1
|
Wang Y, Wang S, He H, Bai Y, Liu Z, Sabihi SS. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Apoptosis 2025:10.1007/s10495-024-02074-w. [PMID: 39833637 DOI: 10.1007/s10495-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Ovarian cancer remains a major challenge in oncology due to its complex biology and late-stage diagnosis. Recent advances in molecular biology have highlighted the crucial role of non-coding RNAs (ncRNAs) in regulating apoptosis and cancer progression. NcRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have emerged as significant players in the molecular networks governing ovarian cancer. Despite these insights, the precise mechanisms by which ncRNAs influence ovarian cancer pathology are not fully understood. This complexity, combined with the heterogeneity of the disease and the development of treatment resistance, poses substantial obstacles to effective therapeutic development. Additionally, the lack of reliable early detection methods further complicates treatment strategies. This manuscript reviews the current state of research on ncRNAs in ovarian cancer, discusses the challenges in translating these findings into clinical applications, and outlines potential future directions. Emphasis is placed on the need for integrated approaches to unravel the intricate roles of ncRNAs, improve early detection, and develop personalized treatment strategies to address the diverse and evolving nature of ovarian cancer. While these findings provide valuable insights, it is crucial to recognize that many results are based on preclinical studies and require further validation to establish their clinical applicability.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Shirui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710038, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Yingying Bai
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Zhuo Liu
- Department of Obstetrics and Gynecology, Xi'an International Medical Center Hospital, Xi'an, 710038, China
| | - Sima-Sadat Sabihi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
3
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
4
|
Ravaioli S, Maltoni R, Pasculli B, Parrella P, Giudetti AM, Vergara D, Tumedei MM, Pirini F, Bravaccini S. Androgen receptor in breast cancer: The "5W" questions. Front Endocrinol (Lausanne) 2022; 13:977331. [PMID: 36111296 PMCID: PMC9468319 DOI: 10.3389/fendo.2022.977331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Androgen receptor (AR) is expressed in 60-70% of breast cancers (BCs) and the availability of anti-AR compounds, currently used for treating prostate cancer, paves the way to tackle specifically AR-positive BC patients. The prognostic and predictive role of AR in BC is a matter of debate, since the results from clinical trials are not striking, probably due to both technical and biological reasons. In this review, we aimed to highlight WHAT is AR, describing its structure and functions, WHAT to test and HOW to detect AR, WHERE AR should be tested (on primary tumor or metastasis) and WHY studying this fascinating hormone receptor, exploring and debating on its prognostic and predictive role. We considered AR and its ratio with other hormone receptors, analyzing also studies including patients with ductal carcinoma in situ and with early and advanced BC, as well. We also emphasized the effects that both other hormone receptors and the newly emerging androgen-inducible non coding RNAs may have on AR function in BC pathology and the putative implementation in the clinical setting. Moreover, we pointed out the latest results by clinical trials and we speculated about the use of anti-AR therapies in BC clinical practice.
Collapse
Affiliation(s)
- Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Sara Ravaioli,
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Barbara Pasculli
- Laboratorio di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Parrella
- Laboratorio di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
5
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
6
|
Elsers DA, Masoud EM, Kamel NAMH, Ahmed AM. Immunohistochemical signaling pathways of triple negative and triple positive breast cancers: What is new? Ann Diagn Pathol 2021; 55:151831. [PMID: 34634762 DOI: 10.1016/j.anndiagpath.2021.151831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous disease with different clinically heterogeneous phenotypes. Triple negative BC (TNBC) (ER-/PR-/HER2-) and triple positive BC (TPBC) (ER+/PR+/HER2+) are characterized by unique clinical behavior and therapeutic challenges. However, their exact molecular pathogenesis is not well studied. This study aims to evaluate the immunohistochemical expression of androgen receptor (AR) and c-Myc in TPBCs and TNBCs, correlate their expression with the clinicopathologic features, and assess the correlation between AR and c-Myc expression in TPBCs and TNBCs. MATERIAL AND METHODS AR and c-Myc were immunohistochemically assessed in 45 TNBC and 15 TPBC specimens. RESULTS AR expression was detected in 17.7% of TNBC and in all TPBC specimens. c-Myc was expressed in 46.7% of TNBC and in all TPBC specimens. AR and c-Myc expression in TNBC was not associated with any of the clinicopathological features. In TPBC, AR expression was higher in older age, larger size, higher stage, and lymph node metastasis while c-Myc expression was higher in tumors with perineural invasion. This is the first study that reported a significant positive correlation between AR and c-Myc expression in TNBC and TPBC. CONCLUSION The current results suggested that AR and c-Myc proteins may contribute to the pathogenesis of TNBC and TPBC. The positive correlation between the two proteins in these subtypes sheds new light on a distinct pathway by which BC cells can modulate their proliferation. Targeting both molecules may provide new therapeutic approaches to improve therapeutic sensitivity and patients' outcomes of these subtypes.
Collapse
Affiliation(s)
- Dalia A Elsers
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Eman Mostafa Masoud
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Asmaa M Ahmed
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
7
|
Abu Shahin N, Aladily T, Abu Alhaj N, Al-Khader A, Alqaqa S, Aljaberi R, Amer L, Elshebli S. Differential Expression of Androgen Receptor in Type I and Type II Endometrial Carcinomas: A Clinicopathological Analysis and Correlation with Outcome. Oman Med J 2021; 36:e245. [PMID: 33833869 PMCID: PMC8015675 DOI: 10.5001/omj.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives Endometrial carcinomas (EC) are the most common gynecological malignancies and are conventionally divided into type I and type II due to diagnostic and prognostic considerations. Female hormone expression in EC is extensively studied; however, data about androgen receptor (AR) expression in EC are sparse. We aimed to study AR expression in different types of EC at our institute and whether it had an impact on patient outcomes. Methods A retrospective analysis of EC cases diagnosed and treated from 2010–2019. AR immunohistochemical expression was tested in 52 EC cases (type I = 40; type II = 12). Histological typing was verified according to conventional diagnostic criteria. Only primary EC were included without neoadjuvant therapy. Histologic score was calculated as: stain intensity (graded 0–3) × positive cells percentage (graded 0–4). Level of expression was scored from 0 to 12. Results The mean age of the selected patients was 60.3 years (range = 31–88 ± 12.6). Recurrence was detected in 11 (21.2%) patients. The outcome was 40 patients were alive without disease, eight alive with disease, three dead of disease, and one dead of other causes. About 62.5% of type I-EC and 25.0% of type II-EC were AR positive. AR expression was analyzed against different clinicopathological parameters including: type (p = 0.005), histotype (p = 0.044); grade (p = 0.035); age group (p = 0.207); menopause (p = 0.086); estrogen receptor (ER) expression (p = 0.284); atypical complex hyperplasia (p = 0.594); tumor stage (p = 0.994); tumor recurrence (p = 0.530); node status (p = 0.110); and outcome (p = 0.202). Conclusion AR expression was higher in type I EC, endometrial endometrioid carcinoma histotype, and with a lower grade. AR expression was not significantly correlated with age, stage, ER, atypical hyperplasia, recurrence, node status, or outcome. Results agree with recent literature that AR expression is associated with better-differentiated EC and may be a potential hormonal therapeutic tool.
Collapse
Affiliation(s)
- Nisreen Abu Shahin
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Tariq Aladily
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Nezeen Abu Alhaj
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Ali Al-Khader
- Department of Pathology, Faculty of Medicine, Al-Balqa Applied University, Salt, Jordan
| | - Shefa Alqaqa
- Department of Pathology, Faculty of Medicine, Al-Balqa Applied University, Salt, Jordan
| | | | - Lama Amer
- Faculty of Medicine,University of Jordan, Amman, Jordan
| | | |
Collapse
|
8
|
Al-Othman N, Ahram M, Alqaraleh M. Role of androgen and microRNA in triple-negative breast cancer. Breast Dis 2020; 39:15-27. [PMID: 31839601 DOI: 10.3233/bd-190416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the most frequent type of malignancy affecting females worldwide. Molecular-based studies resulted in an identification of at least four subtypes of breast carcinoma, including luminal A and luminal B, Human growth factor receptor (HER-2)-enriched and triple-negative tumors (basal-like and normal breast-like). A proportion of BC cases are of the triple-negative breast cancer (TNBC) type. TNBC lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and HER-2, and is known to express androgen receptor (AR) at considerable levels. AR has been shown to promote the progression of TNBC. However, the exact mechanisms have yet to be unraveled. One of these mechanisms could be through regulating the expression of microRNA (miRNA) molecules, which play an important regulatory role in BC through post-transcriptional gene silencing. Activation of AR controls the expression of miRNA molecules, which target selective mRNAs, consequently, affecting protein expression. In this review we attempt to elucidate the relations between AR and miRNA in TNBC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry and Genetic, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Moath Alqaraleh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
10
|
Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Medici N, Bilancio A, Migliaccio A, Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J Stem Cells 2019; 11:594-603. [PMID: 31616537 PMCID: PMC6789191 DOI: 10.4252/wjsc.v11.i9.594] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women, and current available therapies often have high success rates. Nevertheless, BC might acquire drug resistance and sometimes relapse. Current knowledge about the most aggressive forms of BC points to the role of specific cells with stem properties located within BC, the so-called “BC stem cells” (BCSCs). The role of BCSCs in cancer formation, growth, invasiveness, therapy resistance and tumor recurrence is becoming increasingly clear. The growth and metastatic properties of BCSCs are regulated by different pathways, which are only partially known. Sex steroid receptors (SSRs), which are involved in BC etiology and progression, promote BCSC proliferation, dedifferentiation and migration. However, in the literature, there is incomplete information about their roles. Particularly, there are contrasting conclusions about the expression and role of the classical BC hormonal biomarkers, such as estrogen receptor alpha (ERα), together with scant, albeit promising information concerning ER beta (ERβ) and androgen receptor (AR) properties that control different transduction pathways in BCSCs. In this review, we will discuss the role that SRs expressed in BCSCs play to BC progression and recurrence and how these findings have opened new therapeutic possibilities.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antonio Bilancio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
11
|
Youness RA, Hafez HM, Khallaf E, Assal RA, Abdel Motaal A, Gad MZ. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol 2019; 234:20286-20297. [PMID: 30968427 DOI: 10.1002/jcp.28629] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype. Among young females, TNBC is the leading cause of cancer-related mortalities. Recently, long noncoding RNAs (lncRNAs) are representing a promising pool of regulators for tuning the aggressiveness of several solid malignancies. However, this still needs further investigations in TNBC. The main aim of this study is to unravel the expression pattern of sONE lncRNA and its mechanistic role in TNBC. Results showed that sONE is restrictedly expressed in TNBC patients; its expression level is inversely correlated with the aggressiveness of the disease. sONE acts as a posttranscriptional regulator to endothelial nitric oxide synthase (eNOS) and thus affecting eNOS-induced nitric oxide (NO) production from TNBC cells measured by Greiss reagent. Mechanistically, sONE is a potential tumor suppressor lncRNA in TNBC cells; repressing cellular viability, proliferation, colony-forming ability, migration, and invasion capacities of MDA-MB-231. Furthermore, sONE effects were found to be extended to affect the maestro tumor suppressor TP53 and the oncogenic transcription factor c-Myc. Knocking down of sONE resulted in a marked decrease in TP53 and increase in c-Myc and consequently altering the expression status of their downstream tumor suppressor microRNAs (miRNAs) such as miR-34a, miR-15, miR-16, and let-7a. In conclusion, this study highlights sONE as a downregulated tumor suppressor lncRNA in TNBC cells acting through repressing eNOS-induced NO production, affecting TP53 and c-Myc proteins levels and finally altering the levels of a panel of tumor suppressor miRNAs downstream TP53/c-Myc proteins.
Collapse
Affiliation(s)
- Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Hafez M Hafez
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Emad Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Reem A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
12
|
Bandini E, Fanini F. MicroRNAs and Androgen Receptor: Emerging Players in Breast Cancer. Front Genet 2019; 10:203. [PMID: 30941159 PMCID: PMC6433747 DOI: 10.3389/fgene.2019.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common cause of cancer among women, with a high incidence rate occurrence every year worldwide despite advances in its management. BC is characterized by a spectrum of subtypes which respond differently to treatments due to their biological features, representing the main issue in the control of this type of malignancy. Androgen receptor (AR) is emerging as a target to investigate among hormone receptors, since it seems to play a role at various stages of development of specific BC subsets. For this reason, in recent years AR has become very important in the clinical practice, although its role remains controversial. A number of studies have proposed a correlation between microRNAs (miRNAs), a class of gene expression modulators, and AR in prostate cancer (PC), but there are still few evidences about the relationship between miRNAs and AR in BC. The purpose of this review is to present a state of the art scenario with consideration to the most recent discoveries about miRNAs involved in the AR associated pathogenesis of BC, in order to provide new insights into the role of miRNAs as key drivers in the modulation of AR, and possible actors in the development and progression of BC. Moreover, we consider findings about involvement of AR signaling in all stages of BC, highlighting its association with different subsets of breast carcinomas and with pre- and postmenopausal state of patients.
Collapse
Affiliation(s)
| | - Francesca Fanini
- Biosciences Laboratory, Department of Clinical and Experimental Oncology and Hematology, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.) S.r.l. IRCCS, Meldola, Italy
| |
Collapse
|
13
|
Al-Othman N, Hammad H, Ahram M. Dihydrotestosterone regulates expression of CD44 via miR-328-3p in triple-negative breast cancer cells. Gene 2018; 675:128-135. [DOI: 10.1016/j.gene.2018.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
14
|
Zhang W, Liu X, Liu S, Qin Y, Tian X, Niu F, Liu H, Liu N, Niu Y. Androgen receptor/let-7a signaling regulates breast tumor-initiating cells. Oncotarget 2017; 9:3690-3703. [PMID: 29423076 PMCID: PMC5790493 DOI: 10.18632/oncotarget.23196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR) is an important transcriptional factor, which is frequently expressed in invasive breast cancer and correlates patients’ prognosis. Our previous results indicate AR activation may increase let-7a expression in breast cancer cells, while let-7, a tumor suppressor, is reported to inhibit breast tumor-initiating cells (T-IC). The study aims to explore the effects of AR/let-7a signaling on breast T-IC and its regulatory mechanism. The results revealed that the expression of AR was significantly associated with let-7a and CD44+/24-/low especially in estrogen receptor positive (ER+) breast cancer tissues. The expression of AR and let-7a indicated better outcome, while patients with CD44+/24-/low phenotype had worse prognosis. AR activation induced by dihydrotestosterone (DHT) prevented cells proliferation, migration, invasion and self-renewal capacities in ER+ breast cancer cells, via transcriptional up-regulation of let-7a. In addition, AR could inhibit tumorigenesis and metastasis of ER+ breast cancer cells in the serial xenotranplanted animal models. Our data suggested that AR/let-7a signaling could inhibit the biological behavior of tumor-initiating cells (T-IC) in ER+AR+ breast cancers, which might become a new therapeutic target.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China.,Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaozhen Liu
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Shan Liu
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Ying Qin
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Xiaoqi Tian
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Fengting Niu
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Han Liu
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Ning Liu
- Department of Pathology, Baodi Clinical Institute of Tianjin Medical University, Tianjin, China
| | - Yun Niu
- Department of Breast Cancer Pathology and Research, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Casaburi I, Cesario MG, Donà A, Rizza P, Aquila S, Avena P, Lanzino M, Pellegrino M, Vivacqua A, Tucci P, Morelli C, Andò S, Sisci D. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor. Oncotarget 2017; 7:12651-61. [PMID: 26862856 PMCID: PMC4914311 DOI: 10.18632/oncotarget.7207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/25/2016] [Indexed: 01/20/2023] Open
Abstract
Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21. The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues. Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells. Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies.
Collapse
Affiliation(s)
- Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Grazia Cesario
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Ada Donà
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Pietro Rizza
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Saveria Aquila
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Paola Avena
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Michele Pellegrino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Adele Vivacqua
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Paola Tucci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| |
Collapse
|
16
|
Shi Y, Cao T, Huang H, Lian C, Yang Y, Wang Z, Ma J, Xia J. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells. Cell Cycle 2017; 16:2396-2403. [PMID: 28980872 DOI: 10.1080/15384101.2017.1387699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.
Collapse
Affiliation(s)
- Ying Shi
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Tong Cao
- b Research Center of Clinical Laboratory Science , Bengbu Medical College , Bengbu , Anhui , China
| | - Hua Huang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Chaoqun Lian
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Ying Yang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Zhiwei Wang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China.,c Department of Pathology , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,d The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , China
| | - Jia Ma
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Jun Xia
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| |
Collapse
|
17
|
Ahram M, Mustafa E, Zaza R, Abu Hammad S, Alhudhud M, Bawadi R, Zihlif M. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int 2017; 41:1345-1355. [PMID: 28816390 DOI: 10.1002/cbin.10841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 01/11/2023]
Abstract
MicroRNA molecules (miRNAs) play important roles in regulating cell behavior. The expression of certain miRNAs has been shown to be regulated by the androgen receptor (AR), which seems to have a critical role in the tumorigenic process of breast cancer. The differential expression of 84 miRNAs was first examined in three breast cancer cell lines: the luminal MCF-7 and T47D cells and the molecular apocrine MDA-MB-453 cells. Analysis of basal expression of miRNAs revealed that each cell line had distinct miRNA expression where let-7a and -7b were markers of MDA-MB-453 cells, whereas miR-205 was a marker for the luminal cell lines. Treating the cells with the AR agonist, CI-4AS-1, resulted in unique alterations in the expression of specific miRNA among the three cell lines. Particularly, the expression of miR-100 and miR-125 was reduced in MDA-MB-453 cells by five and three folds, respectively. This effect was simultaneous with AR-induced increase in the expression and extracellular release of metalloprotease-13 (MMP13). Transfection of cells with either miR-100 or miR-125b negated the induction of MMP13 release. Additionally, AR activation induced a morphological alteration of MDA-MB-453 cells, which was blocked by miR-125b only. Collectively, these data indicate that AR may control the biological behavior of breast cancer cells and protein expression via miRNAs.
Collapse
Affiliation(s)
- Mamoun Ahram
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Ebtihal Mustafa
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Rand Zaza
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Shatha Abu Hammad
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Mariam Alhudhud
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Randa Bawadi
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- School of Medicine, Department of Pharmacology, The University of Jordan, Amman, Jordan
| |
Collapse
|
18
|
Interrelation of androgen receptor and miR-30a and miR-30a function in ER -, PR -, AR + MDA-MB-453 breast cancer cells. Oncol Lett 2017; 14:4930-4936. [PMID: 29085503 DOI: 10.3892/ol.2017.6781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/03/2017] [Indexed: 11/05/2022] Open
Abstract
The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER-), progesterone receptor-negative (PR-), and AR-positive (AR+) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER-, PR- and AR+ MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER-, PR- and AR+ breast cancer.
Collapse
|
19
|
Cava C, Colaprico A, Bertoli G, Graudenzi A, Silva TC, Olsen C, Noushmehr H, Bontempi G, Mauri G, Castiglioni I. SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data. Int J Mol Sci 2017; 18:ijms18020274. [PMID: 28134831 PMCID: PMC5343810 DOI: 10.3390/ijms18020274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology National Research Council (IBFM-CNR), Segrate (Mi) 20090, Italy.
| | - Antonio Colaprico
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels 1050, Belgium.
- Machine Learning Group (MLG), Department d'Informatique, Universite libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology National Research Council (IBFM-CNR), Segrate (Mi) 20090, Italy.
| | - Alex Graudenzi
- Institute of Molecular Bioimaging and Physiology National Research Council (IBFM-CNR), Segrate (Mi) 20090, Italy.
| | - Tiago C Silva
- Department of Genetics Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil.
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels 1050, Belgium.
- Machine Learning Group (MLG), Department d'Informatique, Universite libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Houtan Noushmehr
- Department of Genetics Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil.
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA.
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels 1050, Belgium.
- Machine Learning Group (MLG), Department d'Informatique, Universite libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan 20125, Italy.
- SYSBIO Centre of Systems Biology (SYSBIO), Milan 20126, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology National Research Council (IBFM-CNR), Segrate (Mi) 20090, Italy.
| |
Collapse
|
20
|
Cochetti G, Poli G, Guelfi G, Boni A, Egidi MG, Mearini E. Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role. Onco Targets Ther 2016; 9:7545-7553. [PMID: 28008272 PMCID: PMC5167485 DOI: 10.2147/ott.s119027] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Diagnosis of prostate cancer (PCa) is based on prostate biopsy that is performed when prostate specific antigen (PSA) is persistently altered over time and/or abnormal digital rectal examination is found. Serum PSA levels increase in both PCa and benign prostatic hyperplasia, leading to an increased number of unnecessary biopsies. There is an urgent need to unravel PCa-specific molecular signatures. Patients and methods This study aimed at characterizing a panel of circulating micro RNAs (miRNAs) that could distinguish PCa from benign prostatic hyperplasia in a population of age-matched patients with increased PSA levels. Both miRNAs targeting genes involved in PCa onset and miRNAs whose role in PCa has been highlighted in other studies were included. For this purpose, let-7c, let-7e, let-7i, miR-26a-5p, miR-26b-5p, miR-24-3p, miR-23b-3p, miR-27-b-3p, miR-106a-5p, miR-20b-5p, miR-18b-5p, miR-19b-2-5p, miR-363-3p, miR-497, miR-195, miR-25-3p, miR-30c-5p, miR-622, miR-874-3p, miR-346 and miR-940 were assayed through real-time PCR in 64 patients with PCa and compared with 60 patients with benign prostatic hyperplasia. The ability of miRNAs to predict the stage of disease was also analyzed. Results Let-7c, let-7e, let-7i, miR-26a-5p, miR-26b-5p, miR-18b-5p and miR-25-3p were able to discriminate patients with PCa from those harboring benign prostatic hyperplasia, both presenting altered PSA levels (>3 ng/mL). MiR-25-3p and miR-18b-5p showed the highest sensitivity and specificity to predict PCa, respectively. The combination of these two miRNAs improved the overall sensitivity. A correlation between pathological Gleason score and miRNA expression levels was reported; miR-363-3p, miR-26a-5p, miR-26b-5p, miR-106a-5p, miR-18b-5p, miR-25-3p and let-7i decreased in expression concomitantly with an increase in malignancy. Conclusion This study confirms serum miRNAs to be reliable candidates for the development of minimally invasive biomarkers for the diagnosis and prognosis of PCa, particularly in those cases where PSA acts as a flawed marker.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Department of Surgical and Biomedical Sciences, Institution of Urological, Andrological Surgery and Minimally Invasive Techniques
| | - Giulia Poli
- Department of Experimental Medicine, Section of Terni
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Andrea Boni
- Department of Surgical and Biomedical Sciences, Institution of Urological, Andrological Surgery and Minimally Invasive Techniques
| | - Maria Giulia Egidi
- Department of Surgical and Biomedical Sciences, Institution of Urological, Andrological Surgery and Minimally Invasive Techniques
| | - Ettore Mearini
- Department of Surgical and Biomedical Sciences, Institution of Urological, Andrological Surgery and Minimally Invasive Techniques
| |
Collapse
|
21
|
Shi Y, Yang F, Sun Z, Zhang W, Gu J, Guan X. Differential microRNA expression is associated with androgen receptor expression in breast cancer. Mol Med Rep 2016; 15:29-36. [PMID: 27959398 PMCID: PMC5355696 DOI: 10.3892/mmr.2016.6019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zijia Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
22
|
Deng M, Hou J, Hu J, Wang S, Chen M, Chen L, Ju Y, Li C, Meng S. Hepatitis B virus mRNAs functionally sequester let-7a and enhance hepatocellular carcinoma. Cancer Lett 2016; 383:62-72. [PMID: 27693636 DOI: 10.1016/j.canlet.2016.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection induces hepatocarcinogenesis and malignant progression, yet global effects of the redundant viral mRNAs produced during infection are unexplored. Here, microRNA (miRNA) target prediction and whole genome expression analysis revealed that HBV pre-C/C mRNA leads to upregulation of multiple let-7a targeted genes. A let-7a complementary region from nt 86 to 108 in the HBV genome was then identified in HBV pre-C/C, pre-S, and S mRNAs. The let-7a sequestration effect by HBV mRNAs was observed under transfection and virus infection, which is dependent on the let-7a response sequence. Moreover, we found reduced AGO2 binding, as well as functional mRNA and protein de-repression of let-7a targets (e.g., c-myc, K-RAS, and CCR7), upon viral mRNA expression. Let-7a levels in the liver were significantly decreased in hepatocellular carcinoma (HCC) patients with HBV infection and were negatively correlated with intrahepatic pre-S2 mRNA levels. Finally, both in vitro and in vivo studies demonstrated that let-7a inhibition by HBV mRNAs resulted in enhanced HCC cell colony formation and tumor growth, providing evidence of the oncogenic potential of HBV mRNAs.
Collapse
Affiliation(s)
- Mengmeng Deng
- School of Life Sciences, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction 2016; 152:161-9. [PMID: 27222597 DOI: 10.1530/rep-15-0517] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and TechnologyNanjing Agricultural University, Nanjing, China
| | - Qiqi Li
- College of Animal Science and TechnologyNanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and TechnologyNanjing Agricultural University, Nanjing, China
| | - Qifa Li
- College of Animal Science and TechnologyNanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
RBMMMDA: predicting multiple types of disease-microRNA associations. Sci Rep 2015; 5:13877. [PMID: 26347258 PMCID: PMC4561957 DOI: 10.1038/srep13877] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidences have shown that plenty of miRNAs play fundamental and important roles in various biological processes and the deregulations of miRNAs are associated with a broad range of human diseases. However, the mechanisms underlying the dysregulations of miRNAs still have not been fully understood yet. All the previous computational approaches can only predict binary associations between diseases and miRNAs. Predicting multiple types of disease-miRNA associations can further broaden our understanding about the molecular basis of diseases in the level of miRNAs. In this study, the model of Restricted Boltzmann machine for multiple types of miRNA-disease association prediction (RBMMMDA) was developed to predict four different types of miRNA-disease associations. Based on this model, we could obtain not only new miRNA-disease associations, but also corresponding association types. To our knowledge, RBMMMDA is the first model which could computationally infer association types of miRNA-disease pairs. Leave-one-out cross validation was implemented for RBMMMDA and the AUC of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. In the case studies about lung cancer, breast cancer, and global prediction for all the diseases simultaneously, 50, 42, and 45 out of top 100 predicted miRNA-disease association types were confirmed by recent biological experimental literatures, respectively.
Collapse
|
25
|
Finlay-Schultz J, Sartorius CA. Steroid hormones, steroid receptors, and breast cancer stem cells. J Mammary Gland Biol Neoplasia 2015; 20:39-50. [PMID: 26265122 PMCID: PMC4666507 DOI: 10.1007/s10911-015-9340-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
The ovarian hormones progesterone and estrogen play important roles in breast cancer etiology, proliferation, and treatment. Androgens may also contribute to breast cancer risk and progression. In recent years, significant advances have been made in defining the roles of these steroid hormones in stem cell homeostasis in the breast. Stem cells are potential origins of breast cancer and may dictate tumor phenotype. At least a portion of breast cancers are proposed to be driven by cancer stem cells (CSCs), cells that mimic the self-renewing and repopulating properties of normal stem cells, and can confer drug resistance. Progesterone has been identified as the critical hormone regulating normal murine mammary stem cell (MaSC) populations and normal human breast stem cells. Synthetic progestins increase human breast cancer risk; one theory speculates that this occurs through increased stem cells. Progesterone treatment also increases breast CSCs in established breast cancer cell lines. This is mediated in part through progesterone regulation of transcription factors, signal transduction pathways, and microRNAs. There is also emerging evidence that estrogens and androgens can regulate breast CSC numbers. The evolving concept that a breast CSC phenotype is dynamic and can be influenced by cell signaling and external cues emphasizes that steroid hormones could be crucial players in controlling CSC number and function. Here we review recent studies on steroid hormone regulation of breast CSCs, and discuss mechanisms by which this occurs.
Collapse
Affiliation(s)
- Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue; MS 8104, Aurora, CO, 80045, USA.
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue; MS 8104, Aurora, CO, 80045, USA
| |
Collapse
|
26
|
Shah P, Choi SW, Kim HJ, Cho SK, Thulstrup PW, Bjerrum MJ, Bhang YJ, Ahn JC, Yang SW. DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Analyst 2015; 140:3422-30. [PMID: 25759134 DOI: 10.1039/c5an00093a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years microRNAs (miRNAs) have been established as important biomarkers in a variety of diseases including cancer, diabetes, cardiovascular disease, aging, Alzheimer's disease, asthma, autoimmune disease and liver diseases. As a consequence, a variety of monitoring methods for miRNAs have been developed, including a fast and simple method for miRNA detection by exploitation of the unique photoluminescence of DNA-templated silver nanoclusters (DNA/AgNCs). To increase the versatility of the AgNC-based method, we have adopted DNA/RNA chimera templates for AgNC-based probes, allowing response from several human miRNAs which are hardly detectable with DNA-based probes. Here, we demonstrate in detail the power of DNA/RNA chimera/AgNC probes in detecting two human miRNAs, let-7a and miR-200c. The DNA/RNA chimera-based probes are highly efficient to determine the level of miRNAs in several human cell lines.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Role of miRNA let-7 and its major targets in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:376326. [PMID: 25276782 PMCID: PMC4168040 DOI: 10.1155/2014/376326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias.
Collapse
|
28
|
Abstract
While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
29
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
30
|
McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer 2014; 21:T161-81. [PMID: 24951107 DOI: 10.1530/erc-14-0243] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Nicole L Moore
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Hironobu Sasano
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| |
Collapse
|