1
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Iorgulescu JB, Ruthen N, Ahn R, Panagioti E, Gokhale PC, Neagu M, Speranza MC, Eschle BK, Soroko KM, Piranlioglu R, Datta M, Krishnan S, Yates KB, Baker GJ, Jain RK, Suvà ML, Neuberg D, White FM, Chiocca EA, Freeman GJ, Sharpe AH, Wu CJ, Reardon DA. Antigen presentation deficiency, mesenchymal differentiation, and resistance to immunotherapy in the murine syngeneic CT2A tumor model. Front Immunol 2023; 14:1297932. [PMID: 38213329 PMCID: PMC10782385 DOI: 10.3389/fimmu.2023.1297932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Background The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.
Collapse
Affiliation(s)
- J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Neil Ruthen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ryuhjin Ahn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Eleni Panagioti
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Martha Neagu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Maria C. Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Benjamin K. Eschle
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Kara M. Soroko
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Raziye Piranlioglu
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Meenal Datta
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Shanmugarajan Krishnan
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathleen B. Yates
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, United States
| | - Gregory J. Baker
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mario L. Suvà
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Donna Neuberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Forest M. White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arlene H. Sharpe
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
3
|
Pires V, Bramatti I, Aschner M, Branco V, Carvalho C. Thioredoxin Reductase Inhibitors as Potential Antitumors: Mercury Compounds Efficacy in Glioma Cells. Front Mol Biosci 2022; 9:889971. [PMID: 35813817 PMCID: PMC9260667 DOI: 10.3389/fmolb.2022.889971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common form of glioma. GBM, like many other tumors, expresses high levels of redox proteins, such as thioredoxin (Trx) and thioredoxin reductase (TrxR), allowing tumor cells to cope with high levels of reactive oxygen species (ROS) and resist chemotherapy and radiotherapy. Thus, tackling the activity of these enzymes is a strategy to reduce cell viability and proliferation and most importantly achieve tumor cell death. Mercury (Hg) compounds are among the most effective inhibitors of TrxR and Trx due to their high affinity for binding thiols and selenols. Moreover, organomercurials such as thimerosal, have a history of clinical use in humans. Thimerosal effectively crosses the blood–brain barrier (BBB), thus reaching effective concentrations for the treatment of GBM. Therefore, this study evaluated the effects of thimerosal (TmHg) and its metabolite ethylmercury (EtHg) over the mouse glioma cell line (GL261), namely, the inhibition of the thioredoxin system and the occurrence of oxidative cellular stress. The results showed that both TmHg and EtHg increased oxidative events and triggered cell death primarily by apoptosis, leading to a significant reduction in GL261 cell viability. Moreover, the cytotoxicity of TmHg and ETHg in GL261 was significantly higher when compared to temozolomide (TMZ). These results indicate that EtHg and TmHg have the potential to be used in GBM therapy since they strongly reduce the redox capability of tumor cells at exceedingly low exposure levels.
Collapse
Affiliation(s)
- Vanessa Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Isabella Bramatti
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Caparica, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Cristina Carvalho,
| |
Collapse
|
4
|
Radin DP, Smith G, Moushiaveshi V, Wolf A, Bases R, Tsirka SE. Lucanthone Targets Lysosomes to Perturb Glioma Proliferation, Chemoresistance and Stemness, and Slows Tumor Growth In Vivo. Front Oncol 2022; 12:852940. [PMID: 35494072 PMCID: PMC9048484 DOI: 10.3389/fonc.2022.852940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Median survival time remains at 16-20 months despite multimodal treatment with surgical resection, radiation, temozolomide and tumor-treating fields therapy. After genotoxic stress glioma cells initiate cytoprotective autophagy, which contributes to treatment resistance, limiting the efficacy of these therapies and providing an avenue for glioma recurrence. Antagonism of autophagy steps has recently gained attention as it may enhance the efficacy of classical chemotherapies and newer immune-stimulating therapies. The modulation of autophagy in the clinic is limited by the low potency of common autophagy inhibitors and the inability of newer ones to cross the blood-brain barrier. Herein, we leverage lucanthone, an anti-schistosomal agent which crosses the blood-brain barrier and was recently reported to act as an autophagy inhibitor in breast cancer cells. Our studies show that lucanthone was toxic to glioma cells by inhibiting autophagy. It enhanced anti-glioma temozolomide (TMZ) efficacy at sub-cytotoxic concentrations, and suppressed the growth of stem-like glioma cells and temozolomide-resistant glioma stem cells. In vivo lucanthone slowed tumor growth: reduced numbers of Olig2+ glioma cells, normalized tumor vasculature, and reduced tumor hypoxia. We propose that lucanthone may serve to perturb a mechanism of temozolomide resistance and allow for successful treatment of TMZ-resistant glioblastoma.
Collapse
Affiliation(s)
- Daniel P. Radin
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Gregory Smith
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Victoria Moushiaveshi
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Alexandra Wolf
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Robert Bases
- Department of Radiology, Montefiore Medical Center, New York City, NY, United States
- Department of Radiation Oncology, Montefiore Medical Center, New York City, NY, United States
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
5
|
Jaraíz-Rodríguez M, Talaverón R, García-Vicente L, Pelaz SG, Domínguez-Prieto M, Álvarez-Vázquez A, Flores-Hernández R, Sin WC, Bechberger J, Medina JM, Naus CC, Tabernero A. Connexin43 peptide, TAT-Cx43266-283, selectively targets glioma cells, impairs malignant growth, and enhances survival in mouse models in vivo. Neuro Oncol 2021; 22:493-504. [PMID: 31883012 PMCID: PMC7158688 DOI: 10.1093/neuonc/noz243] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Malignant gliomas are the most frequent primary brain tumors and remain among the most incurable cancers. Although the role of the gap junction protein, connexin43 (Cx43), has been deeply investigated in malignant gliomas, no compounds have been reported with the ability to recapitulate the tumor suppressor properties of this protein in in vivo glioma models. Methods TAT-Cx43266–283 a cell-penetrating peptide which mimics the effect of Cx43 on c-Src inhibition, was studied in orthotopic immunocompetent and immunosuppressed models of glioma. The effects of this peptide in brain cells were also analyzed. Results While glioma stem cell malignant features were strongly affected by TAT-Cx43266–283, these properties were not significantly modified in neurons and astrocytes. Intraperitoneally administered TAT-Cx43266–283 decreased the invasion of intracranial tumors generated by GL261 mouse glioma cells in immunocompetent mice. When human glioma stem cells were intracranially injected with TAT-Cx43266–283 into immunodeficient mice, there was reduced expression of the stemness markers nestin and Sox2 in human glioma cells at 7 days post-implantation. Consistent with the role of Sox2 as a transcription factor required for tumorigenicity, TAT-Cx43266–283 reduced the number and stemness of human glioma cells at 30 days post-implantation. Furthermore, TAT-Cx43266–283 enhanced the survival of immunocompetent mice bearing gliomas derived from murine glioma stem cells. Conclusion TAT-Cx43266–283 reduces the growth, invasion, and progression of malignant gliomas and enhances the survival of glioma-bearing mice without exerting toxicity in endogenous brain cells, which suggests that this peptide could be considered as a new clinical therapy for high-grade gliomas.
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Rocío Talaverón
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Laura García-Vicente
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Sara G Pelaz
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Marta Domínguez-Prieto
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Andrea Álvarez-Vázquez
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Raquel Flores-Hernández
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Bechberger
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - José M Medina
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arantxa Tabernero
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Almeida J, Costa J, Coelho P, Cea V, Galesio M, Noronha JP, Diniz MS, Prudêncio C, Soares R, Sala C, Fernandes R. Adipocyte proteome and secretome influence inflammatory and hormone pathways in glioma. Metab Brain Dis 2019; 34:141-152. [PMID: 30302719 DOI: 10.1007/s11011-018-0327-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023]
Abstract
Gliomas represent the most common primary malignant brain tumors in adults, with an extremely poor prognosis. Among several risk factors, lifestyle was also recently identified as a major risk factor for the development of primary glioma. In the present study, we explore the relationship between obesity and glioma in a cellular model. Thus, we have study the influence of adipocytes secretome on glioma cell line GL261. Using the 3T3-L1 adipocyte cell line, and its conditioned medium (adipokines-enriched medium), we showed that adipocyte-released factors relate with glioma angiogenic, growth, hormones and metabolic behavior by MALDI-TOF-MS and proteomic array analysis. In a first view, STI1, hnRNPs and PGK1 are under expressed on CGl. Similarly, both carbonic anhydrase and aldose reductase are even suppressed in glioma cells that grown under adipokines-enriched environment. Contrariwise, RFC1, KIF5C, ANXA2, N-RAP and RACK1 are overexpressed in GL261 cell the in the presence of the adipokines-enriched medium. We further identified the factors that are released by adipocyte cells, and revealed that several pro-inflammatory and angiogenic factors, such as IL-6, IL-11, LIF, PAI-1, TNF-α, endocan, HGF, VEGF IGF-I, were secreted to the medium into a high extent, whereas TIMP-1 and SerpinE1 were under expressed on CGl. This study discloses an interesting in vitro model for the study of glioma biology under a "obesity" environment, that can be explored for the understanding of cancer cells biology, for the search of biomarkers, prognostic markers and therapeutic approaches.
Collapse
Affiliation(s)
- J Almeida
- School of Health, Polytechnic of Porto, Porto, Portugal
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - J Costa
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - P Coelho
- School of Health, Polytechnic of Porto, Porto, Portugal
- Unit of Metabolism, Nutrition and Endocrinology, i3S, University of Porto, Porto, Portugal
| | - V Cea
- CNR Neuroscience Institute Milan, and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Galesio
- REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Centre for Fine Chemistry and Biotechnology, NOVA University, Fort Lauderdale, FL, USA
| | - J P Noronha
- REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Centre for Fine Chemistry and Biotechnology, NOVA University, Fort Lauderdale, FL, USA
| | - M S Diniz
- REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Centre for Fine Chemistry and Biotechnology, NOVA University, Fort Lauderdale, FL, USA
| | - C Prudêncio
- School of Health, Polytechnic of Porto, Porto, Portugal
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - R Soares
- Unit of Metabolism, Nutrition and Endocrinology, i3S, University of Porto, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - C Sala
- CNR Neuroscience Institute Milan, and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rúben Fernandes
- School of Health, Polytechnic of Porto, Porto, Portugal.
- Unit of Metabolism, Nutrition and Endocrinology, i3S, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Ciezka M, Acosta M, Herranz C, Canals JM, Pumarola M, Candiota AP, Arús C. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation. J Neurooncol 2016; 129:67-76. [PMID: 27324642 DOI: 10.1007/s11060-016-2164-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022]
Abstract
The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100β-v-erbB/inK4a-Arf (+/-) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice.
Collapse
Affiliation(s)
- Magdalena Ciezka
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Milena Acosta
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Cristina Herranz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research and Development Unit, Cell Therapy Program, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research and Development Unit, Cell Therapy Program, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martí Pumarola
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Edifici V, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Dzaye O, Hu F, Derkow K, Haage V, Euskirchen P, Harms C, Lehnardt S, Synowitz M, Wolf SA, Kettenmann H. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling. J Neuropathol Exp Neurol 2016; 75:429-40. [PMID: 27030742 DOI: 10.1093/jnen/nlw016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.
Collapse
Affiliation(s)
- Omar Dzaye
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Feng Hu
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Katja Derkow
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Verena Haage
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Philipp Euskirchen
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Christoph Harms
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Seija Lehnardt
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Michael Synowitz
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Susanne A Wolf
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| | - Helmut Kettenmann
- From the Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (ODaD, FH, VH, SAW, HK) ; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (FH); Department of Neurology (KD, PE), Center for Stroke Research Berlin, Department of Experimental Neurology, Department of Neurology (PE, CH), Department of Neurology and Center for Anatomy, Institute of Cell Biology and Neurobiology (SL), Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; and Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany (MS)
| |
Collapse
|
10
|
Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS One 2015; 10:e0123553. [PMID: 25875288 PMCID: PMC4395339 DOI: 10.1371/journal.pone.0123553] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain tumor in adults. It presents an extremely challenging clinical problem, and treatment very frequently fails due to the infiltrative growth, facilitated by extensive angiogenesis and neovascularization. Pericytes constitute an important part of the GBM microvasculature. The contribution of endogenous brain pericytes to the tumor vasculature in GBM is, however, unclear. In this study, we determine the site of activation and the extent of contribution of endogenous brain pericytes to the GBM vasculature. GL261 mouse glioma was orthotopically implanted in mice expressing green fluorescent protein (GFP) under the pericyte marker regulator of G protein signaling 5 (RGS5). Host pericytes were not only activated within the glioma, but also in cortical areas overlying the tumor, the ipsilateral subventricular zone and within the hemisphere contralateral to the tumor. The host-derived activated pericytes that infiltrated the glioma were mainly localized to the tumor vessel wall. Infiltrating GFP positive pericytes co-expressed the pericyte markers platelet-derived growth factor receptor-β (PDGFR-β) and neuron-glial antigen 2. Interestingly, more than half of all PDGFR-β positive pericytes within the tumor were contributed by the host brain. We did not find any evidence that RGS5 positive pericytes adopt another phenotype within glioma in this paradigm. We conclude that endogenous pericytes become activated in widespread areas of the brain in response to an orthotopic mouse glioma. Host pericytes are recruited into the tumor and constitute a major part of the tumor pericyte population.
Collapse
|
11
|
Garcia C, Dubois LG, Xavier AL, Geraldo LH, da Fonseca ACC, Correia AH, Meirelles F, Ventura G, Romão L, Canedo NHS, de Souza JM, de Menezes JRL, Moura-Neto V, Tovar-Moll F, Lima FRS. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model. BMC Cancer 2014; 14:923. [PMID: 25482099 PMCID: PMC4295410 DOI: 10.1186/1471-2407-14-923] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Methods Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Results Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood–brain barrier disruption. Conclusions This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-923) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, CCS - Bloco F, Universidade Federal do Rio de Janeiro, 21949-590 Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Chen T, Yi L, Li F, Hu R, Hu S, Yin Y, Lan C, Li Z, Fu C, Cao L, Chen Z, Xian J, Feng H. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells. Mol Med Rep 2014; 11:2407-12. [PMID: 25435259 PMCID: PMC4337630 DOI: 10.3892/mmr.2014.3027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 10/01/2014] [Indexed: 12/15/2022] Open
Abstract
Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (P<0.05). The inhibitory effect of salinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (P<0.05). Salinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (P<0.05). Therefore, the present study indicated that salinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Chongqing 400042, P.R. China
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Shengli Hu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Chuan Lan
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Zhao Li
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Chuhua Fu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Liu Cao
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, P.R. China
| |
Collapse
|
13
|
Zhang E, Luo S, Tan X, Shi C. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials 2014; 35:771-8. [DOI: 10.1016/j.biomaterials.2013.10.033] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
|