcinoma samples. Modulation of miR-27a-3p could alter GATA6 expression in pancreatic carcinoma cells. GATA6 was identified as a functional target gene of miR-27a-3p, and GATA6 knockdown partially reversed the effects of miR-27a-3p siliencing on the migration and angiogenesis of pancreatic carcinoma cells by regulation of VEGFA/VEGFR2 pathway. Conclusion Upregulated miR-27a-3p indicates a poor prognosis in pancreatic carcinoma patients and promotes the angiogenesis and migration by epigenetic silencing of GATA6 and activating VEGFA/VEGFR2 signaling pathway, and indicating miR-27a-3p may be a promising therapeutic target for pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Xuefeng Rao
- Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China
| | - Lihui Wan
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhigang Jie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Xiaoliang Zhu
- Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China
| | - Junxiang Yin
- Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China
| | - Hong Cao
- Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
40
|
Chen J, Lou J, Yang S, Lou J, Liao W, Zhou R, Qiu C, Ding G. MT1JP inhibits glioma progression via negative regulation of miR-24. Oncol Lett 2019; 19:334-342. [PMID: 31890049 PMCID: PMC6933312 DOI: 10.3892/ol.2019.11085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs have been reported to be dysregulated and have pivotal roles in various human malignancies, including glioma. Previous studies revealed that metallothionein 1J (MT1JP) has important regulatory functions in the development of gastric cancer. However, the biological role and potential mechanism of MT1JP in glioma remain unknown. The present study suggested that MT1JP expression was significantly downregulated in glioma tissues and glioma cell lines, and the decreased expression of MT1JP was associated with glioma progression and poor survival of patients with glioma. Additionally, overexpression of MT1JP significantly inhibited the proliferation and invasion of glioma cells. Furthermore, it was revealed that MT1JP interacted with microRNA-24 (miR-24), which has previously been reported as an oncogene in glioma, negatively regulating its expression level. Rescue experiments revealed that the tumor suppressive functions of MT1JP may be mediated by the negative regulation of miR-24. Collectively, the data suggested that MT1JP inhibited the progression of glioma by negatively regulating miR-24 and may serve as a novel diagnostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Jinming Chen
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianyun Lou
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shaochun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jun Lou
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wei Liao
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Renxiang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chuanzhen Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guanfu Ding
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
41
|
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, Wang A, Gan X, Wu Z, Wang L. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett 2019; 469:68-77. [PMID: 31629934 DOI: 10.1016/j.canlet.2019.10.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
Abstract
Circular RNAs (circRNAs) are reported to act as important regulators in cancers. CircRNA RAPGEF5 (cRAPGEF5) is derived from exons 2-6 of the RAPGEF5 gene and may promote papillary thyroid cancer progression. However, the role of cRAPGEF5 in renal cell carcinoma (RCC) remains unclear. In this study, we found cRAPGEF5 to be significantly downregulated in RCC tissues. Among 245 RCC cases, cRAPGEF5 downregulation correlated positively with aggressive clinical characteristics and independently predicted poor overall survival and recurrence-free survival. Functional assays demonstrated that cRAPGEF5 suppresses RCC proliferation and migration in vitro and in vivo. Mechanistically, RNA Immunoprecipitation and circRNA in vivo precipitation assays showed that cRAPGEF5 functions as a sponge of oncogenic miR-27a-3p, which targets the suppressor gene TXNIP. Interactions between miR-27a-3p and cRAPGEF5 or TXNIP were confirmed by dual-luciferase reporter assays. In conclusion, cRAPGEF5 plays a role in suppressing RCC via the miR-27a-3p/TXNIP pathway and may serve as a promising prognostic biomarker and novel therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Tao Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Tangliang Zhao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jie Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhenjie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
42
|
Park J, Seo JW, Ahn N, Park S, Hwang J, Nam JW. UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat Commun 2019; 10:4181. [PMID: 31519907 PMCID: PMC6744440 DOI: 10.1038/s41467-019-12123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and quality of metazoan mRNAs are under microRNA (miRNA)-mediated and nonsense-mediated control. Although UPF1, a core mediator of nonsense-mediated mRNA decay (NMD), mediates the decay of target mRNA in a 3′UTR-length-dependent manner, the detailed mechanism remains unclear. Here, we suggest that 3′UTR-length-dependent mRNA decay is not mediated by nonsense mRNAs but rather by miRNAs that downregulate target mRNAs via Ago-associated UPF1/SMG7. Global analyses of mRNAs in response to UPF1 RNA interference in miRNA-deficient cells reveal that 3′UTR-length-dependent mRNA decay by UPF1 requires canonical miRNA targeting. The destabilization of miRNA targets is accomplished by the combination of Ago2 and UPF1/SMG7, which may recruit the CCR4-NOT deadenylase complex. Indeed, loss of the SMG7-deadenylase complex interaction increases the levels of transcripts regulated by UPF1-SMG7. This UPF1/SMG7-dependent miRNA-mediated mRNA decay pathway may enable miRNA targeting to become more predictable and expand the miRNA-mRNA regulatory network. UPF1 mediates the decay of target mRNA in a 3′ untranslated region (UTR)-length-dependent manner. Here the authors reveal that the 3′UTR-length-dependent regulation of UPF1-dependent mRNA decay occurs through EJC-independent but miRNA-dependent regulation.
Collapse
Affiliation(s)
- Jungyun Park
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jwa-Won Seo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Narae Ahn
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokju Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea. .,Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Yang X, Wang P. MiR-188-5p and MiR-141-3p influence prognosis of bladder cancer and promote bladder cancer synergistically. Pathol Res Pract 2019; 215:152598. [PMID: 31562019 DOI: 10.1016/j.prp.2019.152598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/28/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
MicroRNA (miRNA) plays a significant role in suppressing the occurrence and development of tumor by inhibiting the translation of target proteins. Although previous researches have verified many miRNAs' functions in bladder cancer (BC), the function of miR-188-5p and miR-141-3p in BC still remains unknown. Our experiment manifested that miR-188-5p and miR-141-3p were highly expressed in BC tissues and cells, which indicated a poor prognosis. In vitro functional assays suggested that down-regulated miR-188-5p and miR-141-3p inhibited the proliferation, migration and invasion of BC cells, while a combination of half dose down-regulated miR-188-5p and half dose down-regulated miR-141-3p demonstrated a more obvious inhibition effect. All results indicated that miR-188-5p and miR-141-3p promoted BC respectively and synergistically. Therefore, miR-188-5p and miR-141-3p will not only assist the diagnosis of BC, but also serve as more effective joint markers to predict the progression of BC.
Collapse
Affiliation(s)
- Xianxu Yang
- China Medical University, Shenyang 110013, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110122, China.
| |
Collapse
|
44
|
Li E, Han K, Zhou X. microRNA-27a-3p Down-regulation Inhibits Malignant Biological Behaviors of Ovarian Cancer by Targeting BTG1. Open Med (Wars) 2019; 14:577-585. [PMID: 31410369 PMCID: PMC6689206 DOI: 10.1515/med-2019-0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most deadly malignant tumor. MicroRNA-27a-3p (miR-27a-3p) was a tumor oncogene in various cancers. However, the role and mechanism of miR-27a-3p in ovarian cancer are still unknown. In this study, we found that miR-27a-3p over-expression could significantly promote the viability of SK-OV-3 cells, enhance cell migration and invasion, and reduce cell apoptosis. Besides, results from western blot assay showed that miR-27a-3p over-expression could increase Bcl-2 protein expression and decrease Bax protein expression. Furthermore, TargetScan and the dual luciferase reporter gene assay revealed that BTG anti-proliferation factor 1 (BTG1) was a direct target of miR-27a-3p. In addition, we found that miR-27a-3p down-regulation suppressed SK-OV-3 cell viability, migration and invasion, and promoted cell apoptosis. All the effects of miR-27a-3p down-regulation on SK-OV-3 cells were reversed by BTG1-siRNA. Therefore, miR-27a-3p/BTG1 axis may be a new potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Enfang Li
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| | - Ke Han
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| |
Collapse
|
45
|
Su C, Huang DP, Liu JW, Liu WY, Cao YO. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett 2019; 18:2825-2834. [PMID: 31452761 PMCID: PMC6676402 DOI: 10.3892/ol.2019.10629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
microRNA (miR/miRNA)-27a-3p has been reported to be abnormally expressed in various types of cancer, including colorectal cancer (CRC). B-cell translocation gene 1 (BTG1) has also been implicated with CRC. However, the association between miR-27a-3p and BTG1 in CRC, to the best of our knowledge, has not been investigated. In order to assess whether miR-27a-3p is associated with CRC, reverse transcription-quantitative PCR was performed on 20 paired CRC and paracancerous tissues for miRNA analysis. For the screening and validation of miR-27a-3p expression in colon cancer, several colon cancer cell lines (HCT-116, HCT8, SW480, HT29, LOVO and Caco2) and the normal colorectal epithelial cell line NCM460 were examined. The highest expression levels of miR-27a-3p were detected in the HCT-116, which was selected for further experimentation. The HCT-116 cells were divided into control, miR-27a-3p mimic and inhibitor groups, and cell proliferation was tested using an MTT assay. Additionally, miR-27a-3p inhibitor/mimic or BTG1 plasmid were transfected into the HCT-116 cells, and flow cytometry was performed to analyze cell cycle distributions. TUNEL analysis was performed to detect apoptosis. Protein levels of factors in the downstream signaling pathway mediated by miR-27a-3p [ERK/mitogen-activated extracellular signal-regulated kinase (MEK)] were detected. miR-27a-3p was revealed to be overexpressed in human CRC tissues and colon cancer cell lines. Knockdown of miR-27a-3p suppressed proliferation of HCT-116 cells and apoptosis was increased. It further markedly upregulated expression levels of BTG1 and inhibited activation of proteins of the ERK/MEK signaling pathway. In addition, overexpression of BTG1 in HCT-116 cells triggered G1/S phase cell cycle arrest and increased apoptosis via the ERK/MEK signaling pathway. In conclusion, the present study demonstrated that the effects of miR-27a-3p on colon cancer cell proliferation and apoptosis were similar to those of the tumor suppressor gene BTG1. The miR-27a-3p/BTG1 axis may have potential implications for diagnostic and therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Dong-Ping Huang
- Department of Surgery, People's Hospital of Putuo District, Shanghai 200060, P.R. China
| | - Jian-Wen Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wei-Yan Liu
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Yi-Ou Cao
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
46
|
Li X, Xu M, Ding L, Tang J. MiR-27a: A Novel Biomarker and Potential Therapeutic Target in Tumors. J Cancer 2019; 10:2836-2848. [PMID: 31258791 PMCID: PMC6584939 DOI: 10.7150/jca.31361] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, time sequencing, conserved and small non-coding RNA molecules (19-25 bp long) that regulate gene expression at the post-transcriptional level by binding to the partial sequence homology of the 3'-untranslated region of target messenger (m)RNA. The miRNA-27 family consists of miR-27a and miR-27b, which are transcribed from different chromosomes and different in nucleotide at the 3' end. It has been reported that miR-27a was located on chromosome 19 and played a vital role in tumor development. Increasing evidences support a vital role for miR-27a in modulating polymorphisms, tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis. Apart from it, miR-27a could affect drug sensitivity, treatment of cancer and patients prognosis. The miR-27a could be an oncogene or a tumor suppressor in several types of cancer, including colon cancer, pancreatic cancer, breast cancer, bladder cancer and hepatocellular carcinoma. In this review, we discuss the role of miR-27a in tumor biology and clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Xingwang Li
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Min Xu
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Li Ding
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jinhai Tang
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China.,Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
47
|
Lei S, Chen G, Deng L, He J. Upregulation of miR-27b Facilitates Apoptosis of TNF-α-Stimulated Fibroblast-Like Synoviocytes. Yonsei Med J 2019; 60:585-591. [PMID: 31124343 PMCID: PMC6536399 DOI: 10.3349/ymj.2019.60.6.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of this study was to explore the function of microRNA-27b (miR-27b) in fibroblast-like synoviocytes (FLSs) stimulated by tumor necrosis factor α (TNF-α). MATERIALS AND METHODS mRNA expression of miR-27b in FLS cells (MH7A) treated with or without TNF-α was determined by q-PCR. MiR-27b mimics was transfected into MH7A cells to upregulate miR-27b expression. MTT assay and flow cytometry analysis were performed to investigate the effect of miR-27b on MH7A cell viability and apoptosis. The targets of miR-27b were predicted by TargetScan. The direct regulation of miR-27b on IL-1β expression was verified by luciferase assay. The protein expression levels of apoptosis-related proteins, IL-1β, and NF-κB signaling-related proteins were detected by Western blot. RESULTS We discovered that miR-27b expression was decreased in MH7A cells stimulated by TNF-α. Upregulation of miR-27b by miR-27b mimics significantly inhibited the proliferation and promoted the apoptosis of TNF-α-stimulated MH7A cells. Consistently, upregulation of miR-27 decreased the level of Bcl-2 and increased Bax and caspase-3 expression in MH7A cells stimulated by TNF-α. Luciferase assay revealed that IL-1β was indeed a target of miR-27b. By quantitative real-time PCR and Western blot, we found that the expression of IL-1β is negatively regulated by miR-27b. Moreover, the NF-κB signaling pathway was significantly inhibited by miR-27b. CONCLUSION Taken together, our results illustrated that enhanced miR-27b expression results in the suppression of proliferation and the promotion of apoptosis in FLSs stimulated by TNF-α, partially by regulating IL-1β expression and NF-κB signaling.
Collapse
Affiliation(s)
- Shangwen Lei
- Department of Rheumatism and Immunology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Guanghua Chen
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liang Deng
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Jianying He
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
48
|
Zhang C, Wang W, Lin J, Xiao J, Tian Y. lncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. Int Braz J Urol 2019; 45:549-559. [PMID: 31038865 PMCID: PMC6786104 DOI: 10.1590/s1677-5538.ibju.2018.0450] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/16/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To study the expression patterns of long noncoding RNA (lncRNA) colon cancer-associated transcript 1 (CCAT1) and the changes in cell proliferation, apoptosis, migration and invasion induced by silencing CCAT1 in bladder cancer cells. MATERIALS AND METHODS The expression levels of CCAT1 were determined using realtime quantitative polymerase chain reaction in cancerous tissues and paired normal tissues from 34 patients with bladder cancer. The relationship between clinical characteristics and CCAT1 expression was analyzed. And then we conducted cell experiments. Bladder urothelial carcinoma cell lines T24 and 5637 cells were transfected with CCAT1 small interfering RNA (siRNA) or scramble siRNA. Cell proliferation and apoptosis changes were determined using a Cell Counting Kit-8 (CCK-8) assay and a fl ow cytometry assay. Migration and invasion changes were measured using a wound healing assay and a trans-well assay. microRNAs (miRNAs) were predicted by Starbase 2.0, and their differential expression levels were studied. RESULTS CCAT1 was signifi cantly upregulated in bladder cancer (P < 0.05). CCAT1 upregulation was positively related to tumor stage (P = 0.004), tumor grade (P = 0.001) and tumor size (P = 0.042). Cell proliferation, migration and invasion were promoted by abnormally expressed CCAT1. miRNAs miR-181b-5p, miR-152-3p, miR-24-3p, miR-148a-3p and miR-490-3p were potentially related to the aforementioned functions of CCAT1. CONCLUSION CCAT1 plays an oncogenic role in urothelial carcinoma of the bladder. In addition, CCAT1 may be a potential therapeutic target in this cancer.
Collapse
Affiliation(s)
- Caixiang Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenying Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Lin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Wang J, Yin K, Lv X, Yang Q, Shao M, Liu X, Sun H. MicroRNA-24-3p regulates Hodgkin's lymphoma cell proliferation, migration and invasion by targeting DEDD. Oncol Lett 2018; 17:365-371. [PMID: 30655776 PMCID: PMC6313197 DOI: 10.3892/ol.2018.9599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a common hematologic tumor, and the incidence is increasing. At present, it is considered that miRNAs are closely related to HL. Substantial attention has been paid to the effects of miRNA on the pathophysiological process of HL. This study was focused on the potential role of miR-24-3p in HL by targeting DEDD. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that miR-24-3p expression was highly elevated and DEDD expression reduced inversely in HL tissues compared to adjacent tissues. According to the results of CKK-8 assays, miR-24-3p was able to accelerate HL cell proliferation. In addition, the results of the Transwell assays also indicated that miR-24-3p promoted the invasion and migration abilities of HL cells. Moreover, the results demonstrated that miR-24-3p inhibited DEDD expression. Hence, the present study revealed that miR-24-3p could accelerate HL development through inhibiting DEDD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Yin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ming Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Sun
- Department of Hematopathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
50
|
Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen X, Zhang Y, Xia S, Hu Y, Zhang J. MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis 2018; 7:79. [PMID: 30293994 PMCID: PMC6174157 DOI: 10.1038/s41389-018-0089-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 12/26/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents over 90% of oral cancer incidence, while its mechanisms of tumorigenesis remain poorly characterized. In this study, we applied RNA-seq and microRNA-seq methodologies in four pairs of cancer and adjacent normal tissues to profile the contribution of miRNAs to tumorigenesis-altered functional pathways by constructing a comprehensive miRNA-mediated mRNA regulatory network. There were 213 differentially expressed (DE) miRNAs and 2172 DE mRNAs with the involvement of negative miRNA-mRNA interactions identified by at least two pairs of cancerous tissues. GO analysis revealed that the upregulated microRNAs significantly contributed to a global down-regulation of a number of transcription factors (TFs) in OSCC. Among the negative regulatory networks between the selected miRNAs (133) and TFs (167), circadian rhythm genes (RORA, RORB, RORC, and CLOCK) simultaneously regulated by multiple microRNAs were of particular interest. For instance, RORA transcript was predicted to be targeted by 25 co-upregulated miRNAs, of which, miR-503-5p, miR-450b-5p, miR-27a-3p, miR-181a-5p and miR-183-5p were further validated to directly target RORA, resulting in a stronger effect on RORA suppression together. In addition, we showed that the mRNA and protein expression levels of RORα were significantly decreased in most OSCC samples, associated with advanced clinical stage and poor prognosis. RORα significantly suppressed the proliferation of OSCC cells in vitro and in vivo. Attenuated RORα decreased p53 protein expression and suppressed p53 phosphorylation activity. Altogether, our results strongly suggest the importance of the role of miRNAs in regulating the activity of circadian rhythm-related TFs network during OSCC tumorigenesis, and provide further clues to understand the clinical link between circadian rhythm and cancer therapy.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kejing Wu
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shengjie Liao
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Yuemei Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinming Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|