1
|
Kazimir A, Götze T, Lönnecke P, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Exploring Raloxifene-Based Metallodrugs: A Versatile Vector Combined with Platinum(II), Palladium(II) and Nickel(II) Dichlorides and Carborates against Triple-Negative Breast Cancer. ChemMedChem 2024; 19:e202400006. [PMID: 38642018 DOI: 10.1002/cmdc.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) poses challenges in therapy due to the absence of target expression such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Frequently, the treatment of TNBC involves the combination of several therapeutics. However, an enhanced therapeutic effect can be also achieved within a single molecule. The efficacy of raloxifene can be improved by designing a raloxifene-based hybrid drug bearing a 2,2'-bipyridine moiety (2). Integration of platinum(II), palladium(II), and nickel(II) complexes into this structure dramatically changed the cytotoxicity. The platinum(II) dichloride complex 3 did not demonstrate any activity, while palladium(II) and nickel(II) dichloride complexes 4 and 5 exhibited various cytotoxic behavior towards different types of hormone-receptor positive (HR+) cancer and TNBC cell lines. The replacement of the two chlorido ligands in 3-5 with a dicarbollide (carborate) ion [C2B9H11]2- resulted in reduced activity of compounds 6, 7, and 8. However, the palladacarborane complex 7 demonstrated higher selectivity towards TNBC. Furthermore, the mechanism of action was shifted from cytotoxic to explicitly cytostatic with detectable proliferation arrest and accelerated aging, characterized by senescence-associated phenotype of TNBC cells. This study provides valuable insights into the development of hybrid therapeutics against TNBC.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- new address, Institute for Drug Discovery, Leipzig University, Leipzig, Brüderstraße 34, 04103, Germany
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Tom Götze
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Blagoje Murganić
- Institute of Nuclear Sciences "Vinča", University of Belgrade, 12-14 Mike Petrovića Street, Belgrade, 11351, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University, Bul. despota Stefana 142, Belgrade, 11060, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University, Bul. despota Stefana 142, Belgrade, 11060, Serbia
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Kazimir A, Götze T, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Bipyraloxifene - a modified raloxifene vector against triple-negative breast cancer. RSC Med Chem 2024; 15:1921-1928. [PMID: 38911151 PMCID: PMC11187558 DOI: 10.1039/d4md00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 06/25/2024] Open
Abstract
Raloxifene, a selective oestrogen receptor modulator (SERM), has demonstrated efficacy in the prevention and therapy of oestrogen receptor-positive (ER+) breast cancer, with some degree of effectiveness against triple-negative forms. This suggests the presence of oestrogen receptor-independent pathways in raloxifene-mediated anticancer activity. To enhance the potential of raloxifene against the most aggressive breast cancer cells, hybrid molecules combining the drug with a metal chelator moiety have been developed. In this study, we synthetically modified the structure of raloxifene by incorporating a 2,2'-bipyridine (2,2'-bipy) moiety, resulting in [6-methoxy-2-(4-hydroxyphenyl)benzo[b]thiophen-3-yl]-[4-(2,2'-bipyridin-4'-yl-methoxy)phenyl]methanone (bipyraloxifene). We investigated the cytotoxic activity of both raloxifene and bipyraloxifene against ER+ breast adenocarcinomas, glioblastomas, and a triple-negative breast cancer (TNBC) cell line, elucidating their mode of action against TNBC. Bipyraloxifene maintained a mechanism based on caspase-mediated apoptosis but exhibited significantly higher activity and selectivity compared to the original drug, particularly evident in triple-negative stem-like MDA-MB-231 cells.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Tom Götze
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Blagoje Murganić
- Institute of Nuclear Sciences "Vinča", University of Belgrade 12-14 Mike Petrovića Street Belgrade 11351 Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University Bul. despota Stefana 142 Belgrade 11060 Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University Bul. despota Stefana 142 Belgrade 11060 Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
3
|
Galati F, Marra A, Cicciarelli F, Pasculli M, Maroncelli R, Rizzo V, Moffa G, Pediconi F. Cryoablation for the treatment of breast cancer: immunological implications and future perspectives. Utopia or reality? LA RADIOLOGIA MEDICA 2024; 129:222-228. [PMID: 38296892 PMCID: PMC10879305 DOI: 10.1007/s11547-024-01769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
Cryoablation is a minimally invasive technique currently employed in breast cancer care, that uses freeze and thaw cycles to treat benign breast lesions, small breast cancers or focal sites of metastatic disease in patients not eligible for surgery. The final goal of this procedure is to destroy breast cancer cells using extreme cold. In addition, several studies have shown that this technique seems to have an enhancing effect on the immune response, especially by increasing the expression of tumor neoantigens specific to tumor cells, which are then attacked and destroyed. Exploiting this effect, cryoablation in combination with immunotherapy could be the key to treating early-stage breast cancers or patients who are unsuitable for surgery. According to some recent studies, there are other potential tools that could be used to enhance the therapeutic effect of cryoablation, such as FE3O4 nanoparticles or the manipulation of aquaporin expression. The aim of this narrative review is to summarize the current evidence regarding the use, indications, advantages and disadvantages of cryoablation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Marra
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Federica Cicciarelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marcella Pasculli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberto Maroncelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Veronica Rizzo
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giuliana Moffa
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| |
Collapse
|
4
|
Taurin S, Rosengren RJ. Raloxifene potentiates the effect of gefitinib in triple-negative breast cancer cell lines. Med Oncol 2022; 40:45. [PMID: 36494506 DOI: 10.1007/s12032-022-01909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Triple-negative breast cancers (TNBCs) are characterized by a lack of approved targeted therapies and remain a challenge in the clinic. Several overexpressed proteins, including epidermal growth factor receptor (EGFR), have been associated with TNBCs and are considered potential therapeutic targets. However, EGFR inhibitors alone failed to demonstrate a cutting-edge advantage for treating TNBCs over conventional chemotherapies. Studies have shown that selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene also affect TNBC cell viability. The combination of gefitinib and raloxifene was assessed against TNBC cell lines in vitro. Two TNBC cell lines, MDA-MB-231 and MDA-MB-468, were used to investigate the combination of gefitinib and raloxifene on cell viability, DNA synthesis, and apoptosis. The combination was assessed on intracellular signaling pathways, colony formation, migration, and angiogenesis. In the present study, raloxifene, in combination with gefitinib, decreased cell viability. The combination potentiates apoptosis and affects the expression and phosphorylation pattern of proteins involved in cell proliferation, such as NFκB, β-catenin, and EGFR. Furthermore, evidence of apoptosis activation was also observed, along with a decreased cell migration and tumorigenicity of TNBC cells. Moreover, the combined treatment decreased the ability of neovascularization as assessed by tube formation of endothelial cells. These results suggested the potential of the combination of raloxifene and gefitinib for the prevention of TNBC growth and the appearance of metastatic events. Our findings provide the basis for future studies on the mechanism involved in raloxifene-gefitinib inhibition of ER-negative tumor growth.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Building 293, Road 2904 Block 329, Manama, 007, Kingdom of Bahrain.
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Integrated Bioinformatics Analysis for the Screening of Hub Genes and Therapeutic Drugs in Androgen Receptor-Positive TNBC. DISEASE MARKERS 2022; 2022:4964793. [PMID: 36157217 PMCID: PMC9493148 DOI: 10.1155/2022/4964793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
As the most invasive and lethal subtype of breast cancer (BC), triple-negative breast carcinoma (TNBC) is of increasing interest. However, the androgen receptor (AR) still has an unclear role in TNBC. The current study is aimed at testing the diagnostic and therapeutic performance of novel biomarkers for AR-positive TNBC. The GSE76124 dataset was analyzed by combining WGCNA and other bioinformatics methods. Subsequently, function enrichment analysis was applied to identify the relationships between these differential expression genes (DEGs). Subsequently, the protein-protein interaction network was established, and the hub genes were identified by Cytoscape software. Eventually, the miRNA-hub gene modulate network was developed and the Drug-Gene Interaction Database (DGIdb) was applied to verify the potential drugs for AR-positive TNBC. In the current research, 88 DEGs in total were selected from the intersection of the purple module genes identified by WGCNA and limma package. TFF1, FOXA1, ESR1, AGR2, TFF3, AGR3, GATA3, XBP1, SPDEF, and TOX3 were selected as hub genes by the MCC method, which were all upregulated. The survival analysis suggested that TFF1 was the only one related to significant lower survival rate in TNBC. Ultimately, hsa-miR-520g-3p and hsa-miR-520h were found taking part in the regulation of TFF1, and 2 small molecules were identified as the potential targets for AR-positive TNBC treatment. As a result, our study suggested that hsa-miR-520g-3p, hsa-miR-520h, and TFF1 might have significant potential values for AR-positive TNBC diagnosis and prognosis prediction. TFF1, hsa-miR-520g-3, and hsa-miR-520h may serve as the novel therapeutic targets, and our findings offer further insights into the therapy of AR-positive TNBC.
Collapse
|
6
|
Altyar AE, Fahmy O. Preparation of Liposomal Raloxifene-Graphene Nanosheet and Evaluation of Its In Vitro Anticancer Effects. Dose Response 2022; 20:15593258211063983. [PMID: 35069050 PMCID: PMC8771754 DOI: 10.1177/15593258211063983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In current years, researchers have shown their prime interest in developing multifunctional drug delivery systems, especially against cancers, for effective anticancer outcomes. METHODOLOGY Raloxifene (RLX) loaded liposomal-graphene nanosheet (GNS) was developed. The novelty of this work was to enhance the solubilization of RLX and improvement of its bioavailability in the disease area. So, the selection of optimized formula design of experiment was implemented which produced the desired formula with the particle size of 156.333 nm. Further, encapsulation efficiency, in vitro release, and thermodynamic stability of optimized formulation were evaluated. The optimized formulation exhibited prolonged release of RLX for a longer period of 24 h, which can minimize the dose-related toxicity of the drug. Furthermore, optimized formulation demonstrated remarkable thermodynamic stability in terms of phase separation, creaming, and cracking. RESULTS The cytotoxicity study on the A549 cell line exhibited significant (P < .05) results in favor of optimized formulation than the free drug. The apoptotic activity was carried out by Annexin V staining and Caspase 3 analysis, which demonstrated remarkable promising results for optimized liposomal formulation. CONCLUSION From the findings of the study, it can be concluded that the novel optimized liposomal formulation could be pondered as a novel approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor, Malaysia
| |
Collapse
|
7
|
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Piperidine is an essential heterocyclic system and a pivotal cornerstone in the production of drugs. Piperidine byproducts showed several important pharmacophoric features and are being utilized in different therapeutic applications.
Main text
Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.
Conclusions
This review article sheds a light on the most recent studies proving the importance of piperidine nucleus in the field of drug discovery.
Collapse
|
8
|
Alkhalifa H, Mohammed F, Taurin S, Greish K, Taha S, Fredericks S. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett 2021; 21:458. [PMID: 33907568 PMCID: PMC8063341 DOI: 10.3892/ol.2021.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cryoablation is an emerging type of treatment for cancer. The sensitization of tumors using cryosensitizing agents prior to treatment enhances ablation efficiency and may improve clinical outcomes. Water efflux, which is regulated by aquaporin channels, contributes to cancer cell damage achieved through cryoablation. An increase in aquaporin (AQP) 3 is cryoprotective, whereas its inhibition augments cryodamage. The present study aimed to investigate aquaporin (AQP1, AQP3 and AQP5) gene expression and cellular localization in response to cryoinjury. Cultured breast cancer cells (MDA-MB-231 and MCF-7) were exposed to freezing to induce cryoinjury. RNA and protein extracts were then analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Localization of aquaporins was studied using immunocytochemistry. Additionally, cells were transfected with small interfering RNA to silence aquaporin gene expression and cell viability was assessed using the Sulforhodamine B assay. Cryoinjury did not influence gene expression of AQPs, except for a 4-fold increase of AQP1 expression in MDA-MD-231 cells. There were no clear differences in AQP protein expression for either cell lines upon exposure to frozen and non-frozen temperatures, with the exception of fainter AQP5 bands for non-frozen MCF-7 cells. The exposure of cancer cells to freezing temperatures altered the localization of AQP1 and AQP3 proteins in both MCF-7 and MDA-MD-231 cells. The silencing of AQP1, AQP3 and AQP5 exacerbated MDA-MD-231 cell damage associated with freezing compared with control siRNA. This was also observed with AQP3 and AQP5 silencing in MCF-7 cells. Inhibition of aquaporins may potentially enhance cryoinjury. This cryosensitizing process may be used as an adjunct to breast cancer cryotherapy, especially in the border area targeted by cryoablation where freezing temperatures are not cold enough to induce cellular damage.
Collapse
Affiliation(s)
- Haifa Alkhalifa
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
- Department of Science, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Fatima Mohammed
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Salim Fredericks
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| |
Collapse
|
9
|
Yadav AS, Radharani NNV, Gorain M, Bulbule A, Shetti D, Roy G, Baby T, Kundu GC. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. NANOSCALE 2020; 12:10664-10684. [PMID: 32374338 DOI: 10.1039/c9nr10673a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acidic pH is a crucial intrinsic property of the microenvironment of most solid tumors. Hence, the use of pH sensitive tumor targeting nanoparticles is an attractive approach to enhance the therapeutic efficacy of anti-cancer agents in solid tumors. Chitosan nanoparticles (CHNPs) have been widely explored in the area of cancer drug delivery; nevertheless their true potential as a pH responsive targeted drug delivery vehicle in cancer therapy has not been deciphered yet as most of the research is limited to pH dependent stability and drug release. In the present study, we investigate the direct effect of pH in synergy with RGD peptide based targeting on the therapeutic efficacy of chitosan nanoparticles (RGD-CHNPs) in breast cancer. Furthermore, for the first time we performed a comprehensive study showing the anti-tumor, anti-migratory and anti-angiogenic effect of raloxifene (Rlx) loaded CHNPs in breast cancer. We prepared stable formulations of raloxifene encapsulated CHNPs and RGD-CHNPs by the nontoxic ionic gelation method. pH dependent studies revealed that NPs possess higher stability and zeta potential along with enhanced cellular uptake at acidic pH (as present in solid tumors) compared to physiological pH. Furthermore, RGD conjugation enhanced the in vitro cellular uptake of CHNPs in αvβ3 integrin expressing breast cancer cells and induced higher cellular apoptosis in breast cancer cells which was further augmented by lower pH. Moreover, Rlx-RGD-CHNPs significantly inhibited breast cancer cell migration and angiogenesis. In vivo studies showed that Cy5.5 conjugated RGD-CHNPs can distinctly visualize tumors and Rlx-RGD-CHNPs significantly inhibit breast tumor growth without causing any toxic effect to normal tissue as confirmed by hematology and blood biochemical studies. Therefore, RGD-CHNPs could potentially enhance the therapeutic efficacy of chemotherapeutic drugs due to the synergistic effect of pH responsiveness and tumor specific targeting in breast cancer.
Collapse
Affiliation(s)
- Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune 411007, India.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Greish K, Nehoff H, Bahman F, Pritchard T, Taurin S. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. J Drug Target 2019; 27:903-916. [PMID: 30615483 DOI: 10.1080/1061186x.2019.1566341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that differs in progression, recurrence, and prognosis from other forms of breast cancer. The heterogeneity of TNBC has remained a challenge as no targeted therapy is currently available. Previously, we and others have demonstrated that raloxifene, a selective oestrogen receptor modulator, was also acting independently of the oestrogen receptor-α. However, raloxifene is characterised by a low bioavailability in vivo. Thus, we encapsulated raloxifene into a styrene-maleic acid (SMA) micelle to improve its pharmacokinetics. The micellar raloxifene had higher cytotoxicity when compared to the free formulation, promoted a higher cellular uptake and affected critical signalling pathways. Furthermore, SMA-raloxifene reduced TNBC tumour growth more efficiently than free raloxifene. Finally, we showed that this effect was partially mediated through oestrogen receptor-β. In conclusion, we have provided new insight into the role of raloxifene nanoformulation in improving the management of TNBC.
Collapse
Affiliation(s)
- Khaled Greish
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain.,b Department of Oncology , Suez Canal University , Ismailia , Egypt
| | - Hayley Nehoff
- c Department of Pharmacology and Toxicology , University of Otago , Dunedin , New Zealand
| | - Fatemah Bahman
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Tara Pritchard
- d Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Sebastien Taurin
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| |
Collapse
|
11
|
Greish K, Jasim A, Parayath N, Abdelghany S, Alkhateeb A, Taurin S, Nehoff H. Micellar formulations of Crizotinib and Dasatinib in the management of glioblastoma multiforme. J Drug Target 2017; 26:692-708. [PMID: 29251531 DOI: 10.1080/1061186x.2017.1419357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) defies the currently practiced management of radiotherapy, chemotherapy and surgery and hence, it is associated with a high fatality rate with a median survival of 14.6 months. In our previous work investigating different tyrosine kinase inhibitors (TKIs), we established that a combination of Crizotinib and Dasatinib exerted the most potent effect on different GBM cell lines. In this work, to improve targeted therapy at the site of the tumour and avoid systemic toxicity, we exploited the enhanced permeability and retention effect by designing micellar formulations of these two TKIs. Crizotinib and Dasatinib were successfully encapsulated in poly(styrene-co-maleic acid) (SMA) micelles which were then evaluated for their physicochemical characteristics, anti-proliferative effect, mode of cell death, efficacy in spheroid models, effect on cell signalling, antiangiogenic potential and in vivo anticancer activity. Our results showed that this combination had induced a potent anti-proliferative effect in four GBM cell lines grown as a monolayer and as a spheroid. The combination was also efficacious in in vitro models of angiogenesis and vascular mimicry. In vivo data showed the enhanced activity of the micellar TKIs compared to free drugs. In conclusion, we proved that micellar formulations of Crizotinib and Dasatinib carry promising in vitro and in vivo efficacy that warrant further investigation.
Collapse
Affiliation(s)
- Khaled Greish
- a College of Medicine and Medical Sciences, Department of Molecular Medicine, and Nanomedicine Unit , Princess Al-Jawhara Center for Molecular Medicine, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Anfal Jasim
- a College of Medicine and Medical Sciences, Department of Molecular Medicine, and Nanomedicine Unit , Princess Al-Jawhara Center for Molecular Medicine, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Neha Parayath
- b Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| | - Sara Abdelghany
- a College of Medicine and Medical Sciences, Department of Molecular Medicine, and Nanomedicine Unit , Princess Al-Jawhara Center for Molecular Medicine, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Ali Alkhateeb
- a College of Medicine and Medical Sciences, Department of Molecular Medicine, and Nanomedicine Unit , Princess Al-Jawhara Center for Molecular Medicine, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Sebastien Taurin
- c Department of Obstetrics and Gynecology , University of Utah , Salt Lake City , UT , USA
| | - Hayley Nehoff
- d Department of Pharmacology and Toxicology , University of Otago , Dunedin , New Zealand
| |
Collapse
|
12
|
Greish K, Taha S, Jasim A, Elghany SA, Sultan A, AlKhateeb A, Othman M, Jun F, Taurin S, Bakhiet M. Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease. Clin Transl Med 2017; 6:28. [PMID: 28770521 PMCID: PMC5540747 DOI: 10.1186/s40169-017-0157-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) comprises a group of disorders that manifest through chronic inflammation of the colon and small intestine. Although the exact cause of IBD is still unclear, dysfunctional immunoregulation involving overproduction of inflammatory cytokines such as TNF-α, and IL-6 have been implicated in pathogenesis. Current therapy relies on immunosuppression, cytotoxic drugs, and monoclonal antibodies against TNF-α. These classes of drugs have severe side-effects, especially when used for long duration. Our previous work with raloxifene, a selective estrogen receptor modulator, has shown that the drug, and to a greater extent its micellar formulation, has a significant suppressive effect on NF-κB, an essential immune-regulator. This finding directed the current work towards testing the anti-inflammatory and immunomodulatory effects of raloxifene using cell lines, as well as testing the potential use of the styrene maleic acid (SMA) micelles loaded with raloxifene (SMA-Ral) against dextran sulfate sodium (DSS) induced colitis in an in vivo model of IBD. Results Treatment of MCF-7 cells with TNF-α was shown to protect the cells from the cytotoxic effect of raloxifene (42 vs. 10% cell death, with TNF-α. Treating CaCo-2 cells with both free and SMA-Ral improved cell survival after exposure to 2% DDS with significantly higher protection with SMA-Ral. Treatment of U-937 with SMA-Ral and free-Ral resulted in down-regulation of TNF-α, IL-1β, IL-6, and MIP1α, with greater inhibition of the SMA-Ral, compared to free Ral. Balb/c mice treated with raloxifene and SMA-Ral showed weight gain at 14 days, compared to the control group (122, and 115% respectively). Treatment with raloxifene prevented DSS-induced diarrhea in 6/6 of free raloxifene treated mice and in 5/6 mice treated with SMA-Ral. Control group of DSS-treated mice showed average colon length of 7.4 cm compared to 13 cm in the control group. The average colon length was 12.3 and 11.5 cm for raloxifene and SMA-Ral treated groups, respectively. Furthermore, inflammatory cytokines such as IL-6 and TNF-α were reduced in serum of animals treated with free-Ral and SMA-Ral. Conclusions Raloxifene and its micellar formulation warrants further studies to understand their effect on the treatment of colitis.SMA-Raloxifene preparation and its in vivo and in vitro effect on colitis ![]()
Collapse
Affiliation(s)
- Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Anfal Jasim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sara Abd Elghany
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ameera Sultan
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ali AlKhateeb
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Manal Othman
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.,Department of Histology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Fang Jun
- Department of Pharmacology and Oncology, Sojo University, Kumamoto, Japan
| | - Sebastien Taurin
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, USA
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
13
|
A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme. Oncotarget 2016; 6:37948-64. [PMID: 26517812 PMCID: PMC4741976 DOI: 10.18632/oncotarget.5698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM.
Collapse
|
14
|
Yang L, Ma T, Zhang J. GPRC5A exerts its tumor-suppressive effects in breast cancer cells by inhibiting EGFR and its downstream pathway. Oncol Rep 2016; 36:2983-2990. [DOI: 10.3892/or.2016.5062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 11/05/2022] Open
|
15
|
Taurin S, Nimick M, Larsen L, Rosengren RJ. A novel curcumin derivative increases the cytotoxicity of raloxifene in estrogen receptor-negative breast cancer cell lines. Int J Oncol 2015; 48:385-98. [PMID: 26648459 DOI: 10.3892/ijo.2015.3252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/09/2015] [Indexed: 11/05/2022] Open
Abstract
There is a need for new, safe and efficacious drug therapies for the treatment of estrogen receptor (ER)-negative breast cancers. Raloxifene and the 2nd generation curcumin derivative 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) have been shown to inhibit the growth of ER-negative breast cancer cells in vitro and in vivo. We investigated whether RL91 could enhance the growth-suppressive effects mediated by raloxifene in MDA-MB-231, MDA-MB-468, Hs578t and SkBr3 human breast cancer cell lines. The cytotoxicity was consistent across the cell lines but RL91 was more potent. EC50 values for RL91 were 1.2-2 µM while EC50 values for raloxifene were 9.6-11.2 µM. When the cells were treated with raloxifene (15 µM), RL91 (1 µM) or a combination of the two for 6-72 h, the combination treatment consistently elicited significantly greater cytotoxicity compared to all other treatments. In SkBr3 cells the combination treatment caused significantly more cells to undergo G1 arrest compared to raloxifene. In all cell lines apoptosis was synergistically induced by the combination treatment, as shown by both flow cytometery and cleaved caspase-3. Furthermore, the stress kinase p38 was increased and EFGR isoforms were decreased by both raloxifene and raloxifene + RL91. The anti-angiogenic anti-metastatic potential of raloxifene was not increased by RL91, as MDA-MB-231 cell migration and invasion as well as endothelial tube formation by HUVEC cells was not different between raloxifene (10 µM) and the combination of raloxifene + RL91. Thus, our findings provide evidence that RL91 increases the ability of raloxifene to suppress ER-negative cancer cell growth by increasing the number of apoptotic cells. The broad effect of this drug combination across a range of ER-negative breast cancer cell lines indicates that this drug combination should be explored further in order to find a safe and efficacious therapy for ER-negative breast cancer.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Lesley Larsen
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Kim DE, Kim Y, Cho DH, Jeong SY, Kim SB, Suh N, Lee JS, Choi EK, Koh JY, Hwang JJ, Kim CS. Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase. Mol Cells 2014; 38:138-44. [PMID: 25537862 PMCID: PMC4332026 DOI: 10.14348/molcells.2015.2193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 11/27/2022] Open
Abstract
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.
Collapse
Affiliation(s)
- Dong Eun Kim
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Yunha Kim
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Seong-Yun Jeong
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Sung-Bae Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Nayoung Suh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Jung Shin Lee
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Eun Kyung Choi
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Jae-Young Koh
- Neural Injury Research Center and Department of Neurology, Asan Medical Center, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Choung-Soo Kim
- Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
17
|
Reimão JQ, Miguel DC, Taniwaki NN, Trinconi CT, Yokoyama-Yasunaka JKU, Uliana SRB. Antileishmanial activity of the estrogen receptor modulator raloxifene. PLoS Negl Trop Dis 2014; 8:e2842. [PMID: 24810565 PMCID: PMC4014391 DOI: 10.1371/journal.pntd.0002842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/23/2014] [Indexed: 11/27/2022] Open
Abstract
Background The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis. Methodology/Principal Findings Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene's mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3), rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis – infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden. Conclusions/Significance The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death. Cutaneous and visceral leishmaniasis are part of the group we call neglected diseases. They are serious conditions that afflict millions in vast regions of the world. These diseases are very difficult to treat. This is due to the scanty choice of effective drugs together with their potentially severe side effects. One way of finding new treatments for these neglected conditions is to repurpose drugs that are already in use to treat other diseases. In this paper, we show that raloxifene, a drug that is used for the treatment of osteoporosis and also as an alternative in the treatment of breast cancer, is active against the causative agents of leishmaniasis and is effective in the treatment of cutaneous leishmaniasis in an experimental model. We also show that the antileishmanial mechanism of action of raloxifene is related to damage to the cell membrane and to the mitochondrion of the parasite.
Collapse
Affiliation(s)
- Juliana Q. Reimão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danilo C. Miguel
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Noemi N. Taniwaki
- Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Cristiana T. Trinconi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Silvia R. B. Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis 2014; 5:e1038. [PMID: 24481452 PMCID: PMC4040680 DOI: 10.1038/cddis.2013.549] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022]
Abstract
Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the AhR as a molecular target for the treatment of hormone-independent breast cancers.
Collapse
|