1
|
Khaksari M, Pourali M, Rezaei Talabon S, Gholizadeh Navashenaq J, Bashiri H, Amiresmaili S. Protective effects of 17-β-estradiol on liver injury: The role of TLR4 signaling pathway and inflammatory response. Cytokine 2024; 181:156686. [PMID: 38991382 DOI: 10.1016/j.cyto.2024.156686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Liver injury, a major global health issue, stems from various causes such as alcohol consumption, nonalcoholic steatohepatitis, obesity, diabetes, metabolic syndrome, hepatitis, and certain medications. The liver's unique susceptibility to ischemia and hypoxia, coupled with the critical role of the gut-liver axis in inflammation, underscores the need for effective therapeutic interventions. The study highlights E2's interaction with estrogen receptors (ERs) and its modulation of the Toll-like receptor 4 (TLR4) signaling pathway as key mechanisms in mitigating liver injury. Activation of TLR4 leads to the release of pro-inflammatory cytokines and chemokines, exacerbating liver inflammation and injury. E2 down-regulates TLR4 expression, reduces oxidative stress, and inhibits pro-inflammatory cytokines, thereby protecting the liver. Both classic (ERα and ERβ) and non-classic [G protein-coupled estrogen receptor (GPER)] receptors are influenced by E2. ERα is particularly crucial for liver regeneration, preventing liver failure by promoting hepatocyte proliferation. Furthermore, E2 exerts anti-inflammatory, antioxidant, and anti-apoptotic effects by inhibiting cytokines such as IL-6, IL-1β, TNF-α, and IL-17, and by reducing lipid peroxidation and free radical damage. The article calls for further clinical research to validate these findings and to develop estrogen-based treatments for liver injuries. Overall, the research emphasizes the significant potential of E2 as a therapeutic agent for liver injuries. It advocates for extensive clinical studies to validate E2 hepatoprotective properties and develop effective estrogen-based treatments.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscince and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Ira
| | | |
Collapse
|
2
|
Kouchaki H, Kamyab P, Darbeheshti F, Gharezade A, Fouladseresht H, Tabrizi R. miR-939, as an important regulator in various cancers pathogenesis, has diagnostic, prognostic, and therapeutic values: a review. J Egypt Natl Canc Inst 2024; 36:16. [PMID: 38679648 DOI: 10.1186/s43046-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are highly conserved non-coding RNAs with a short length (18-24 nucleotides) that directly bind to a complementary sequence within 3'-untranslated regions of their target mRNAs and regulate gene expression, post-transcriptionally. They play crucial roles in diverse biological processes, including cell proliferation, apoptosis, and differentiation. In the context of cancer, miRNAs are key regulators of growth, angiogenesis, metastasis, and drug resistance. MAIN BODY This review primarily focuses on miR-939 and its expanding roles and target genes in cancer pathogenesis. It compiles findings from various investigations. MiRNAs, due to their dysregulated expression in tumor environments, hold potential as cancer biomarkers. Several studies have highlighted the dysregulation of miR-939 expression in human cancers. CONCLUSION Our study highlights the potential of miR-939 as a valuable target in cancer diagnosis, prognosis, and treatment. The aberrant expression of miR-939, along with other miRNAs, underscores their significance in advancing our understanding of cancer biology and their promise in personalized cancer care.
Collapse
Affiliation(s)
- Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parnia Kamyab
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Tabrizi
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
3
|
Singh K, Kumar P, Singh AK, Singh N, Singh S, Tiwari KN, Agrawal S, Das R, Singh A, Ram B, Tripathi AK, Mishra SK. In silico and network pharmacology analysis of fucosterol: a potent anticancer bioactive compound against HCC. Med Oncol 2024; 41:130. [PMID: 38676780 DOI: 10.1007/s12032-024-02374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein-protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.
Collapse
Affiliation(s)
- Kajal Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nancy Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, 391760, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shreni Agrawal
- Department of Bioscience and Biotechnology, Banasthali Vidhyapith, Tonk, Rajsthan, India
| | - Richa Das
- Department of Bioscience and Biotechnology, Banasthali Vidhyapith, Tonk, Rajsthan, India
| | - Anuradha Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Bhuwal Ram
- Department of Dravyaguna, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Amit Kumar Tripathi
- School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 203201, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
4
|
Zhang L, Chen ZY, Wei XX, Li JD, Chen G. What are the changes in the hotspots and frontiers of microRNAs in hepatocellular carcinoma over the past decade? World J Clin Oncol 2024; 15:145-158. [PMID: 38292666 PMCID: PMC10823937 DOI: 10.5306/wjco.v15.i1.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Emerging research suggests that microRNAs (miRNAs) play an important role in the development of hepatocellular carcinoma (HCC). A comprehensive analysis of recent research concerning miRNAs in HCC development could provide researchers with a valuable reference for further studies. AIM To make a comprehensive analysis of recent studies concerning miRNAs in HCC. METHODS All relevant publications were retrieved from the Web of Science Core Collection database. Bibliometrix software, VOSviewer software and CiteSpace software were used to visually analyze the distribution by time, countries, institutions, journals, and authors, as well as the keywords, burst keywords and thematic map. RESULTS A total of 9426 publications on this topic were found worldwide. According to the keywords analysis, we found that the studies of miRNAs focused on their expression level, effects, and mechanisms on the biological behaviour of HCC. Keywords bursting analysis showed that in the early years (2013-2017), "microRNA expression", "gene expression", "expression profile", "functional polymorphism", "circulating microRNA", "susceptibility" and "mir 21" started to attract attention. In the latest phase (2018-2022), the hot topics turned to "sorafenib resistance", "tumor microenvironment" and so on. CONCLUSION This study provides a comprehensive overview of the role of miRNAs in HCC development based on bibliometric analysis. The hotspots in this field focus on miRNAs expression level, effects, and mechanisms on the biological behavior of HCC. The frontiers turned to sorafenib resistance, tumor microenvironment and so on.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zu-Yuan Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Xian Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Huang Y, Su X, Chen K, Zhang L, Xu W, Pu Y, Xu F, Gong R, Zhang J, Nie Y, Shi Q. Epidemiological characteristics of suspected adenomyosis in the Chinese physical examination population: a nested case-control study. BMJ Open 2024; 14:e074488. [PMID: 38216177 PMCID: PMC10806687 DOI: 10.1136/bmjopen-2023-074488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVES We aimed to explore the epidemiological characteristics of suspected adenomyosis within a physical examination population in China. DESIGN A retrospective, nested case-control study; we matched healthy people and those with potential adenomyosis on a 1:2 ratio by age. SETTING A tertiary hospital health management centre. PARTICIPANTS We included 15-60 years old women who underwent at least one uterine examination from October 2017 to December 2020, excluding those who had undergone hysterectomy and menopause. PRIMARY AND SECONDARY OUTCOME MEASURES We estimated the incidence and prevalence rate of suspected adenomyosis. Conditional logistic regression was used to estimate associations between serum biomarkers and potential adenomyosis. Areas under the receiver-operating characteristic curves (AUC) were used to determine the cut-off point of the cancer antigen 125 (CA125) level for suspected adenomyosis. RESULTS A total of 30 629 women had uterus-related imaging examinations; 877 had suspected adenomyosis. The standardised incidence and prevalence of suspected adenomyosis was 1.32% and 2.35%, respectively, for all age groups. The conditional logistic regression analysis results showed that total bilirubin≥18.81 µmol/L (HR: 2.129; 95% CI 1.067 to 4.249; p<0.0321) and CA125 levels (HR: 1.014; 95% CI 1.002 to 4.731; p<0.0273) were positively correlated with onset of suspected adenomyosis; body mass index>24 kg/m2 (HR: 1.262; 95% CI 1.055 to 1.511; p<0.0109), CA125 levels (HR: 1.007; 95% CI 1.006 to 1.009; p<0.0001), and blood platelet levels (HR: 1.002; 95% CI 1 to 1.003; p<0.0141) were positively correlated with potential adenomyosis. The optimal cut-off of CA125 for new suspected adenomyosis was 10.714 U/mL, with a sensitivity of 77.42%, specificity of 53.76%, and AUC of 0.7841 (95% CI 0.7276 to 0.8407). CONCLUSIONS The disease burden of suspected adenomyosis remains huge and can be informed by biomarkers. The disease-specific threshold of CA125 will support further preventive strategy development in population. TRIAL REGISTRATION NUMBER ChiCTR2100049520, 2021/8/2.
Collapse
Affiliation(s)
| | - Xueyao Su
- Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Nanchong Central Hospital, North Sichuan Medical University, Nanchong, China
| | - Lijun Zhang
- Chongqing Medical University, Chongqing, China
| | - Wei Xu
- Chongqing Medical University, Chongqing, China
| | - Yang Pu
- Chongqing Medical University, Chongqing, China
| | - Fan Xu
- Nanchong Central Hospital, North Sichuan Medical University, Nanchong, China
| | - Ruoyan Gong
- Chongqing Medical University, Chongqing, China
| | | | - Yuxian Nie
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Qiuling Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zheng D, Bashir M, Li Z. ERα prevents tumorigenesis of both liver and breast cancer cells through CCN5. Biochem Biophys Res Commun 2023; 672:103-112. [PMID: 37343316 DOI: 10.1016/j.bbrc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Estrogen receptor alpha (ERα)-mediated estrogen signaling has also shown to prevent hepatic tumorigenesis in mice. Consistent with this, hormone replacement therapy with estrogen supplementation dramatically reduced the risk of hepatocellular carcinoma. Silencing of ERα is also a key event for the transformation of ERα-positive breast cancer cells into malignant triple-negative breast cancer cells. However, the mechanisms underlying ERα-mediated prevention of both hepatic and mammary tumorigenesis in humans are still unclear. Here, we present a functional genomics study of ERα targeting by comparing human liver cancer cells with human breast cancer cells using "loss or gain of function" genetic assays of ERα in vitro and in vivo. We discover that cellular communication network factor 5 (CCN5) is a direct downstream target of ERα; ERα suppresses growth and prevents tumorigenesis and malignant transformation of both liver and breast cancer cells through CCN5 in humans. The ERα-CCN5 regulatory axis functions as suppressors for both hepatic and mammary tumors, which is a common mechanism of preventing tumorigenesis for both liver cancer and breast cancer in humans.
Collapse
Affiliation(s)
- Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, Fujian Province, 350112, China
| | - Muniba Bashir
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia
| | - Zhaoyu Li
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia.
| |
Collapse
|
8
|
Evaluation of the gene encoding carnitine transporter (OCTN2/SLC22A5) expression in human breast cancer and its association with clinicopathological characteristics. Mol Biol Rep 2023; 50:2061-2066. [PMID: 36539562 DOI: 10.1007/s11033-022-08152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fatty acid oxidation (FAO) is a major energy-generating process in the mitochondria and supports proliferation, growth, and survival of cancer cells. L-Carnitine is an essential co-factor for carrying long-chain fatty acids into the mitochondria. The entry of l-carnitine across cell membrane is regulated by OCTN2 (SLC22A5). Thus, it can plays a significant role in the mitochondrial fatty acid oxidation. This study aimed to evaluate the OCTN2 expression and its association with clinicopathological characteristics in breast cancer. METHODS In this work, OCTN2 was examined in 54 pairs of fresh samples of breast cancer (BC) and adjacent noncancerous tissue using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC). The IHC approach was also used to investigate the expression of additional clinicopathological features. RESULTS The present research findings revealed that the relative expression of OCTN2 in BC tissues was substantially higher than the adjacent normal tissues. This up-regulation was correlated positively with tumor size and Ki-67 and negatively with the progesterone receptor (PR) status, providing evidence of the opposite effects of OCTN2 and PR on tumor development. CONCLUSION The study shows that the OCTN2 expression in BC patients may be used as a prognostic biomarker and a tumor oncogene. As a result, it could be considered a possible therapeutic target. Nevertheless, the significance of the findings needs to be confirmed by further studies.
Collapse
|
9
|
Systems Network Pharmacology-Based Prediction and Analysis of Potential Targets and Pharmacological Mechanism of Actinidia chinensis Planch. Root Extract for Application in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2116006. [PMID: 36193154 PMCID: PMC9526650 DOI: 10.1155/2022/2116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Traditional Chinese medicine (TCM) sometimes plays a crucial role in advanced cancer treatment. Despite the significant therapeutic efficacy in hepatocellular carcinoma (HCC) that Actinidia chinensis Planch root extract (acRoots) has proven, its complex composition and underlying mechanism have not been fully elucidated. Therefore, this study analyzed the multiple chemical compounds in acRoots and their targets via network pharmacology and bioinformatics analysis, with the overarching goal of revealing the potential mechanisms of the anti-HCC effect. Methods The main ingredients contained in acRoots were initially screened from the traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the candidate bioactive ingredient targets were identified using DrugBank and the UniProt public databases. Second, the biological processes of the targets of active molecules filtered from the ingredients of acRoots were evaluated using gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Third, weighted gene coexpression network analysis (WGCNA) was performed to identify gene coexpression modules associated with HCC. The hub genes of acRoots in HCC were defined via contrasting the above module eigengenes with candidate target genes of acRoots. Furthermore, the target-pathway network was analyzed to explore the mechanism for anti-HCC effect of hub genes. Kaplan–Meier plotter database analysis was performed to validate the hub genes of acRoots correlation with prognostic values in HCC. In order to verify the results of the network pharmacological analysis, we performed a molecular docking approach on the active ingredients and key targets using the Discovery Studio software. The viability of SMMC-7721 and HL-7702 cells was determined by Cell counting kit-8 (CCK-8) after being treated with different concentrations of (+)-catechin (0, 50, 100, 150, 200, and 250 g/ml) for 24, 48, and 72 hours, respectively. Finally, qRT-PCR and Western blot involving human hepatocarcinoma cells were utilized to verify the impact of (+)-catechin on the hub genes associated with prognosis. Results 6 out of 26 active ingredients extracted from TCMSP were deemed as the core ingredients of acRoots. 175 bioactive-ingredient targets of acRoots were obtained and a bioactive-ingredient targets network was established correspondingly. The biological processes (BP) of target genes mainly involved processes, such as toxic substance and wounding. The results of KEGG pathways indicated that the target genes were mainly enriched in pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, and other pathways. Also, the two hub genes (i.e., ESR1 and CAT) were closely associated with the prognosis of HCC patients. As a consequence, we predicated a series of signaling pathways, including estrogen signaling pathway and longevity regulation pathway, through which acRoots could facilitate the treatment for HCC. The molecular docking experiment ascertained that ESR1 and CAT had an effective binding force with (+)-catechin, one of the core ingredients of acRoots. Furthermore, (+)-catechin inhibited SMMC-7721 cell growth in a dose-dependent manner and a time-dependent manner. Finally, we suggest that the expression level of ESR1 and CAT is positively related to the (+)-catechin concentrations in in-vitro experiments. Conclusion The bioactive ingredients of acRoots, including quercetin, (+)-catechin, beta-sitosterol, and aloe-emodin, have synergistic interactions in reinforcing the anticancer effect in HCC. Evidently, acRoots took effect by regulating multitargets and multipathways through its active ingredients. Further, (+)-catechin, the possible paramount anti-HCC active ingredient in acRoots, helped improve the prognosis of HCC patients by increasing the expression of ESR1 and CAT. Additionally, the findings yielded provide a conceptual guidance for the clinical treatment of HCC and the methods adopted are potentially applicable in the future comprehensive analysis of the underlying mechanisms of TCMs.
Collapse
|
10
|
Aljabban J, Rohr M, Syed S, Cohen E, Hashi N, Syed S, Khorfan K, Aljabban H, Borkowski V, Segal M, Mukhtar M, Mohammed M, Boateng E, Nemer M, Panahiazar M, Hadley D, Jalil S, Mumtaz K. Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data. World J Gastrointest Oncol 2022; 14:1856-1873. [PMID: 36187396 PMCID: PMC9516659 DOI: 10.4251/wjgo.v14.i9.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a cause of hepatocellular carcinoma (HCC). Interestingly, this process is not necessarily mediated through cirrhosis and may in fact involve oncogenic processes. Prior studies have suggested specific oncogenic gene expression pathways were affected by viral regulatory proteins. Thus, identifying these genes and associated pathways could highlight predictive factors for HCC transformation and has implications in early diagnosis and treatment.
AIM To elucidate HBV oncogenesis in HCC and identify potential therapeutic targets.
METHODS We employed our Search, Tag, Analyze, Resource platform to conduct a meta-analysis of public data from National Center for Biotechnology Information’s Gene Expression Omnibus. We performed meta-analysis consisting of 155 tumor samples compared against 185 adjacent non-tumor samples and analyzed results with ingenuity pathway analysis.
RESULTS Our analysis revealed liver X receptors/retinoid X receptor (RXR) activation and farnesoid X receptor/RXR activation as top canonical pathways amongst others. Top upstream regulators identified included the Ras family gene rab-like protein 6 (RABL6). The role of RABL6 in oncogenesis is beginning to unfold but its specific role in HBV-related HCC remains undefined. Our causal analysis suggests RABL6 mediates pathogenesis of HBV-related HCC through promotion of genes related to cell division, epigenetic regulation, and Akt signaling. We conducted survival analysis that demonstrated increased mortality with higher RABL6 expression. Additionally, homeobox A10 (HOXA10) was a top upstream regulator and was strongly upregulated in our analysis. HOXA10 has recently been demonstrated to contribute to HCC pathogenesis in vitro. Our causal analysis suggests an in vivo role through downregulation of tumor suppressors and other mechanisms.
CONCLUSION This meta-analysis describes possible roles of RABL6 and HOXA10 in the pathogenesis of HBV-related HCC. RABL6 and HOXA10 represent potential therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Eli Cohen
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Naima Hashi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Sharjeel Syed
- Department of Medicine, University of Chicago Hospitals, Chicago, IL 60637, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno, Fresno, CA 93701, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Frankfort, IL 60423, United States
| | - Emmanuel Boateng
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Mary Nemer
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dexter Hadley
- Department of Pathology, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Sajid Jalil
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Khalid Mumtaz
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
12
|
Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:155. [PMID: 35852639 DOI: 10.1007/s12032-022-01759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer in the world. It is the third leading cause of cancer-related mortality. In more than 80% of people liver cancer-related death is due to its poor prognosis. The flavonoids obtained from natural sources have potent therapeutic effects on HCC. The flavonoid rich methanolic fraction obtained from ethyl acetate extract of leaf of Cestrum nocturnum (MFLCN) was analyzed by UPLC-QTOFMS/MS for the presence of different flavonoids. The physiochemical and pharmacokinetics properties of the identified flavonoids were performed by absorption, distribution, metabolism, excretion, and toxicity (ADMET). It was selected on the basis of Lipinski rule and hepatotoxicity evaluations. The potential gene dataset of HCC were taken from gene card database and targets compounds were selected from target net prediction. Gene ontology and pathway enrichment analysis of HCC was performed via enricher and David web tools. Cytoscape was used to visualize targets and network pathways. MFLCN contains 33 flavonoids. Among these flavonoids, apigenin was selected as principal active compound on the basis of their pharmacokinetic and ADMET properties. Apigenin has 92 targets out of 627 total targets related to HCC, while there was13 pathways in the target-pathway network. Results revealed that apigenin regulates cell proliferation and survival, primarily through different signaling pathways like estrogen, VEGF, PI3K/AKT1, TNF, FoXO, and Ras signaling pathways. Thus, integrating network pharmacology prediction with m-RNA and human protein atlas validation could be an effective method for understanding the molecular mechanism of apigenin on HCC.
Collapse
|
13
|
Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5975223. [PMID: 35872841 PMCID: PMC9307382 DOI: 10.1155/2022/5975223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Hepatoma is one of the most common malignant tumors. The incidence rate is high in developing countries, and China has the most significant number of cases. Dahuang is a classic traditional antitumor drug commonly used in China and has also been applied to treat hepatoma. However, the potential mechanism of Dahuang in treating hepatoma is not clear. Therefore, this study is aimed at elucidating the possible molecular mechanism and key targets of Dahuang using methods of network pharmacology, molecular docking, and survival analysis. Firstly, the active ingredients and key targets of Dahuang were analyzed through public databases, and then the drug-ingredient-target-disease network diagram of Dahuang against hepatoma was constructed. Five main active components and five core targets were determined according to the enrichment degree. Enrichment analysis demonstrated that Dahuang treated hepatoma through the multiple pathways in cancer. Additionally, molecular docking predicted that aloe-emodin and PIK3CG depicted the best binding energy. Survival analysis indicated that a high/ESR1 gene expression had a relatively good prognosis for patients with hepatoma (p < 0.05). In conclusion, the current study results demonstrated that Dahuang could treat hepatoma through a variety of active ingredients, targets, and multiantitumor pathways. Moreover, it effectively improved the prognosis of hepatoma patients. ESR1 is the potential key gene that is beneficial for the survival of hepatoma patients. Also, aloe-emodin and beta-sitosterol are the two main active crucial ingredients for hepatoma treatment. The study also provided some functional bases and references for the development of new drugs, target mining, and experimental animal research of hepatoma in the future.
Collapse
|
14
|
Khan SA, Lee TKW. Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidium monnieri in Treating Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:5400. [PMID: 35628212 PMCID: PMC9140548 DOI: 10.3390/ijms23105400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high mortality rate globally. For thousands of years, Cnidium monnieri has been used to treat human ailments and is regarded as a veritable treasure trove for drug discovery. This study has investigated the key active phytochemicals and molecular mechanisms of Cnidium monnieri implicated in curing HCC. We utilized the TCMSP database to collect data on the phytochemicals of Cnidium monnieri. The SwissTargetPrediction website tool was used to predict the targets of phytochemicals of Cnidium monnieri. HCC-related genes were retrieved from OncoDB.HCC and Liverome, two liver-cancer-related databases. Using the DAVID bioinformatic website tool, Gene Ontology (GO) and KEGG enrichment analysis were performed on the intersecting targets of HCC-related genes and active phytochemicals in Cnidium monnieri. A network of active phytochemicals and anti-HCC targets was constructed and analyzed using Cytoscape software. Molecular docking of key active phytochemicals was performed with anti-HCC targets using AutoDock Vina (version 1.2.0.). We identified 19 active phytochemicals in Cnidium monnieri, 532 potential targets of these phytochemicals, and 566 HCC-related genes. Results of GO enrichment indicated that Cnidium monnieri might be implicated in affecting gene targets involved in multiple biological processes, such as protein phosphorylation, negative regulation of the apoptotic process, which could be attributed to its anti-HCC effects. KEGG pathway analyses indicated that the PI3K-AKT signaling pathway, pathways in cancer, proteoglycans in cancer, the TNF signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and EGFR tyrosine kinase inhibitor resistance are the main pathways implicated in the anti-HCC effects of Cnidium monnieri. Molecular docking analyses showed that key active phytochemicals of Cnidium monnieri, such as ar-curcumene, diosmetin, and (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, can bind to core therapeutic targets EGFR, CASP3, ESR1, MAPK3, CCND1, and ERBB2. The results of the present study offer clues for further investigation of the anti-HCC phytochemicals and mechanisms of Cnidium monnieri and provide a basis for developing modern anti-HCC drugs based on phytochemicals in Cnidium monnieri.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
15
|
Wang R, Chen J, Yu H, Wei Z, Ma M, Ye X, Wu W, Chen H, Fu Z. Downregulation of estrogen receptor-α36 expression attenuates metastasis of hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1113-1123. [PMID: 35044086 DOI: 10.1002/tox.23469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to examine the role of estrogen receptor (ER)-α36 in the metastasis of hepatocellular carcinoma (HCC) and in the epithelial-mesenchymal transition (EMT). HCC HepG2 and Huh7 cells with the knocked-down level of ER-α36 expression were established. Cell growth and migration of the HepG2 and Huh7 cell variants were studied using MTS, transwell, and wound-healing assays, and the metastatic abilities of HepG2 cell variants were examined using a tail-vein injection model in nude mice. Levels of EMT markers, Src phosphorylation in HepG2 and Huh7 cell variants, and tumors formed by HepG2 cell variants in the nude mice were examined using Western blot and immunohistochemistry. We found that the growth and metastatic abilities of HepG2 and Huh7 cells with the knocked-down level of ER-α36 expression (HepG2/Si36 and Huh7/Si36) were significantly reduced, with increased levels of cytokeratin and E-Cadherin expression, and decreased levels of Vimentin, Snail, Slug and the Src phosphorylation, compared to the HCC cells transfected with an empty vector (HepG2/Vector and Huh7/Vector). We also found ER-α36 knockdown suppressed the lung metastasis of HepG2 cells with the involvement of EMT and the Src pathway in vivo. The Src inhibitor PP2 suppressed the growth and migration of HepG2/Vector and Huh7/Vector cells with decreased Vimentin, Snail, and Slug and increased cytokeratin and E-Cadherin expressions, but failed to induce the migration and the EMT markers in HepG2/Si36 and Huh7/Si36 cells. ER-α36 is involved in the metastasis of HCC cells through the regulation of EMT and the Src signaling pathway.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Jiaming Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Min Ma
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Intensive Care Unit, Huazhong University of Science and Technology Union Jiangbei Hospital, Wuhan, China
| | - Xueyan Ye
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Weiqi Wu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Hongfei Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Cancer Institute, Jianghan University, Wuhan, China
| |
Collapse
|
16
|
Mo M, Liu B, Luo Y, Tan JHJ, Zeng X, Zeng X, Huang D, Li C, Liu S, Qiu X. Construction and Comprehensive Analysis of a circRNA-miRNA-mRNA Regulatory Network to Reveal the Pathogenesis of Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:801478. [PMID: 35141281 PMCID: PMC8819184 DOI: 10.3389/fmolb.2022.801478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been demonstrated to be closely related to the carcinogenesis of human cancer in recent years. However, the molecular mechanism of circRNAs in the pathogenesis of hepatocellular carcinoma (HCC) has not been fully elucidated. We aimed to identify critical circRNAs and explore their potential regulatory network in HCC.Methods: The robust rank aggregation (RRA) algorithm and weighted gene co-expression network analysis (WGCNA) were conducted to unearth the differentially expressed circRNAs (DEcircRNAs) in HCC. The expression levels of DEcircRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). A circRNA-miRNA-mRNA regulatory network was constructed by computational biology, and protein-protein interaction (PPI) network, functional enrichment analysis, survival analysis, and infiltrating immune cells analysis were performed to uncover the potential regulatory mechanisms of the network.Results: A total of 22 DEcircRNAs were screened out from four microarray datasets (GSE94508, GSE97332, GSE155949, and GSE164803) utilizing the RRA algorithm. Meanwhile, an HCC-related module containing 404 circRNAs was identified by WGCNA analysis. After intersection, only four circRNAs were recognized in both algorithms. Following qRT-PCR validation, three circRNAs (hsa_circRNA_091581, hsa_circRNA_066568, and hsa_circRNA_105031) were chosen for further analysis. As a result, a circRNA-miRNA-mRNA network containing three circRNAs, 17 miRNAs, and 222 mRNAs was established. Seven core genes (ESR1, BUB1, PRC1, LOX, CCT5, YWHAZ, and DDX39B) were determined from the PPI network of 222 mRNAs, and a circRNA-miRNA-hubgene network was also constructed. Functional enrichment analysis suggested that these seven hub genes were closely correlated with several cancer related pathways. Survival analysis revealed that the expression levels of the seven core genes were significantly associated with the prognosis of HCC patients. In addition, we also found that these seven hub genes were remarkably related to the infiltrating levels of immune cells.Conclusion: Our research identified three pivotal HCC-related circRNAs and provided novel insights into the underlying mechanisms of the circRNA-miRNA-mRNA regulatory network in HCC.
Collapse
Affiliation(s)
- Meile Mo
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bihu Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yihuan Luo
- Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jennifer Hui Juan Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zeng
- Department of Occupational and Environmental Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Changhua Li
- Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Xiaoqiang Qiu, ; Shun Liu,
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Xiaoqiang Qiu, ; Shun Liu,
| |
Collapse
|
17
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
18
|
Bhat M, Pasini E, Pastrello C, Angeli M, Baciu C, Abovsky M, Coffee A, Adeyi O, Kotlyar M, Jurisica I. Estrogen Receptor 1 Inhibition of Wnt/β-Catenin Signaling Contributes to Sex Differences in Hepatocarcinogenesis. Front Oncol 2021; 11:777834. [PMID: 34881186 PMCID: PMC8645636 DOI: 10.3389/fonc.2021.777834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with female sex being independently protective against HCC incidence and progression. The aim of our study was to understand the mechanism of estrogen receptor signaling in driving sex differences in hepatocarcinogenesis. Methods We integrated 1,268 HCC patient sample profiles from publicly available gene expression data to identify the most differentially expressed genes (DEGs). We mapped DEGs into a physical protein interaction network and performed network topology analysis to identify the most important proteins. Experimental validation was performed in vitro on HCC cell lines, in and in vivo, using HCC mouse model. Results We showed that the most central protein, ESR1, is HCC prognostic, as increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI 0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell lines with ESR1 and exposure to estradiol affected expression of genes involved in the Wnt/β-catenin signaling pathway. ER-α (protein product of ESR1) agonist treatment in a mouse model of HCC resulted in significantly longer survival and decreased tumor burden (p<0.0001), with inhibition of Wnt/β-Catenin signaling. In vitro experiments confirmed colocalization of β-catenin with ER-α, leading to inhibition of β-catenin-mediated transcription of target genes c-Myc and Cyclin D1. Conclusion Combined, the centrality of ESR1 and its inhibition of the Wnt/β-catenin signaling axis provide a biological rationale for protection against HCC incidence and progression in women.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angella Coffee
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Oyedele Adeyi
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Wu Y, Zhang M, Bi X, Hao L, Liu R, Zhang H. ESR1 mediated circ_0004018 suppresses angiogenesis in hepatocellular carcinoma via recruiting FUS and stabilizing TIMP2 expression. Exp Cell Res 2021; 408:112804. [PMID: 34487732 DOI: 10.1016/j.yexcr.2021.112804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Angiogenesis has been certified to account for tumor pathobiology. Circular RNAs (circRNAs) have been demonstrated to be involved in angiogenesis-related diseases, including hepatocellular carcinoma (HCC). Nevertheless, the regulatory roles of most circRNAs remain obscure. This study aims to uncover the function of hsa_circ_0004018 on angiogenesis in HCC. Firstly, quantitative real-time RT-PCR (RT-qPCR) analyzed that circ_0004018 was definitely down-regulated in HCC. Western blot analysis was conducted to detect the protein level of fused protein in sarcoma (FUS) and TIMP metallopeptidase inhibitor 2 (TIMP2). Functional assays were carried out to assess the impacts of circ_0004018 on HCC. From the experimental results, we found that overexpression of circ_0004018 significantly inhibited angiogenesis in HCC. The regulatory mechanism of circ_0004018 in HCC was determined by chromatin immunoprecipitation (ChIP), luciferase reporter assays and RNA immunoprecipitation (RIP) assay. Therefore, we proved that estrogen receptor 1 (ESR1) mediated circ_0004018 regulated TIMP2 by recruiting FUS. A series of rescue assays verified that circ_0004018 participated in angiogenesis in HCC via modulating TIMP2. In summary, this paper disclosed that ESR1 activated circ_0004018 inhibited angiogenesis in HCC via binding to FUS and stabilizing TIMP2 expression.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Mingsheng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Xiaojun Bi
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Li Hao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Rong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430022, Hubei, PR China
| | - Haiyan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
20
|
Yu J, Ma S, Tian S, Zhang M, Ding X, Liu Y, Yang F, Hu Y, Xuan G, Zhou X, Wang J, Han Y. Systematic Construction and Validation of a Prognostic Model for Hepatocellular Carcinoma Based on Immune-Related Genes. Front Cell Dev Biol 2021; 9:700553. [PMID: 34671598 PMCID: PMC8520962 DOI: 10.3389/fcell.2021.700553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a highly aggressive tumor, has high incidence and mortality rates. Recently, immunotherapies have been shown to be a promising treatment in HCC. The results of either the CheckMate-040 or IMbrave 150 trials demonstrate the importance of immunotherapy in the systemic treatment of liver cancer. Thus, in this study, we tried to establish a reliable prognostic model for liver cancer based on immune-related genes (IRGs) and to provide a new insight for immunotherapy of HCC. In this study, we used four datasets that incorporated 851 HCC samples, including 340 samples with complete clinical information from the cancer genome atlas (TCGA) database, to establish an effective model for predicting the prognosis of HCC patients based on the differential expression of IRGs and validated the prognostic model using the data from International Cancer Genome Consortium (ICGC). The top 6 characteristic IRGs identified by protein-protein interaction (PPI) network analysis, MMP9, FOS, CAT, ESR1, ANGPTL3, and KLKB1, were selected for further study. In addition, we assessed the correlations of the six characteristic IRGs with the tumor immune microenvironment, clinical stage, and sensitivity to anti-cancer drugs. We also explored whether the differential expression of the characteristic IRGs was specific to HCC or present in pan-cancer. The expression levels of the six characteristic IRGs were significantly different between most tumor tissues and adjacent normal tissues. In addition, these characteristic IRGs showed a strong association with immune cell infiltration in HCC patients. We found that MMP9 and ESR1 were independent prognostic factors for HCC, while CAT, ESR1, and KLKB1 were associated with the clinical stage. We collected HCC paraffin sections from 24 patients from Xijing hospital to identify the differential expression of the five genes (MMP9, ESR1, CAT, FOS, and KLKB1). Finally, the results of decision curve analysis (DCA) and nomogram revealed that our models provided a prognostic benefit for most HCC patients and the predicted overall survival (OS) was consistent with the actual OS. In conclusion, we systemically constructed a novel prognostic model that provides new insights into HCC.
Collapse
Affiliation(s)
- Jiahao Yu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xiaopeng Ding
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Fangfang Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Shen YT, Huang X, Zhang G, Jiang B, Li CJ, Wu ZS. Pan-Cancer Prognostic Role and Targeting Potential of the Estrogen-Progesterone Axis. Front Oncol 2021; 11:636365. [PMID: 34322374 PMCID: PMC8311599 DOI: 10.3389/fonc.2021.636365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Estrogen receptors (ESRs) and progesterone receptors (PGRs) are associated with the development and progression of various tumors. The feasibility of ESRs and PGRs as prognostic markers and therapeutic targets for multiple cancers was evaluated via pan-cancer analysis. Methods The pan-cancer mRNA expression levels, genetic variations, and prognostic values of ESR1, ESR2, and PGR were analyzed using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and cBioPortal. The expression levels of ERa, ERb, and PGR proteins were detected by immunohistochemical staining using paraffin-embedded tissue specimens of ovarian serous cystadenocarcinoma (OV) and uterine endometrioid adenocarcinoma (UTEA). Correlation between immunomodulators and immune cells was determined based on the Tumor and Immune System Interaction Database (TISIDB). Results ESR1, ESR2, and PGR mRNAs were found to be differentially expressed in different cancer types, and were associated with tumor progression and clinical prognosis. ERa, ERb, and PGR proteins were further determined to be significantly differentially expressed in OV and UTEA via immunohistochemical staining. The expression of ERa protein was positively correlated with a high tumor stage, whereas the expression of PGR protein was conversely associated with a high tumor stage in patients with OV. In patients with UTEA, the expression levels of both ERa and PGR proteins were conversely associated with tumor grade and stage. In addition, the expression levels of ESR1, ESR2, and PGR mRNAs were significantly associated with the expression of immunomodulators and immune cells. Conclusion ESR1, ESR2, and PGR are potential prognostic markers and therapeutic targets, as well as important factors for the prediction, evaluation, and individualized treatment in several cancer types.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Jiang
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Cheng-Jun Li
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Meng J, Wang L, Hou J, Yang X, Lin K, Nan H, Li M, Wu X, Chen X. CCL23 suppresses liver cancer progression through the CCR1/AKT/ESR1 feedback loop. Cancer Sci 2021; 112:3099-3110. [PMID: 34050704 PMCID: PMC8353945 DOI: 10.1111/cas.14995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
With the ability to activate certain signaling pathways, chemokines and their receptors may facilitate tumor progression at key steps, including proliferation, immunomodulation, and metastasis. Nevertheless, their prognostic value and regulatory mechanism warrant thorough studies in liver cancer. Here, by screening the expression profiles of all known chemokines in independent liver cancer cohorts, we found that CCL23 was frequently downregulated at mRNA and protein levels in liver cancer. Decreased CCL23 correlated with shortened patient survival, enrichment of signatures related to cancer stem cell property, and metastatic potential. In addition to serving as a tumor suppressor through recruiting CD8+ T cell infiltration in liver cancer, CCL23 could repress cancer cell proliferation, stemness, and mobility. Mechanistically, the expression of CCL23 was transcriptionally regulated by ESR1. On the other hand, CCL23 could suppress the activation of AKT signaling and thus promote the expression of ESR1, forming a feedback loop in liver cancer cells. Collectively, these findings reveal that loss of CCL23 drives liver cancer progression by coordinating immune evasion and metastasis initiation. Targeting the ESR1/CCL23/CCR1/AKT regulatory axis could be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jin Meng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xiaofeng Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ke Lin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Man Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
23
|
Xu T, Wang L, Jia P, Song X, Zhao Z. An Integrative Transcriptomic and Methylation Approach for Identifying Differentially Expressed Circular RNAs Associated with DNA Methylation Change. Biomedicines 2021; 9:biomedicines9060657. [PMID: 34201256 PMCID: PMC8227141 DOI: 10.3390/biomedicines9060657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 01/27/2023] Open
Abstract
Recently, accumulating evidence has supported that circular RNA (circRNA) plays important roles in tumorigenesis by regulating gene expression at transcriptional and post-transcriptional levels. Expression of circRNAs can be epigenetically silenced by DNA methylation; however, the underlying regulatory mechanisms of circRNAs by DNA methylation remains largely unknown. We explored this regulation in hepatocellular carcinoma (HCC) using genome-wide DNA methylation and RNA sequencing data of the primary tumor and matched adjacent normal tissues from 20 HCC patients. Our pipeline identified 1012 upregulated and 747 downregulated circRNAs (collectively referred to as differentially expressed circRNAs, or DE circRNAs) from HCC RNA-seq data. Among them, 329 DE circRNAs covered differentially methylated sites (adjusted p-value < 0.05, |ΔM| > 0.5) in circRNAs’ interior and/or flanking regions. Interestingly, the corresponding parental genes of 46 upregulated and 31 downregulated circRNAs did not show significant expression change in the HCC tumor versus normal samples. Importantly, 34 of the 77 DE circRNAs (44.2%) had significant correlation with DNA methylation change in HCC (Spearman’s rank-order correlation, p-value < 0.05), suggesting that aberrant DNA methylation might regulate circular RNA expression in HCC. Our study revealed genome-wide differential circRNA expression in HCC. The significant correlation with DNA methylation change suggested that epigenetic regulation might act on both mRNA and circRNA expression. The specific regulation in HCC and general view in other cancer or disease requires further investigation.
Collapse
Affiliation(s)
- Tianyi Xu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.X.); (P.J.)
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - LiPing Wang
- Department of Biobank, Clinical Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.X.); (P.J.)
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Correspondence: (X.S.); (Z.Z.)
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.X.); (P.J.)
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (X.S.); (Z.Z.)
| |
Collapse
|
24
|
Carruba G. Estrogens in Hepatocellular Carcinoma: Friends or Foes? Cancers (Basel) 2021; 13:cancers13092085. [PMID: 33925807 PMCID: PMC8123464 DOI: 10.3390/cancers13092085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Today, we know that estrogen hormones are required for the development and function of many organs, such as the liver, in both males and females. However, in some circumstances, estrogen excess may be implicated in the appearance of various chronic diseases, including cancer. This review will inspect the results of several studies to better understand the mechanisms responsible for estrogens to change from protective into harmful hormones in human liver. Abstract Estrogens are recognized as key players in physiological regulation of various, classical and non-classical, target organs, and tissues, including liver development, homeostasis, and function. On the other hand, multiple, though dispersed, experimental evidence is highly suggestive for the implication of estrogen in development and progression of hepatocellular carcinoma. In this paper, data from our own studies and the current literature are reviewed to help understanding this apparent discrepancy.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Servizio di Internazionalizzazione e Ricerca Sanitaria (SIRS), Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS)-Civico, Di Cristina, Benfratelli-Palermo, Piazza N. Leotta 2, 90127 Palermo, Italy
| |
Collapse
|
25
|
Collins JM, Wang D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: racial differences and the regulatory role of ESR1. Drug Metab Pers Ther 2021; 36:205-214. [PMID: 33823094 DOI: 10.1515/dmpt-2020-0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The function and expression of cytochrome P450 (CYP) drug metabolizing enzymes is highly variable, greatly affecting drug exposure, and therapeutic outcomes. The expression of these enzymes is known to be controlled by many transcription factors (TFs), including ligand-free estrogen receptor alpha (ESR1, in the absence of estrogen). However, the relationship between the expression of ESR1, other TFs, and CYP enzymes in human liver is still unclear. METHODS Using real-time PCR, we quantified the mRNA levels of 12 CYP enzymes and nine TFs in 246 human liver samples from European American (EA, n = 133) and African American (AA, n = 113) donors. RESULTS Our results showed higher expression levels of ESR1 and six CYP enzymes in EA than in AA. Partial least square regression analysis showed that ESR1 is the top-ranking TF associating with the expression of eight CYP enzymes, six of which showed racial difference in expression. Conversely, four CYP enzymes without racial difference in expression did not have ESR1 as a top-ranking TF. These results indicate that ESR1 may contribute to variation in CYP enzyme expression between these two ancestral backgrounds. CONCLUSIONS These results are consistent with our previous study showing ESR1 as a master regulator for the expression of several CYP enzymes. Therefore, factors affecting ESR1 expression may have broad influence on drug metabolism through altered expression of CYP enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Histone Deacetylase Inhibitors in the Treatment of Hepatocellular Carcinoma: Current Evidence and Future Opportunities. J Pers Med 2021; 11:jpm11030223. [PMID: 33809844 PMCID: PMC8004277 DOI: 10.3390/jpm11030223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide with a continuous increasing prevalence. Despite the introduction of targeted therapies like the multi-kinase inhibitor sorafenib, treatment outcomes are not encouraging. The prognosis of advanced HCC is still dismal, underlying the need for novel effective treatments. Apart from the various risk factors that predispose to the development of HCC, epigenetic factors also play a functional role in tumor genesis. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone lysine residues of proteins, such as the core nucleosome histones, in this way not permitting DNA to loosen from the histone octamer and consequently preventing its transcription. Considering that HDAC activity is reported to be up-regulated in HCC, treatment strategies with HDAC inhibitors (HDACIs) showed some promising results. This review focuses on the use of HDACIs as novel anticancer agents and explains the mechanisms of their therapeutic effects in HCC.
Collapse
|
27
|
Shen M, Xu M, Zhong F, Crist MC, Prior AB, Yang K, Allaire DM, Choueiry F, Zhu J, Shi H. A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2. Cells 2021; 10:cells10020455. [PMID: 33672651 PMCID: PMC7924215 DOI: 10.3390/cells10020455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) that is triggered by metabolic defects is one of the most malignant liver cancers. A much higher incidence of HCC among men than women suggests the protective roles of estrogen in HCC development and progression. To begin to understand the mechanisms involving estrogenic metabolic effects, we compared cell number, viability, cytotoxicity, and apoptosis among HCC-derived HepG2 cells that were treated with different concentrations of 2-deoxy-d-glucose (2-DG) that blocks glucose metabolism, oxamate that inhibits lactate dehydrogenase and glycolysis, or oligomycin that blocks ATP synthesis and mitochondrial oxidative phosphorylation. We confirmed that HepG2 cells primarily utilized glycolysis followed by lactate fermentation, instead of mitochondrial oxidative phosphorylation, for cell growth. We hypothesized that estrogen altered energy metabolism via its receptors to carry out its anticancer effects in HepG2 cells. We treated cells with 17β-estradiol (E2), 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) an estrogen receptor (ER) α (ERα) agonist, or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), an ERβ agonist. We then used transcriptomic and metabolomic analyses and identified differentially expressed genes and unique metabolite fingerprints that are produced by each treatment. We further performed integrated multi-omics analysis, and identified key genes and metabolites in the gene–metabolite interaction contributed by E2 and ER agonists. This integrated transcriptomic and metabolomic study suggested that estrogen acts on estrogen receptors to suppress liver cancer cell growth via altering metabolism. This is the first exploratory study that comprehensively investigated estrogen and its receptors, and their roles in regulating gene expression, metabolites, metabolic pathways, and gene–metabolite interaction in HCC cells using bioinformatic tools. Overall, this study provides potential therapeutic targets for future HCC treatment.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - McKenzie C. Crist
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Anjali B. Prior
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Danielle M. Allaire
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Fouad Choueiry
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| |
Collapse
|
28
|
Sun N, Zhong X, Wang S, Zeng K, Sun H, Sun G, Zou R, Liu W, Liu W, Lin L, Song H, Lv C, Wang C, Zhao Y. ATXN7L3 positively regulates SMAD7 transcription in hepatocellular carcinoma with growth inhibitory function. EBioMedicine 2020; 62:103108. [PMID: 33186807 PMCID: PMC7670205 DOI: 10.1016/j.ebiom.2020.103108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, with unmet need for the pharmacological therapy. The functions of ATXN7L3 in HCC progression are not known. Methods RNA sequence, quantitative real-time PCR, and western blot were performed to detect gene expression. Chromatin immunoprecipitation was performed to detect possible mechanisms. Immunohistochemical stain was performed to examine the protein expression. Colony formation, cell growth curve and xenograft tumor experiments were performed to examine cell growth in vitro and in vivo. Findings ATXN7L3 functions as a coactivator for ERα-mediated transactivation in HCC cells, thereby contributing to enhanced SMAD7 transcription. ATXN7L3 is recruited to the promoter regions of SMAD7 gene, thereby regulating histone H2B ubiquitination level, to enhance the transcription of SMAD7. A series of genes regulated by ATXN7L3 were identified. Moreover, ATXN7L3 participates in suppression of tumor growth. In addition, ATXN7L3 is lower expressed in HCC samples, and the lower expression of ATXN7L3 positively correlates with poor clinical outcome in patients with HCC. Interpretation This study demonstrated that ATXN7L3 is a novel regulator of SMAD7 transcription, subsequently participating in inhibition of tumor growth in HCC, which provides an insight to support a previously unknown role of ATXN7L3 in HCC progression. Fund This work was funded by 973 Program Grant from the Ministry of Science and Technology of China (2013CB945201), National Natural Science Foundation of China (31871286, 81872015, 31701102, 81702800, 81902889), Foundation for Special Professor of Liaoning Province, Natural Science Foundation of Liaoning Province (No.20180530072); China Postdoctoral Science Foundation (2019M651164).
Collapse
Affiliation(s)
- Ning Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Xinping Zhong
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, 110001, China
| | - Shengli Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Kai Zeng
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Ge Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Wei Liu
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Wensu Liu
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Lin Lin
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Huijuan Song
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Chi Lv
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, 110004, China
| | - Chunyu Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Yue Zhao
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province 110001, China.
| |
Collapse
|
29
|
Critical role of estrogen in the progression of chronic liver diseases. Hepatobiliary Pancreat Dis Int 2020; 19:429-434. [PMID: 32299655 DOI: 10.1016/j.hbpd.2020.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Estrogens regulate sexual function and also have a significant role in various pathophysiological processes. Estrogens have a non-reproductive role as the modulators of the immune system, growth, neuronal function, and metabolism. Estrogen receptors are expressed in the liver and their impaired expression and function are implicated with obesity and liver associated metabolic dysfunctions. The purpose of the current review is to discuss the disparity role of estrogens on several forms of liver diseases. DATA SOURCES A comprehensive search in PubMed and EMBASE was conducted using the keywords "estrogens and liver diseases", "estradiol and liver diseases", "hormones and liver diseases", "endocrine function in liver diseases", and "female hormones in liver diseases". Relevant papers published before September 30, 2019 were included. RESULTS The present review confirms the imperative role of estrogen in various forms of chronic liver diseases. Estrogens play a key role in maintaining homeostasis and make the liver less susceptible to several forms of chronic liver diseases in healthy premenopausal individuals. In contrast, clinical studies also showed increased estrogen levels with chronic liver diseases. CONCLUSIONS Several studies reported the protective role of estrogens in chronic liver diseases and this has been widely accepted and confirmed in experimental studies using ovariectomized rat models. However, in a few clinical studies, increased estrogen levels are also implicated in chronic liver diseases. Therefore, further studies are warranted at molecular level to explore the role of estrogen in various forms of chronic liver diseases.
Collapse
|
30
|
Sanaei M, Kavoosi F. Effect of 5-aza-2'-deoxycytidine on Estrogen Receptor Alpha/Beta and DNA Methyltransferase 1 Genes Expression, Apoptosis Induction, and Cell Growth Prevention of the Colon Cancer HT 29 Cell Line. Int J Prev Med 2020; 11:147. [PMID: 33209217 PMCID: PMC7643574 DOI: 10.4103/ijpvm.ijpvm_140_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 11/15/2022] Open
Abstract
Background: Cellular activity such as gene expression is regulated by epigenetic mechanisms and modifications. In mammals, DNA methylation is an essential component of the epigenetic machinery of the cells. DNA hypermethylation of the several tumor suppressor genes (TSGs) is associated with transcriptional gene silencing resulting in colon tumorigenesis. Overexpression of DNA methyltransferase 1 (DNMT1) in colon cancer has been reported in several studies. The methylation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) have been demonstrated in various cancers. Previously, we indicated that genistein can reactivate ERα in hepatocellular carcinoma (HCC). The present study was designed to investigate the effect of 5-aza-2′-deoxycytidine (5-aza-CdR) on ERα/ERβ and DNMT1 gene expression, apoptosis induction, and cell viability inhibition of the colon carcinoma HT 29 cell line. Methods: The effect of 5-Aza-CdR on the colon carcinoma HT 29 cell viability was measured by MTT assay. To determine the apoptotic cells, the cells were assessed using the Annexin V-FITC/PI detection kit. The expression of ERα, ERβ, and DNMT1 genes was determined using real-time quantitative RT-PCR. Results: The results indicated that 5-Aza-CdR can inhibit cell growth significantly versus control groups, induce significant apoptosis, down-regulate DNMT1, and up-regulate ERα and ERβ genes expression at different time periods. The percentage of apoptotic cells was 85.83% and 86.84% after 24 and 48 h, respectively (P < 0.01). The IC50 value for 5-Aza-CdR was obtained at 2.5 μM. Conclusions: 5-Aza-CdR can up-regulate ERα and ERβ genes expression through DNMT1 down-regulation resulting in apoptosis induction and cell growth prevention.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
31
|
Qin X, Song Y. Bioinformatics Analysis Identifies the Estrogen Receptor 1 (ESR1) Gene and hsa-miR-26a-5p as Potential Prognostic Biomarkers in Patients with Intrahepatic Cholangiocarcinoma. Med Sci Monit 2020; 26:e921815. [PMID: 32435051 PMCID: PMC7257878 DOI: 10.12659/msm.921815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma arises from the epithelial cells of the bile ducts and is associated with poor prognosis. This study aimed to use bioinformatics analysis to identify molecular biomarkers of intrahepatic cholangiocarcinoma and their potential mechanisms. Material/Methods MicroRNA (miRNA) and mRNA microarrays from GSE53870 and GSE32879 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) associated with prognosis were identified using limma software and Kaplan-Meier survival analysis. Predictive target genes of the DEMs were identified using miRWalk, miRTarBase, miRDB, and TargetScan databases of miRNA-binding sites and targets. Target genes underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were analyzed by constructing the protein-protein interaction (PPI) network using Cytoscape. DEMs validated the hub genes, followed by construction of the miRNA-gene regulatory network. Results Twenty-five DEMs were identified. Fifteen DEMs were upregulated, and ten were down-regulated. Kaplan-Meier survival analysis identified seven upregulated DEMs and nine down-regulated DEMs that were associated with the overall survival (OS), and 130 target genes were selected. GO analysis showed that target genes were mainly enriched for metabolism and development processes. KEGG analysis showed that target genes were mainly enriched for cancer processes and some signaling pathways. Fourteen hub genes identified from the PPI network were associated with the regulation of cell proliferation. The overlap between hub genes and DEMs identified the estrogen receptor 1 (ESR1) gene and hsa-miR-26a-5p. Conclusions Bioinformatics analysis identified ESR1 and hsa-miR-26a-5p as potential prognostic biomarkers for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yuning Song
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
32
|
Huang J, Chen F, Zhong Z, Tan HY, Wang N, Liu Y, Fang X, Yang T, Feng Y. Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation. Front Pharmacol 2020; 11:414. [PMID: 32308626 PMCID: PMC7145978 DOI: 10.3389/fphar.2020.00414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner.
Collapse
Affiliation(s)
- Jihan Huang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuting Liu
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyuan Fang
- Marine College, Shandong University (Weihai), Weihai, China
| | - Tao Yang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
33
|
Chen F, Ni X, Chen L, Wang X, Xu J. miR-939-3p promotes epithelial-mesenchymal transition and may be used as a prognostic marker in hepatocellular carcinoma. Oncol Lett 2020; 19:2727-2732. [PMID: 32218824 PMCID: PMC7068245 DOI: 10.3892/ol.2020.11361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide with a high morbidity and mortality rate. An increasing number of studies have demonstrated that microRNAs (miRNAs) serve an important role in HCC. The present study investigated the role of miR-939-3p in HCC. It was demonstrated that miR-939-3p was upregulated in HCC cell lines and HCC tissues compared with normal liver cell lines and paired normal tissues, respectively. It was also found that upregulation of miR-939-3p expression levels in HCC tissues was associated with a less favorable prognosis. Moreover, the overexpression of miR-939-3p in LM3 cells enhanced the metastatic capacity of these cells and promoted epithelial-mesenchymal transition (EMT). In contrast, miR-939-3p inhibition decreased the invasive capacity of HCC cells and EMT. Potential binding target of miR-939-3p to estrogen receptor 1 (ESR1) were predicted using TargetScan. The expression levels of miR-939-3p were negatively associated with ESR1 in HCC tissues based on data from The Cancer Genome Atlas. A luciferase reporter assay was used to confirm ESR1 as a direct downstream target of miR-393-3p. The miR-939-3p/ESR1 axis may be a potential novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Fei Chen
- Department of Digestive Center, Tiantai Branch of Zhejiang Provincial Peoples' Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xiaoying Ni
- Department of Digestive Center, Tiantai Branch of Zhejiang Provincial Peoples' Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Lingxiu Chen
- Department of Digestive Center, Tiantai Branch of Zhejiang Provincial Peoples' Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xiaoyan Wang
- Department of Digestive Center, Tiantai Branch of Zhejiang Provincial Peoples' Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Ji Xu
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial Peoples' Hospital, Hangzhou, Zhejiang 310000, P.R. China.,Key Laboratory of Gastroenterology of Zhejiang, Peoples' Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China.,School of Clinical Medicine, Peoples' Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
34
|
Huang H, Zhou Z, Li H, Zhang Y, Zhao L, Wang Z, Zhang Q, Liu C, Han C, Wang Q, Pu C, Zou W. Down-regulation of ER-α36 mRNA in serum exosomes of the patients with hepatocellular carcinoma. Clin Transl Med 2020; 10:346-352. [PMID: 32508028 PMCID: PMC7240843 DOI: 10.1002/ctm2.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hui Huang
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Zhiyuan Zhou
- College of Life ScienceLiaoning Normal UniversityDalianChina
| | - Hongyan Li
- College of Life ScienceLiaoning Normal UniversityDalianChina
| | - Yong Zhang
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Liang Zhao
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Zhidong Wang
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Qiqi Zhang
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Chunyan Liu
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Changxin Han
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Qi Wang
- College of Life ScienceLiaoning Normal UniversityDalianChina
| | - Chunwen Pu
- Department of BiobankThe Affiliated Sixth People's Hospital of Dalian Medical UniversityDalianChina
| | - Wei Zou
- College of Life ScienceLiaoning Normal UniversityDalianChina
| |
Collapse
|
35
|
Li Z, Lou Y, Tian G, Wu J, Lu A, Chen J, Xu B, Shi J, Yang J. Discovering master regulators in hepatocellular carcinoma: one novel MR, SEC14L2 inhibits cancer cells. Aging (Albany NY) 2019; 11:12375-12411. [PMID: 31851620 PMCID: PMC6949064 DOI: 10.18632/aging.102579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Identification of master regulator (MR) genes offers a relatively rapid and efficient way to characterize disease-specific molecular programs. Since strong consensus regarding commonly altered MRs in hepatocellular carcinoma (HCC) is lacking, we generated a compendium of HCC datasets from 21 studies and identified a comprehensive signature consisting of 483 genes commonly deregulated in HCC. We then used reverse engineering of transcriptional networks to identify the MRs that underpin the development and progression of HCC. After cross-validation in different HCC datasets, systematic assessment using patient-derived data confirmed prognostic predictive capacities for most HCC MRs and their corresponding regulons. Our HCC signature covered well-established liver cancer hallmarks, and network analyses revealed coordinated interaction between several MRs. One novel MR, SEC14L2, exerted an anti-proliferative effect in HCC cells and strongly suppressed tumor growth in a mouse model. This study advances our knowledge of transcriptional MRs potentially involved in HCC development and progression that may be targeted by specific interventions.
Collapse
Affiliation(s)
- Zhihui Li
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yi Lou
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China.,Department of Occupational Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Guoyan Tian
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jianyue Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Anqian Lu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Chen
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Beibei Xu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Junping Shi
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
36
|
Wang D, Lu R, Rempala G, Sadee W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol Pharmacol 2019; 96:430-440. [PMID: 31399483 PMCID: PMC6724575 DOI: 10.1124/mol.119.116897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 3A4 isoform (CYP3A4) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol's sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor α (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation of ESR1 in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. SIGNIFICANCE STATEMENT: This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol's sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Grzegorz Rempala
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Wolfgang Sadee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| |
Collapse
|
37
|
He J, Zhao H, Deng D, Wang Y, Zhang X, Zhao H, Xu Z. Screening of significant biomarkers related with prognosis of liver cancer by lncRNA‐associated ceRNAs analysis. J Cell Physiol 2019; 235:2464-2477. [PMID: 31502679 DOI: 10.1002/jcp.29151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jiefeng He
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Haichao Zhao
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Dongfeng Deng
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Yadong Wang
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Xiao Zhang
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Haoliang Zhao
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Zongquan Xu
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| |
Collapse
|
38
|
Liu ZK, Zhang RY, Yong YL, Zhang ZY, Li C, Chen ZN, Bian H. Identification of crucial genes based on expression profiles of hepatocellular carcinomas by bioinformatics analysis. PeerJ 2019; 7:e7436. [PMID: 31410310 PMCID: PMC6689388 DOI: 10.7717/peerj.7436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant cancers with no effective targets and treatments. However, the molecular pathogenesis of HCC remains largely uncertain. The aims of our study were to find crucial genes involved in HCC through multidimensional methods and revealed potential molecular mechanisms. Here, we reported the gene expression profile GSE121248 findings from 70 HCC and 37 adjacent normal tissues, all of which had chronic hepatitis B virus (HBV) infection, we were seeking to identify the dysregulated pathways, crucial genes and therapeutic targets implicated in HBV-associated HCC. We found 164 differentially expressed genes (DEGs) (92 downregulated genes and 72 upregulated genes). Gene ontology (GO) analysis of DEGs revealed significant functional enrichment of mitotic nuclear division, cell division, and the epoxygenase P450 pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly enriched in metabolism, cell cycle regulation and the p53 signaling pathway. The Mcode plugin was calculated to construct a module complex of DEGs, and the module was mainly enriched in cell cycle checkpoints, RHO GTPase effectors and cytochrome P450. Considering a weak contribution of each gene, gene set enrichment analysis (GSEA) was performed, revealing results consistent with those described above. Six crucial proteins were selected based on the degree of centrality, including NDC80, ESR1, ZWINT, NCAPG, ENO3 and CENPF. Real-time quantitative PCR analysis validated the six crucial genes had the same expression trend as predicted. Furthermore, the methylation data of The Cancer Genome Atlas (TCGA) with HCC showed that mRNA expression of crucial genes was negatively correlated with methylation levels of their promoter region. The overall survival reflected that high expression of NDC80, CENPF, ZWINT, and NCAPG significantly predicted poor prognosis, whereas ESR1 high expression exhibited a favorable prognosis. The identification of the crucial genes and pathways would contribute to the development of novel molecular targets and biomarker-driven treatments for HCC.
Collapse
Affiliation(s)
- Ze-Kun Liu
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Ren-Yu Zhang
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Yu-Le Yong
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Zhi-Yun Zhang
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Can Li
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Zhi-Nan Chen
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Huijie Bian
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Fan J, Qiu J, Wei Q. Extremely rare case of intravascular solitary fibrous tumour in the inferior vena cava with review of the literature. Diagn Pathol 2019; 14:86. [PMID: 31391089 PMCID: PMC6686241 DOI: 10.1186/s13000-019-0862-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Solitary fibrous tumour (SFT) is a mesenchymal tumour of fibroblastic type, and it develops in almost any part of the human body. However, according to previous studies, the occurrence of intravascular SFTs is extremely rare. CASE PRESENTATION We reported a case of intravascular SFT in a 67-year-old woman who has been experiencing swelling and pain in the right leg for 2 months. Computed tomography venography scan revealed a well-defined mass obstructing the inferior vena cava (IVC). Surgical resection was performed, and histopathologic and immunohistochemical results were consistent with SFT. Further, next-generation sequencing (NGS) analysis was performed, and results revealed two tumour-related gene mutations (deletion of PMS2 and variation of ESR1 [L536P]). The patient did not receive any adjuvant therapy, and no signs of tumour progression were observed during the 6-month follow-up. CONCLUSION To the best of our knowledge, this study first presented about SFT arising from the IVC and carried out an NGS analysis to validate the molecular mechanism of such condition.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Orthopedics and Traumatology Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021 People’s Republic of China
| | - Jinfeng Qiu
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021 People’s Republic of China
| | - Qingjun Wei
- Department of Orthopedics and Traumatology Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021 People’s Republic of China
| |
Collapse
|
40
|
Ru B, Tong Y, Zhang J. MR4Cancer: a web server prioritizing master regulators for cancer. Bioinformatics 2019; 35:636-642. [PMID: 30052770 DOI: 10.1093/bioinformatics/bty658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
MOTIVATION During cancer stage transition, a master regulator (MR) refers to the key gene controlling cancer initiation and progression by orchestrating the associated target genes (termed as its regulon). Due to their inherent importance, MRs can serve as critical biomarkers for cancer diagnosis and prognosis, and therapeutic targets. However, it is challenging to infer key MRs that might explain gene expression profile changes between two groups due to lack of context-specific regulons, whose expression level can collectively reflect the activity of likely MRs. There is also a need to design an easy-to-use tool of MR identification for research community. RESULTS First, we generated cancer-specific regulons for 26 cancer types by analyzing high-throughput omics data from TCGA, and extracted noncancer-specific regulons from public databases. We subsequently developed a web server MR4Cancer, integrating the regulons with statistical inference to identify and prioritize MRs driving a phenotypic divergence of interest. Based on the input gene list (e.g. differentially expressed genes) or expression profile with two groups, MR4Cancer outputs ranked MRs by enrichment testing against the predefined regulons. Gene Ontology and canonical pathway analyses are also conducted to elucidate the function of likely MRs. Moreover, MR4Cancer provides dynamic network visualization for MR-target relations, and users can interactively interrogate the network to produce new hypotheses and high-quality figures for publication. Finally, the presented case studies highlighted the performance of MR4Cancer. We expect this user-friendly and powerful web tool will provide researchers novel insights into tumorigenesis and therapeutic intervention. AVAILABILITY AND IMPLEMENTATION http://cis.hku.hk/MR4Cancer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Beibei Ru
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yin Tong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Tian FY, Marsit CJ. Environmentally Induced Epigenetic Plasticity in Development: Epigenetic Toxicity and Epigenetic Adaptation. CURR EPIDEMIOL REP 2018; 5:450-460. [PMID: 30984515 PMCID: PMC6456900 DOI: 10.1007/s40471-018-0175-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Epigenetic processes represent important mechanisms underlying developmental plasticity in response to environmental exposures. The current review discusses three classes of environmentally-induced epigenetic changes reflecting two aspects of that plasticity, toxicity effects as well as adaptation in the process of development. RECENT FINDINGS Due to innate resilience, epigenetic changes caused by environmental exposures may not always lead impairments but may allow the organisms to achieve positive developmental outcomes through appropriate adaptation and a buffering response. Thus, some epigenetic adaptive responses to an immediate stimulus or exposure early in life would be expected to have a survival advantage but these same responses may also result in adverse developmental outcomes as they persists into later life stage. Although accumulating literature has identified environmentally induced epigenetic changes and linked them to health outcomes, we currently face challenges in the interpretation of the functional impact of their epigenetic plasticity. SUMMARY Current environmental epigenetic research suggest that epigenetic processes may serve as a mechanism for resilience, and that they can be considered in terms of their impact on toxicity as a negative outcome, but also on adaptation for improved survival or health. This review encourages epigenetic environmental studies to move deeper inside into the functional meaning of epigenetic plasticity in the development.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
43
|
Zhong XZ, Deng Y, Chen G, Yang H. Investigation of the clinical significance and molecular mechanism of miR-21-5p in hepatocellular carcinoma: A systematic review based on 24 studies and bioinformatics investigation. Oncol Lett 2018; 17:230-246. [PMID: 30655760 PMCID: PMC6313181 DOI: 10.3892/ol.2018.9627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
To investigate the prospective roles and the clinicopathological application of microRNA-21-5p (miR-21-5p) in hepatocellular carcinoma (HCC), the present review is based on 24 studies and bioinformatics investigation. Firstly, HCC-associated miR-21-5p data were aggregated from literature databases and two public genomic data repositories, including the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Potential target genes of miR-21-5p in HCC were identified using TCGA and GEO, Natural Language Processing and 14 online software packages. The oncogenic roles of these target genes was probed for understanding using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Hub genes were further investigated by protein-protein interaction network (PPI) analysis. Comprehensive meta-analysis, including 10 microarrays from GEO datasets, 13 literature studies and TCGA-based RNA sequencing data, indicated a reliable diagnostic capacity of miR-21-5p [area under the curve (AUC), 0.887; sensitivity, 0.78% and specificity, 0.79%]. The healthy control group (AUC, 0.926; sensitivity, 0.87% and specificity, 0.82%) demonstrated high diagnostic capacity of miR-21-5p compared with the chronic hepatitis B infection group (AUC, 0.904; sensitivity, 0.75% and specificity, 0.84%). A total of 10 significant enrichment pathways were indicated by KEGG analysis, with cytokine-cytokine receptor interaction exhibiting the highest score. A total of 5 genes, hepatocyte growth factor, forkhead box O1 (FOXO1), thrombospondin 1, estrogen receptor 1 (ESR1) and C-X-C motif chemokine ligand 12 were selected from 39 overlapping genes, according to the PPI network. Target genes were assembled in GO terms associated with ‘response to chemical stimulus’, ‘cell surface’ and ‘growth factor binding’. In particular, low expression of FOXO1 and ESR1 was associated with miR-21-5p expression. In conclusion, upregulated expression of miR-21-5p may be a functional regulator of the metabolism or apoptosis in HCC and a novel tumor marker for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Xiao-Zhu Zhong
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun Deng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
44
|
Deng SP, Guo WL. Identifying Key Genes of Liver Cancer by Networking of Multiple Data Sets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:792-800. [PMID: 30296239 DOI: 10.1109/tcbb.2018.2874238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liver cancer is one of the deadliest cancers in the world. To find effective therapies for this cancer, it is indispensable to identify key genes, which may play critical roles in the incidence of the liver cancer. To identify key genes of the liver cancer with high accuracy, we integrated multiple microarray gene expression data sets to compute common differentially expressed genes, which will result more accurate than those from individual data set. To find the main functions or pathways that these genes are involved in, some enrichment analyses were performed including functional enrichment analysis, pathway enrichment analysis, and disease association study. Based on these genes, a protein-protein interaction network was constructed and analyzed to identify key genes of the liver cancer by combining the local and global influence of nodes in the network. The identified key genes, such as TOP2A, ESR1, and KMO, have been demonstrated to be key biomarkers of the liver cancer in many publications. All the results suggest that our method can effectively identify key genes of the liver cancer. Moreover, our method can be applied to other types of data sets to select key genes of other complex diseases.
Collapse
|
45
|
Fan XP, Dou CY, Fan YC, Cao CJ, Zhao ZH, Wang K. Methylation status of the estrogen receptor 1 promoter predicts poor prognosis of acute-on-chronic hepatitis B liver failure. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2018; 109:818-827. [PMID: 29082740 DOI: 10.17235/reed.2017.4426/2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute-on-chronic hepatitis B liver failure (ACHBLF) is an acute deteriorating liver disease and rapidly progresses to multiple organ failure. There is currently no adequate accurate predictive models of ACHBLF prognosis. AIMS To identify the methylation frequency of the estrogen receptor 1 (ESR1) promoter in ACHBLF and analyze the associated prognostic significance. METHODS Methylation-specific PCR (MSP) was used to determine the methylation frequency of the ESR1 promoter in peripheral blood mononuclear cells from a training and validation cohort of patients. The training cohort included 113 patients with ACHBLF, 73 with chronic hepatitis B (CHB) and 40 healthy controls (HCs). The validation cohort consisted of 37 patients with ACHBLF. Another 18 patients with pre-ACHBLF who progressed to ACHBLF were used to dynamically evaluate ESR1 promoter methylation changes associated with a severe clinical condition. RESULTS Death from ACHBLF was associated with hyperbilirubinemia, a higher score in the model for end-stage liver disease (MELD), a higher incidence of hepatic encephalopathy (HE) and an increased frequency of ESR1 promoter methylation during the 28 day follow-up. HE, MELD score and ESR1 promoter methylation were the independent risk factors associated with 28-day mortality from ACHBLF. The frequency of ESR1 promoter methylation was significantly higher than in patients with CHB and HCs. Albumin and the MELD score were significantly associated with ESR1 promoter methylation. Moreover, ESR1 promoter methylation frequency increased with ACHBLF progression. More importantly, ESR1 promoter methylation was an independent risk factor and had a high value to predict 28-day mortality from ACHBLF. CONCLUSIONS Abnormal ESR1 methylation could be a prognostic biomarker for ACHBLF.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Cheng-Yun Dou
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University;Hepatology Institute of Shandong University
| | - Chuang-Jie Cao
- Department of Pathology, the first affiliated hospital of Sun Yat-san University
| | - Ze-Hua Zhao
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, China
| |
Collapse
|
46
|
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018; 16:220. [PMID: 30092792 PMCID: PMC6085698 DOI: 10.1186/s12967-018-1593-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC). METHODS A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for HCC. RESULTS Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets (GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analysis. miRNA response elements of the three circRNAs were predicted. Five circRNA-miRNA interactions including two circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we acquired 172 overlapped genes. A protein-protein interaction network based on the 172 genes was established, with seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals (decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by the CMap analysis. CONCLUSIONS Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.
Collapse
Affiliation(s)
- Dan-dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dong-yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dian-zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
47
|
Sang L, Wang XM, Xu DY, Zhao WJ. Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol 2018; 24:2605-2616. [PMID: 29962817 PMCID: PMC6021769 DOI: 10.3748/wjg.v24.i24.2605] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To discover methylated-differentially expressed genes (MDEGs) in hepatocellular carcinoma (HCC) and to explore relevant hub genes and potential pathways.
METHODS The data of expression profiling GSE25097 and methylation profiling GSE57956 were gained from GEO Datasets. We analyzed the differentially methylated genes and differentially expressed genes online using GEO2R. Functional and enrichment analyses of MDEGs were conducted using the DAVID database. A protein-protein interaction (PPI) network was performed by STRING and then visualized in Cytoscape. Hub genes were ranked by cytoHubba, and a module analysis of the PPI network was conducted by MCODE in Cytoscape software.
RESULTS In total, we categorized 266 genes as hypermethylated, lowly expressed genes (Hyper-LGs) referring to endogenous and hormone stimulus, cell surface receptor linked signal transduction and behavior. In addition, 161 genes were labelled as hypomethylated, highly expressed genes (Hypo-HGs) referring to DNA replication and metabolic process, cell cycle and division. Pathway analysis illustrated that Hyper-LGs were enriched in cancer, Wnt, and chemokine signalling pathways, while Hypo-HGs were related to cell cycle and steroid hormone biosynthesis pathways. Based on PPI networks, PTGS2, PIK3CD, CXCL1, ESR1, and MMP2 were identified as hub genes for Hyper-LGs, and CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10 were hub genes for Hypo-HGs by combining six ranked methods of cytoHubba.
CONCLUSION In the study, we disclose numerous novel genetic and epigenetic regulations and offer a vital molecular groundwork to understand the pathogenesis of HCC. Hub genes, including PTGS2, PIK3CD, CXCL1, ESR1, MMP2, CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10, can be used as biomarkers based on aberrant methylation for the accurate diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xue-Mei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong-Yang Xu
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Jing Zhao
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
48
|
Shen M, Cao J, Shi H. Effects of Estrogen and Estrogen Receptors on Transcriptomes of HepG2 Cells: A Preliminary Study Using RNA Sequencing. Int J Endocrinol 2018; 2018:5789127. [PMID: 30510575 PMCID: PMC6230429 DOI: 10.1155/2018/5789127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/12/2018] [Indexed: 12/23/2022] Open
Abstract
Men have a much higher incidence of hepatocellular carcinoma (HCC), the predominant form of liver cancer, than women, suggesting that estrogens play a protective role in liver cancer development and progression. To begin to understand the potential mechanisms of estrogens' inhibitory effects on HCC development, RNA sequencing was used to generate comprehensive global transcriptome profiles of the human HCC-derived HepG2 cell line following treatment of vehicle (control), estradiol (E2), estrogen receptor alpha- (ERα-) specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), or ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) using a small set of cells. Gene ontology (GO) analysis identified increased expression of genes involved in the biological process (BP) of response to different stimuli and metabolic processes by E2 and ER agonists, which enhanced molecular function (MF) in various enzyme activities and chemical bindings. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated enhanced pathways associated with carbohydrate metabolism, complement and coagulation cascades, and HIF-1 signaling pathway by E2 and ER agonists. GO analysis also identified decreased expression of genes by E2, PPT, and DPN involved in BP related to the cell cycle and cell division, which reduced MF in activity of multiple enzymes and microtubule activity. KEGG analysis indicated that E2, PPT, and DPN suppressed pathways associated with the cell cycle; E2 and PPT suppressed pathways associated with chemical carcinogenesis and drug metabolism, and DPN suppressed DNA replication, recombination, and repair. Collectively, these differentially expressed genes across HepG2 cell transcriptome involving cellular and metabolic processes by E2 and ER agonists provided mechanistic insight into protective effects of estrogens in HCC development.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Jingyi Cao
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| |
Collapse
|
49
|
Sanaei M, Kavoosi F, Salehi H. Genistein and Trichostatin A Induction of Estrogen Receptor Alpha Gene Expression, Apoptosis and Cell Growth Inhibition in Hepatocellular Carcinoma HepG 2 Cells. Asian Pac J Cancer Prev 2017; 18:3445-3450. [PMID: 29286617 PMCID: PMC5980908 DOI: 10.22034/apjcp.2017.18.12.3445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic changes such as DNA methylation and histone acetylation play important roles in determining gene expression. Hypermethylation of CpG islands of the promoter region of tumor suppressor genes can greatly influence carcinogenesis through transcriptional silencing. Acetylation of lysine in histone tails causes relaxation of chromatin, which facilitates gene transcription, while deacetylation is associated with condensed chromatin resulting in gene silencing. DNA demethylating agents such as genistein (GE) and histone deacetylase inhibitors (HDACIs) such as trichostatin A (TSA) may strongly reactivate silenced genes and exposure to these two agents in combination is reported to enhance estrogen receptor alpha (ERα) reactivation and induction of apoptosis. The present study was designed to evaluate the effect of these compounds on ERα gene expression, cell viability and apoptosis in hepatocellular carcinoma (HCC) Hep G2 cells. GE exerted biphasic effects; it stimulated cell growth at a low concentration (1 μM) but inhibitory influence was noted with high concentrations (10, 20 and 40 μM). In contrast, TSA demonstrated inhibitory effects on growth at all of concentrations tested. Furthermore, GE and GE/TSA significantly induced apoptosis at all concentrations, but TSA only after 72 h. GE induced ERα re-expression and this was maximal in combined treatment groups treated with GE/TSA for 72 h.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical sciences, Jahrom, Iran.
| | | | | |
Collapse
|
50
|
Yang X, Pang YY, He RQ, Lin P, Cen JM, Yang H, Ma J, Chen G. Diagnostic value of strand-specific miRNA-101-3p and miRNA-101-5p for hepatocellular carcinoma and a bioinformatic analysis of their possible mechanism of action. FEBS Open Bio 2017; 8:64-84. [PMID: 29321958 PMCID: PMC5757177 DOI: 10.1002/2211-5463.12349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/08/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that miRNA might serve as potential diagnostic and prognostic markers for various types of cancer. Hepatocellular carcinoma (HCC) is the most common type of malignant lesion but the significance of miRNAs in HCC remains largely unknown. The present study aimed to establish the diagnostic value of miR-101-3p/5p in HCC and then further investigate the prospective molecular mechanism via a bioinformatic analysis. First, the miR-101 expression profiles and parallel clinical parameters from 362 HCC patients and 50 adjacent non-HCC tissue samples were downloaded from The Cancer Genome Atlas (TCGA). Second, we aggregated all miR-101-3p/5p expression profiles collected from published literature and the Gene Expression Omnibus and TCGA databases. Subsequently, target genes of miR-101-3p and miR-101-5p were predicted by using the miRWalk database and then overlapped with the differentially expressed genes of HCC identified by natural language processing. Finally, bioinformatic analyses were conducted with the overlapping genes. The level of miR-101 was significantly lower in HCC tissues compared with adjacent non-HCC tissues (P < 0.001), and the area under the curve of the low miR-101 level for HCC diagnosis was 0.925 (P < 0.001). The pooled summary receiver operator characteristic (SROC) of miR-101-3p was 0.86, and the combined SROC curve of miR-101-5p was 0.80. Bioinformatic analysis showed that the target genes of both miR-101-3p and miR-101-5p are involved in several pathways that are associated with HCC. The hub genes for miR-101-3p and miR-101-5p were also found. Our results suggested that both miR-101-3p and miR-101-5p might be potential diagnostic markers in HCC, and that they exert their functions via targeting various prospective genes in the same pathways.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Yu-Yan Pang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rong-Quan He
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Peng Lin
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie-Mei Cen
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong Yang
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie Ma
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|