1
|
Pellizzari S, Athwal H, Bonvissuto AC, Parsyan A. Role of AURKB Inhibition in Reducing Proliferation and Enhancing Effects of Radiotherapy in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:341-346. [PMID: 39006183 PMCID: PMC11246031 DOI: 10.2147/bctt.s444965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a leading cause of cancer-related deaths in females. Triple-negative breast cancer (TNBC) subtype is the most aggressive form of breast cancer that lacks biomarkers and effective targeted therapies. Its high degree of heterogeneity as well as innate and acquired resistance to treatment creates further barriers in achieving positive clinical outcomes in TNBC. Thus, development of novel treatment approaches in TNBC is of high clinical significance. Multimodality approaches with targeted agents and radiotherapy (RT) are promising for increasing efficacy of treatment and circumventing resistance. Here we examined anticancer effects of the Aurora Kinase B (AURKB) inhibitor AZD1152 as a single agent and in combination with RT using various TNBC cell lines, MDA-MB-468, MDA-MB-231 and SUM-159. We observed that AZD1152 alone effectively inhibited colony formation in TNBC cell lines. The combination of AZD1152 at IC50 concentrations together with ionizing radiation further reduced colony formation as compared to the single agent treatment. Our data support the notion that inhibition of the AURKB pathway is a promising strategy for treatment and radiosensitization of TNBC and warrants further translational studies.
Collapse
Affiliation(s)
- Sierra Pellizzari
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Anne Claudine Bonvissuto
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Surgery, St Joseph’s Health Care and London Health Sciences Centre, Western University, London, ON, Canada
| |
Collapse
|
2
|
Vuaroqueaux V, Musch A, Peille AL, Kelter G, Weichert L, Metz T, Hendriks HR, Fiebig HH. High In Vitro and In Vivo Activity of BI-847325, a Dual MEK/Aurora Kinase Inhibitor, in Human Solid and Hematologic Cancer Models. CANCER RESEARCH COMMUNICATIONS 2023; 3:2170-2181. [PMID: 37830744 PMCID: PMC10599287 DOI: 10.1158/2767-9764.crc-22-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
BI-847325 is an ATP-competitive inhibitor of MEK/Aurora kinases with the potential to treat a wide range of cancers. In a panel of 294 human tumor cell lines in vitro, BI-847325 was found to be a highly selective inhibitor that was active in the submicromolar range. The most sensitive cancer types were acute lymphocytic and myelocytic leukemia, melanomas, bladder, colorectal, and mammary cancers. BI-847325 showed a broader range of activity than the MEK inhibitor GDC-0623. The high efficacy of BI-847325 was associated with but not limited to cell lines with oncogenic mutations in NRAS, BRAF, and MAP2K1.The high antiproliferative activity of BI-847325 was validated in vivo using subcutaneous xenograft models. After oral administration of 80 and 40 mg/kg once weekly for 3 or 4 weeks, BI-847325 was highly active in four of five colorectal, two of two gastric, two of two mammary, and one of one pancreatic cancer models (test/control < 25%), and tumor regressions were observed in five of 11 cancer models. The treatment was well tolerated with no relevant lethality or body weight changes. In combination with capecitabine, BI-847325 displayed synergism over single-agent therapies, leading to complete remission in the triple-negative mammary model MAXFTN 401, partial regression in the colon model CXF 1103, and stasis in the gastric models GXA 3011 and GXA 3023. In conclusion, dual MEK/Aurora kinase inhibition shows remarkable potential for treating multiple types of hematologic and solid tumors. The combination with capecitabine was synergistic in colorectal, gastric, and mammary cancer. SIGNIFICANCE We report the preclinical evaluation of BI-847325, a MEK/Aurora kinase inhibitor. Our data demonstrate that BI-847325 has potent antitumor activity in a broad range of human solid and hematologic cancer models in vitro and in vivo and is well tolerated in animal models. It also shows synergistic effect when combined with capecitabine. These findings provide a strong rationale for further development of BI-847325 as a potential therapeutic for patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Gerhard Kelter
- Charles River, Discovery Research Services GmbH, Freiburg, Germany
| | - Loreen Weichert
- Charles River, Discovery Research Services GmbH, Freiburg, Germany
| | | | | | | |
Collapse
|
3
|
Boon SS, Lee YC, Yip KL, Luk HY, Xiao C, Yim MK, Chen Z, Chan PKS. Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation-A Potential Target of Intervention. Cancers (Basel) 2023; 15:cancers15092465. [PMID: 37173932 PMCID: PMC10177266 DOI: 10.3390/cancers15092465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The human papillomavirus E6 and E7 oncoproteins interact with a different subset of host proteins, leading to dysregulation of the apoptotic, cell cycle, and signaling pathways. In this study, we identified, for the first time, that Aurora kinase B (AurB) is a bona fide interacting partner of E6. We systematically characterized the AurB-E6 complex formation and its consequences in carcinogenesis using a series of in vitro and cell-based assays. We also assessed the efficacy of Aurora kinase inhibitors in halting HPV-mediated carcinogenesis using in vitro and in vivo models. We showed that AurB activity was elevated in HPV-positive cells, and this correlated positively with the E6 protein level. E6 interacted directly with AurB in the nucleus or mitotic cells. A previously unidentified region of E6, located upstream of C-terminal E6-PBM, was important for AurB-E6 complex formation. AurB-E6 complex led to reduced AurB kinase activity. However, the AurB-E6 complex increased the hTERT protein level and its telomerase activity. On the other hand, AurB inhibition led to the inhibition of telomerase activity, cell proliferation, and tumor formation, even though this may occur in an HPV-independent manner. In summary, this study dissected the molecular mechanism of how E6 recruits AurB to induce cell immortalization and proliferation, leading to the eventual cancer development. Our findings revealed that the treatment of AZD1152 exerted a non-specific anti-tumor effect. Hence, a continuous effort to seek a specific and selective inhibitor that can halt HPV-mediated carcinogenesis should be warranted.
Collapse
Affiliation(s)
- Siaw Shi Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yin Ching Lee
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka Lai Yip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ho Yin Luk
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chuanyun Xiao
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Man Kin Yim
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
Samimi H, Tavakoli R, Fallah P, Naderi Sohi A, Amini Shirkouhi M, Naderi M, Haghpanah V. BI-847325, a selective dual MEK and Aurora kinases inhibitor, reduces aggressive behavior of anaplastic thyroid carcinoma on an in vitro three-dimensional culture. Cancer Cell Int 2022; 22:388. [PMID: 36482411 PMCID: PMC9730667 DOI: 10.1186/s12935-022-02813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer. In this study, we used a three-dimensional in vitro system to evaluate the effect of a dual MEK/Aurora kinase inhibitor, BI-847325 anticancer drug, on several cellular and molecular processes involved in cancer progression. METHODS Human ATC cell lines, C643 and SW1736, were grown in alginate hydrogel and treated with IC50 values of BI-847325. The effect of BI-847325 on inhibition of kinases function of MEK1/2 and Aurora kinase B (AURKB) was evaluated via Western blot analysis of phospho-ERK1/2 and phospho-Histone H3 levels. Sodium/iodide symporter (NIS) and thyroglobulin (Tg), as two thyroid-specific differentiation markers, were measured by qRT-PCR as well as flow cytometry and immunoradiometric assay. Apoptosis was assessed by Annexin V/PI flow cytometry and BIM, NFκB1, and NFκB2 expressions. Cell cycle distribution and proliferation were determined via P16, AURKA, and AURKB expressions as well as PI and CFSE flow cytometry assays. Multidrug resistance was evaluated by examining the expression of MDR1 and MRP1. Angiogenesis and invasion were investigated by VEGF expression and F-actin labeling with Alexa Fluor 549 Phalloidin. RESULTS Western blot results showed that BI-847325 inhibits MEK1/2 and AURKB functions by decreasing phospho-ERK1/2 and phospho-Histone H3 levels. BI-847325 induced thyroid differentiation markers and apoptosis in ATC cell lines. Inversely, BI-847325 intervention decreased multidrug resistance, cell cycle progression, proliferation, angiogenesis, and invasion at the molecular and/or cellular levels. CONCLUSION The results of the present study suggest that BI-857,325 might be an effective multi-targeted anticancer drug for ATC treatment.
Collapse
Affiliation(s)
- Hilda Samimi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rezvan Tavakoli
- grid.420169.80000 0000 9562 2611Hepatitis and HIV Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Fallah
- grid.411705.60000 0001 0166 0922Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Naderi Sohi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amini Shirkouhi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- grid.411705.60000 0001 0166 0922Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li X, Tai Y, Liu S, Gao Y, Zhang K, Yin J, Zhang H, Wang X, Li X, Zhang D, Zhang DF. The targets of aspirin in bladder cancer: bioinformatics analysis. BMC Urol 2022; 22:168. [PMID: 36316768 PMCID: PMC9620658 DOI: 10.1186/s12894-022-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background The anti-carcinogenic properties of aspirin have been observed in some solid tumors. However, the molecular mechanism of therapeutic effects of aspirin on bladder cancer is still indistinct. We introduced a bioinformatics analysis approach, to explore the targets of aspirin in bladder cancer (BC). Methods To find out the potential targets of aspirin in BC, we analyzed direct protein targets (DPTs) of aspirin in Drug Bank 5.0. The protein-protein interaction (PPI) network and signaling pathway of aspirin DPTs were then analyzed subsequently. A detailed analysis of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway has shown that aspirin is linked to BC. We identified overexpressed genes in BC comparing with normal samples by Oncomine and genes that interlinked with aspirin target genes in BC by STRING. Results Firstly, we explored 16 direct protein targets (DPT) of aspirin. We analyzed the protein-protein interaction (PPI) network and signaling pathways of aspirin DPT. We found that aspirin is closely associated with a variety of cancers, including BC. Then, we classified mutations in 3 aspirin DPTs (CCND1, MYC and TP53) in BC using the cBio Portal database. In addition, we extracted the top 50 overexpressed genes in bladder cancer by Oncomine and predicted the genes associated with the 3 aspirin DPTs (CCND1, MYC and TP53) in BC by STRING. Finally, 5 exact genes were identified as potential therapeutic targets of aspirin in bladder cancer. Conclusion The analysis of relevant databases will improve our mechanistic understanding of the role of aspirin in bladder cancer. This will guide the direction of our next drug-disease interaction studies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Yanghao Tai
- grid.263452.40000 0004 1798 4018Shanxi Medical University, 030000 Taiyuan, China
| | - Shuying Liu
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Yating Gao
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Kaining Zhang
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Jierong Yin
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Huijuan Zhang
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Xia Wang
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Xiaofei Li
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Dongfeng Zhang
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| | - Dong-feng Zhang
- Department of Thoracic Oncology, Lin Fen Central Hospital, 041000 Lin Fen, China
| |
Collapse
|
6
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Ashraf S, Ranaghan KE, Woods CJ, Mulholland AJ, Ul-Haq Z. Exploration of the structural requirements of Aurora Kinase B inhibitors by a combined QSAR, modelling and molecular simulation approach. Sci Rep 2021; 11:18707. [PMID: 34548506 PMCID: PMC8455585 DOI: 10.1038/s41598-021-97368-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
Aurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine atom-based 3D-QSAR analysis and pharmacophore model generation to identify the principal structural features of acylureidoindolin derivatives that could potentially be responsible for the inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results with cross-validation values (q2) of 0.68, 0.641 and linear regression values (r2) of 0.971, 0.933 respectively. These values support the statistical reliability of our model. A pharmacophore model was also generated, incorporating features of reported crystal complex structures of Aurora kinase B. The pharmacophore model was used to screen commercial databases to retrieve potential lead candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore model, followed by molecular docking and filtering based on their interaction with active site residues and 3D-QSAR predictions. Subsequently, MD simulations and binding free energy calculations were performed to test the predictions and to characterize interactions at the molecular level. The results suggested that the identified compounds retained the interactions with binding residues. Binding energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C as major contributors to binding affinity, complementary to 3D-QSAR results. To best of our knowledge, this is the first comparison of WaterSwap field and 3D-QSAR maps. Overall, this integrated strategy provides a basis for the development of new and potential AK-B inhibitors and is applicable to other protein targets.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, Wang J, Yang Y, Wang G. Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Front Oncol 2021; 11:699475. [PMID: 34458143 PMCID: PMC8386172 DOI: 10.3389/fonc.2021.699475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Neoadjuvant chemoradiotherapy has been widely used in the treatment of locally advanced rectal cancer due to the excellent advantages of irradiation in cancer therapy. Unfortunately, not every patient can benefit from this treatment, therefore, it is of great significance to explore biomarkers that can predict irradiation sensitivity. In this study, we screened microRNAs (miRNAs) which were positively correlated with irradiation resistance and found that miRNA-552 and miRNA-183 families were positively correlated with the irradiation resistance of rectal cancer, and found that high expression of miRNA-96-5p enhanced the irradiation resistance of rectal cancer cells through direct regulation of the GPC3 gene and abnormal activation of the canonical Wnt signal transduction pathway. Based on the radioreactivity results of patient-derived xenograft models, this is the first screening report for radio-resistant biomarkers in rectal cancer. Our results suggest that miRNA-96-5p expression is an important factor affecting the radiation response of colorectal cancer cells.
Collapse
Affiliation(s)
- Fengpeng Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyue Wu
- Department of Oncology, Hebei Provincial People's Hospital, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiao Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congrong Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuguang Ren
- Laboratory Animal Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafan Yang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Inchanalkar S, Balasubramanian N. Adhesion-growth factor crosstalk regulates AURKB activation and ERK signalling in re-adherent fibroblasts. J Biosci 2021. [DOI: 10.1007/s12038-021-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
11
|
Chang X, Zhang T, Wang Q, Rathore MG, Reddy K, Chen H, Shin SH, Ma WY, Bode AM, Dong Z. HI-511 overcomes melanoma drug resistance via targeting AURKB and BRAF V600E. Am J Cancer Res 2020; 10:9721-9740. [PMID: 32863956 PMCID: PMC7449901 DOI: 10.7150/thno.44342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Melanoma is an aggressive tumor of the skin and drug resistance is still a major problem in melanoma therapy. Novel targets and effective agents to overcome drug resistant melanoma are urgently needed in clinical therapy. Methods: Gene Expression Omnibus (GEO) database analysis, pathway enrichment analysis, and survival rate analysis were utilized to identify a candidate target. An anchorage-independent cell growth assay, flow cytometry, Western blot, and a xenograft mouse model were used to study the function of Aurora kinase B (AURKB) in both drug-sensitive and drug-resistant melanoma. Next, HI-511, a novel dual-target inhibitor targeting both AURKB and BRAF V600E, was designed and examined by an in vitro kinase assay. Methods as indicated above in addition to a BRAF V600E/PTEN-loss melanoma mouse model were used to demonstrate the effect of HI-511 on melanoma development in vitro and in vivo. Results: AURKB is highly expressed in melanoma and especially in vemurafenib-resistant melanoma and the expression was correlated with patient survival rate. Knocking down AURKB inhibited cell growth and induced apoptosis in melanoma, which was associated with the BRAF/MEK/ERKs and PI3-K/AKT signaling pathways. Importantly, we found that HI-511, a novel dual-target inhibitor against AURKB and BRAF V600E, suppresses both vemurafenib-sensitive and vemurafenib-resistant melanoma growth in vitro and in vivo by inducing apoptosis and mediating the inhibition of the BRAF/MEK/ERKs and PI3K/AKT signaling pathways. Conclusion: AURKB is a potential target for melanoma treatment. HI-511, a novel dual-target inhibitor against both AURKB and BRAF V600E, could achieve durable suppression of melanoma growth, even drug-resistant melanoma growth.
Collapse
|
12
|
Sorolla MA, Parisi E, Sorolla A. Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel) 2020; 12:E1906. [PMID: 32679719 PMCID: PMC7409033 DOI: 10.3390/cancers12071906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
13
|
Grazzini G, Cozzi D, Flammia F, Grassi R, Agostini A, Belfiore MP, Borgheresi A, Mazzei MA, Floridi C, Carrafiello G, Giovagnoni A, Pradella S, Miele V. Hepatic tumors: pitfall in diagnostic imaging. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:9-17. [PMID: 32945274 PMCID: PMC7944669 DOI: 10.23750/abm.v91i8-s.9969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
On computed tomography (CT) and magnetic resonance imaging (MRI), hepatocellular tumors are characterized based on typical imaging findings. However, hepatocellular adenoma, focal nodular hyperplasia, and hepatocellular carcinoma can show uncommon appearances at CT and MRI, which may lead to diagnostic challenges. When assessing focal hepatic lesions, radiologists need to be aware of these atypical imaging findings to avoid misdiagnoses that can alter the management plan. The purpose of this review is to illustrate a variety of pitfalls and atypical features of hepatocellular tumors that can lead to misinterpretations providing specific clues to the correct diagnoses. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Giulia Grazzini
- Department of Radiology, Careggi University Hospital, Florence, Italy.
| | - Diletta Cozzi
- Department of Radiology, Careggi University Hospital, Florence, Italy.
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Florence, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche and Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Ancona, Italy.
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Alessandra Borgheresi
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Ancona, Italy.
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche and Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Ancona, Italy.
| | - Gianpaolo Carrafiello
- Radiology Department, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy..
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche and Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Ancona, Italy.
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Florence, Italy.
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
14
|
Reginelli A, Urraro F, Sangiovanni A, Russo GM, Russo C, Grassi R, Agostini A, Belfiore MP, Cellina M, Floridi C, Giovagnoni A, Sica A, Cappabianca S. Extranodal Lymphomas: a pictorial review for CT and MRI classification. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:34-42. [PMID: 32945277 PMCID: PMC7944666 DOI: 10.23750/abm.v91i8-s.9971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Extranodal lymphomas represent an extranodal location of both non-Hodgkin and Hodgkin lymphomas. This study aims to evaluate the role of CT and MRI in the assessment of relationships of extranodal lymphomas with surrounding tissues and in the characterization of the lesion. We selected and reviewed ten recent studies among the most recent ones present in literature exclusively about CT and MRI imaging of extranodal lymphomas. Contrast-enhanced computed tomography (CT) is usually the first-line imaging modality in the evaluation of extranodal lymphomas, according to Lugano classification. However, MRI has a crucial role thanks to the superior soft-tissue contrast resolution, particularly in the anatomical region as head and neck. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Alfonso Reginelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Gaetano Maria Russo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Carolina Russo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Andrea Agostini
- Radiology Department, Università Politecnica delle Marche, Ancona, Italy.
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Michaela Cellina
- Department of Radiology, Ospedale Fatebenefratelli, ASST Fatebenefratelli Sacco, Milan, Italy.
| | - Chiara Floridi
- Radiology Department, Università Politecnica delle Marche, Ancona, Italy.
| | - Andrea Giovagnoni
- Radiology Department, Università Politecnica delle Marche, Ancona, Italy.
| | - Antonello Sica
- Oncology and Hematology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| |
Collapse
|
15
|
Liu M, Ju X, Zou J, Shi J, Jia G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur J Med Chem 2020; 203:112498. [PMID: 32693295 DOI: 10.1016/j.ejmech.2020.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Non-infectious and chronic diseases such as malignant tumors are now one of the main causes of human death. Its occurrence is a multi-factor, multi-step complex process with biological characteristics such as cell differentiation, abnormal proliferation, uncontrolled growth, and metastasis. It has been found that a variety of human malignant tumors are accompanied by over-expression and proliferation of Aurora kinase, which causes abnormalities in the mitotic process and is related to the instability of the genome that causes tumors. Therefore, the use of Aurora kinase inhibitors to target tumors is becoming a research hotspot. However, in cancer, because of the complexity of signal transduction system and the participation of different proteins and enzymes, the anticancer effect of selective single-target drugs is limited. After inhibiting one pathway, signal molecules can be conducted through other pathways, resulting in poor therapeutic effect of single-target drug treatment. Multi-target drugs can solve this problem very well. It can regulate the various links that cause disease at the same time without completely eliminating the relationship between the signal transmission systems, and it is not easy to cause drug resistance. Currently, studies have shown that Aurora dual-target inhibitors generated with the co-inhibition of Aurora and another target (such as CDK, PLK, JAK2, etc.) have better therapeutic effects on tumors. In this paper, we reviewed the studies of dual Aurora inhibitors that have been discovered in recent years.
Collapse
Affiliation(s)
- Maoyu Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xueming Ju
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jing Zou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
16
|
Kinouchi S, Sato M, Furukawa H, Sato T. Suppression of Malignant Potentials of A549 Human Lung Cancer Cell Line by Downregulation of the β4-Galactosyltransferase 1 Gene Expression. Biol Pharm Bull 2020; 43:747-751. [PMID: 32023576 DOI: 10.1248/bpb.b19-01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study demonstrated that downregulation of transcription factor Specificity protein (Sp) 1 suppresses the malignant potentials of A549 human lung cancer cell line with the reduced β4-galactosylation of highly branched N-glycans on cell surface glycoproteins. The reduced β4-galactosylation was brought about by the decreased expression of the β4-galactosyltransferase 1 (β4GalT1) gene. Herein, we examined whether the reduced β4-galactosylation by decreasing the β4GalT1 gene expression suppresses the malignant potentials of A549 cells. In the β4GalT1-downregulated cells, the β4-galactosylation of highly branched N-glycans was reduced in several glycoproteins such as lysosome-associated membrane protein-1 and E-cadherin. The anchorage-independent growth and migratory ability of the β4GalT1-downregulated cells decreased when compared with the control cells. Furthermore, the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) decreased in the β4GalT1-downregulated cells. These results indicate that downregulation of the β4GalT1 gene decreases the β4-galactosylation of highly branched N-glycans and the phosphorylation of p44/42 MAPK, and suppresses the malignant potentials of A549 cells.
Collapse
Affiliation(s)
- Saeka Kinouchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Miku Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Haruna Furukawa
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
17
|
Petragnano F, Pietrantoni I, Di Nisio V, Fasciani I, Del Fattore A, Capalbo C, Cheleschi S, Tini P, Orelli S, Codenotti S, Mazzei MA, D'Ermo G, Pannitteri G, Tombolini M, De Cesaris P, Riccioli A, Filippini A, Milazzo L, Vulcano F, Fanzani A, Maggio R, Marampon F, Tombolini V. Modulating the dose-rate differently affects the responsiveness of human epithelial prostate- and mesenchymal rhabdomyosarcoma-cancer cell line to radiation. Int J Radiat Biol 2020; 96:823-835. [PMID: 32149569 DOI: 10.1080/09553002.2020.1739774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Radiation therapy (RT), by using ionizing radiation (IR), destroys cancer cells inducing DNA damage. Despite several studies are continuously performed to identify the best curative dose of IR, the role of dose-rate, IR delivered per unit of time, on tumor control is still largely unknown.Materials and methods: Rhabdomyosarcoma (RMS) and prostate cancer (PCa) cell lines were irradiated with 2 or 10 Gy delivered at dose-rates of 1.5, 2.5, 5.5 and 10.1 Gy/min. Cell-survival rate and cell cycle distribution were evaluated by clonogenic assays and flow cytometry, respectively. The production of reactive oxygen species (ROS) was detected by cytometry. Quantitative polymerase chain reaction assessed the expression of anti-oxidant-related factors including NRF2, SODs, CAT and GPx4 and miRNAs (miR-22, -126, -210, -375, -146a, -34a). Annexin V and caspase-8, -9 and -3 activity were assessed to characterize cell death. Senescence was determined by assessing β-galactosidase (SA-β-gal) activity. Immunoblotting was performed to assess the expression/activation of: i) phosphorylated H2AX (γ-H2AX), markers of DNA double strand breaks (DSBs); ii) p19Kip1/Cip1, p21Waf1/Cip1 and p27Kip1/Cip1, senescence-related-markers; iii) p62, LC3-I and LC3-II, regulators of autophagy; iv) ATM, RAD51, DNA-PKcs, Ku70 and Ku80, mediators of DSBs repair.Results: Low dose-rate (LDR) more efficiently induced apoptosis and senescence in RMS while high dose-rate (HDR) necrosis in PCa. This paralleled with a lower ability of LDR-RMS and HDR-PCa irradiated cells to activate DSBs repair. Modulating the dose rate did not differently affect the anti-oxidant ability of cancer cells.Conclusion: The present results indicate that a stronger cytotoxic effect was induced by modulating the dose-rate in a cancer cell-dependent manner, this suggesting that choose the dose-rate based on the individual patient's tumor characteristics could be strategic for effective RT exposures.
Collapse
Affiliation(s)
- Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Unit Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Paolo Tini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Simone Orelli
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | | | - Giuseppe D'Ermo
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Gaetano Pannitteri
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University, Rome, Italy
| | - Mario Tombolini
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
18
|
Antitumorigenic Effects of Inhibiting Ephrin Receptor Kinase Signaling by GLPG1790 against Colorectal Cancer Cell Lines In Vitro and In Vivo. JOURNAL OF ONCOLOGY 2020; 2020:9342732. [PMID: 32184826 PMCID: PMC7063197 DOI: 10.1155/2020/9342732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Erythropoietin-producing hepatocellular receptors (Eph) promote the onset and sustain the progression of cancers such as colorectal cancer (CRC), in which the A2 subtype of Eph receptor expression has been shown to correlate with a poor prognosis and has been identified as a promising therapeutic target. Herein, we investigated, in vitro and in vivo, the effects of treatment with GLPG1790, a potent pan-Eph inhibitor. The small molecule has selective activity against the EphA2 isoform in human HCT116 and HCT15 CRC cell lines expressing a constitutively active form of RAS concurrently with a wild-type or mutant form of p53, respectively. GLPG1790 reduced EPHA2 phosphorylation/activation and induced G1/S cell-cycle growth arrest by downregulating the expression of cyclin E and PCNA, while upregulating p21Waf1/Cip1 and p27Cip/Kip. The inhibition of ephrin signaling induced quiescence in HCT15 and senescence in HCT116 cells. While investigating the role of CRC-related, pro-oncogenic p53 and RAS pathways, we found that GLPG1790 upregulated p53 expression and that silencing p53 or inhibiting RAS (human rat sarcoma)/ERKs (extracellular signal-regulated kinase) signaling restrained the ability of GLPG1790 to induce senescence in HCT116 cells. On the other hand, HCT15 silencing of p53 predisposed cells to GLPG1790-induced senescence, whilst no effects of ERK inhibition were observed. Finally, GLPG1790 hindered the epithelial-mesenchymal transition, reduced the migratory capacities of CRC, and affected tumor formation in xenograft models in vivo more efficiently using HCT116 than HCT15 for xenografts. Taken together, our data suggest the therapeutic potential of GLPG1790 as a signal transduction-based therapeutic strategy in to treat CRC.
Collapse
|
19
|
Tian X, Geng J, Zheng Q, Wang L, Huang P, Tong J, Zheng S. Single high dose irradiation induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cells through the Ras/Raf/MEK/ERK pathways. Int J Radiat Biol 2020; 96:740-747. [PMID: 32039644 DOI: 10.1080/09553002.2020.1694188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Stereotactic body radiation therapy (SBRT) is emerging as a new noninvasive treatment in patients with primary liver carcinoma or liver-confined metastatic cancer. However, the radiobiological targets remain a subject of debate. Here, we investigated the potential biological effects of the radiation on the human hepatocellular carcinoma HepG2 cells.Materials and methods: Firstly, HepG2 cells were divided into three groups: control group, 3.5 Gy*8f group (L group), and 15 Gy*1f group (H group). After treatment, cell proliferation was examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and plate colony formation assays. Cell cycle and apoptosis were assessed using propidium iodide and Hoechst 33258 staining, respectively. Furthermore, the mechanisms underlying irradiation-induced cell cycle arrest and cell apoptosis were investigated by Western blot assay.Results: Irradiation could effectively inhibit the proliferation and colony formation of HepG2 cells, and the single high dose irradiation showed stronger inhibitory effects. Irradiation-induced cell cycle arrest at G2/M phase in HepG2 cell, during which the expression levels of cyclin B1, CDK1, and p-CDK1 proteins were downregulated, whereas expression of p21 was upregulated in the irradiated HepG2 cells. After irradiation, typical morphological changes of apoptosis in HepG2 cells were observed; the number of cell apoptosis and the expression of apoptosis associated proteins were significantly increased in HepG2 cells by high dose irradiation compared with low dose irradiation. Additionally, compared with low dose irradiation, high dose irradiation significantly downregulated the phosphorylated proteins in the Ras/Raf/MEK/ERK signaling pathway.Conclusions: Our results suggest that irradiation applied in SBRT, particularly single high dose irradiation, mediates its anti-tumor effects by inducing cell cycle arrest and apoptosis via modulation of the Ras/Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- XiaoQiang Tian
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Geng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qin Zheng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - LiXue Wang
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - PeiLin Huang
- Department of Pathology, Medicine School of Southeast University, Nanjing, Jiangsu, China
| | - JinLong Tong
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - ShengQin Zheng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Lakkaniga NR, Balasubramaniam M, Zhang S, Frett B, Li HY. Structural Characterization of the Aurora Kinase B "DFG-flip" Using Metadynamics. AAPS JOURNAL 2019; 22:14. [PMID: 31853739 DOI: 10.1208/s12248-019-0399-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
Aurora kinase B (AKB), a Ser/Thr kinase that plays a crucial role in mitosis, is overexpressed in several cancers. Clinical inhibitors targeting AKB bind to the active DFG "in" conformation of the kinase. It would be beneficial, however, to understand if AKB is susceptible to type II kinase inhibitors that bind to the inactive, DFG "out" conformation, since type II inhibitors achieve higher kinome selectivity and higher potency in vivo. The DFG "out" conformation of AKB is not yet experimentally determined which makes the design of type II inhibitors exceedingly difficult. An alternate approach is to simulate the DFG "out" conformation from the experimentally determined DFG "in" conformation using atomistic molecular dynamics (MD) simulation. In this work, we employed metadynamics (MTD) approach to simulate the DFG "out" conformation of AKB by choosing the appropriate collective variables. We examined structural changes during the DFG-flip and determined the interactions crucial to stabilize the kinase in active and inactive states. Interestingly, the MTD approach also identified a unique transition state (DFG "up"), which can be targeted by small molecule inhibitors. Structural insights about these conformations is essential for structure-guided design of next-generation AKB inhibitors. This work also emphasizes the usefulness of MTD simulations in predicting macromolecular conformational changes at reduced computational costs.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | | | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77225, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
21
|
Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci 2019; 20:ijms20102530. [PMID: 31126017 PMCID: PMC6567863 DOI: 10.3390/ijms20102530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
ERK1 and ERK2 (ERKs), two extracellular regulated kinases (ERK1/2), are evolutionary-conserved and ubiquitous serine-threonine kinases involved in regulating cell signalling in normal and pathological tissues. The expression levels of these kinases are almost always different, with ERK2 being the more prominent. ERK1/2 activation is fundamental for the development and progression of cancer. Since their discovery, much research has been dedicated to their role in mitogen-activated protein kinases (MAPK) pathway signalling and in their activation by mitogens and mutated RAF or RAS in cancer cells. In order to gain a better understanding of the role of ERK1/2 in MAPK pathway signalling, many studies have been aimed at characterizing ERK1/2 splicing isoforms, mutants, substrates and partners. In this review, we highlight the differences between ERK1 and ERK2 without completely discarding the hypothesis that ERK1 and ERK2 exhibit functional redundancy. The main goal of this review is to shed light on the role of ERK1/2 in targeted therapy and radiotherapy and highlight the importance of identifying ERK inhibitors that may overcome acquired resistance. This is a highly relevant therapeutic issue that needs to be addressed to combat tumours that rely on constitutively active RAF and RAS mutants and the MAPK pathway.
Collapse
|
22
|
Bruno F, Arrigoni F, Mariani S, Patriarca L, Palumbo P, Natella R, Ma L, Guglielmi G, Galzio RJ, Splendiani A, Di Cesare E, Masciocchi C, Barile A. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:68-76. [PMID: 31085975 PMCID: PMC6625568 DOI: 10.23750/abm.v90i5-s.8326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Peripheral nerves can be affected by a variety of benign and malignant tumour and tumour-like lesions. Besides clinical evaluation and electrophysiologic studies, MRI is the imaging modality of choice for the assessment of these soft tissue tumours. Conventional MR sequences, however, can fail to assess the histologic features of the lesions. Moreover, the precise topographical relationship between the peripheral nerve and the tumor must be delineated preoperatively for complete tumour resection minimizing nerve damage. Using Diffusion tensor imaging (DTI) and tractography, it is possible to obtain functional information on tumour and nerve structures, allowing the assess anatomy, function and biological features. In this article, we review the technical aspects and clinical application of DTI for the evaluation of peripheral nerve tumours. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao X, Chen Y, Chen M, Wang S, Wen X, Zhang S. Identification of key candidate genes and biological pathways in bladder cancer. PeerJ 2018; 6:e6036. [PMID: 30533316 PMCID: PMC6284430 DOI: 10.7717/peerj.6036] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Background Bladder cancer is a malignant tumor in the urinary system with high mortality and recurrence rates. However, the causes and recurrence mechanism of bladder cancer are not fully understood. In this study, we used integrated bioinformatics to screen for key genes associated with the development of bladder cancer and reveal their potential molecular mechanisms. Methods The GSE7476, GSE13507, GSE37815 and GSE65635 expression profiles were downloaded from the Gene Expression Omnibus database, and these datasets contain 304 tissue samples, including 81 normal bladder tissue samples and 223 bladder cancer samples. The RobustRankAggreg (RRA) method was utilized to integrate and analyze the four datasets to obtain integrated differentially expressed genes (DEGs), and the gene ontology (GO) functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed. Protein-protein interaction (PPI) network and module analyses were performed using Cytoscape software. The OncoLnc online tool was utilized to analyze the relationship between the expression of hub genes and the prognosis of bladder cancer. Results In total, 343 DEGs, including 111 upregulated and 232 downregulated genes, were identified from the four datasets. GO analysis showed that the upregulated genes were mainly involved in mitotic nuclear division, the spindle and protein binding. The downregulated genes were mainly involved in cell adhesion, extracellular exosomes and calcium ion binding. The top five enriched pathways obtained in the KEGG pathway analysis were focal adhesion (FA), PI3K-Akt signaling pathway, proteoglycans in cancer, extracellular matrix (ECM)-receptor interaction and vascular smooth muscle contraction. The top 10 hub genes identified from the PPI network were vascular endothelial growth factor A (VEGFA), TOP2A, CCNB1, Cell division cycle 20 (CDC20), aurora kinase B, ACTA2, Aurora kinase A, UBE2C, CEP55 and CCNB2. Survival analysis revealed that the expression levels of ACTA2, CCNB1, CDC20 and VEGFA were related to the prognosis of patients with bladder cancer. In addition, a KEGG pathway analysis of the top 2 modules identified from the PPI network revealed that Module 1 mainly involved the cell cycle and oocyte meiosis, while the analysis in Module 2 mainly involved the complement and coagulation cascades, vascular smooth muscle contraction and FA. Conclusions This study identified key genes and pathways in bladder cancer, which will improve our understanding of the molecular mechanisms underlying the development and progression of bladder cancer. These key genes might be potential therapeutic targets and biomarkers for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Xin Gao
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yinyi Chen
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Mei Chen
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Shunlan Wang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
24
|
Wang F, Chen Q, Huang G, Guo X, Li N, Li Y, Li B. BKCa participates in E2 inducing endometrial adenocarcinoma by activating MEK/ERK pathway. BMC Cancer 2018; 18:1128. [PMID: 30445932 PMCID: PMC6240221 DOI: 10.1186/s12885-018-5027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background The large-conductance, voltage-gated, calcium (Ca (2+))-activated potassium channel (BKCa) plays an important role in regulating Ca (2+) signaling and cell physiological function, and is aberrantly expressed in some types of cancers. The present study focuses on identifying the oncogenic potential and clinical significance of BKCa in endometrial adenocarcinoma, as well as exploring the mechanistic relevance by 17β -estradiol (E2) inducing aberrant activation of MEK1/2 and ERK1/2 via BKCa. Methods The expression of BKCa, ERK1/2 and p-ERK1/2 were examined by immunohistochemical staining in 263 cases, including 185 primary types I endometrial cancer tissues, 38 atypical endometrial hyperplasia tissues and 40 normal endometrium tissues. Cell growth, cycle, apoptosis rate, migration and invasion was separately tested in Ishikawa cells using siRNA-BKCa and/or E2 treatment, as well as the expression of these interested proteins by western blot analysis. Results We showed that expression of BKCa is significantly elevated in 185 types I endometrial adenocarcinoma tissues compared to those of the normal endometrium and atypical endometrial hyperplasia tissues. Furthermore, in vitro observations revealed that down-regulation of BKCa expression inhibited cell growth by both enhancing apoptosis and blocking G1/S transition, suppressed cell migration and invasion in Ishakiwa cells, and decreased the expression of p-MEK1/2 and p-ERK1/2. Additionally, RNAi-mediated knockdown of BKCa attenuated the increased cellular growth and invasion, as well as the elevated expression of p-MEK1/2 and p-ERK1/2 proteins, induced by E2 stimulation. More importantly, the aberrant expression of BKCa and p-ERK1/2 were closely related with poor prognostic factors in type I endometrial cancer, and up-regulated expression of p-ERK1/2 was significantly associated with shorter disease-free survival (DFS) and overall survival (OS) and was an independent prognostic factor in type I endometrial cancer patients. Conclusion Our results demonstrated that BKCa and the key downstream effectors p-ERK1/2 could be involved in important signaling pathways in initiation and development of endometrial adenocarcinoma and may provide a new therapeutic approach for women with endometrial cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-5027-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Genping Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xuedong Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Na Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
25
|
Su CC, Chen NC, Chyau CC, Tseng HC, Chou FP. Induction of Mitotic Catastrophe via Inhibition of Aurora B by Ionizing Radiation With Additive of Mulberry Water Extract in Human Bladder Cancer Cells. Integr Cancer Ther 2018; 18:1534735418808586. [PMID: 30428726 PMCID: PMC7290068 DOI: 10.1177/1534735418808586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mulberry fruit water extract (MWE) has been reported to synergistically enhance the cytotoxic effect of paclitaxel by promoting mitotic catastrophe to induce apoptosis in bladder cancer cells in our previous work. The aim of this study was to evaluate and to mechanistically explore the effects of MWE on bladder cancer responses to ionizing radiation (IR) by treating TSGH 8301 bladder carcinoma cells with MWE after exposing to IR. The results of MTT assay showed a synergistic cytotoxicity of IR with the co-treatment of MWE (IR/MWE) by inducing G2/M phase arrest as demonstrated by flow cytometry analysis in TSGH 8301, HT1367 and HT1197 bladder carcinoma cells lines. The IR/MWE-treated cells expressed increased levels of the G2/M phase arrest-related proteins cdc2/cyclin B1 and displayed giant multinucleated morphology, a typical characteristic of mitotic catastrophe. Immunofluorescent confocal microscopy revealed that the combined strategy inhibited Aurora B phosphorylation through Ras/Raf/MEK/ERK signaling cascade as demonstrated by Western blotting analysis. IR/MWE also caused an inhibitory effect on Plk1 and the subsequent downstream regulator RhoA repression and Cep55 induction, which would influence cell cycle progression in the early steps of cytokinesis. A profound tumor growth suppression and inactivation of Aurora B activity in the tumor tissues by IR/MWE treatment were confirmed in the TSGH 8301 xenograft model in vivo. These data demonstrated that MWE could be an effective auxiliary to synergize with radiation on the anticancer efficacy by promoting mitotic catastrophe through inhibition of Aurora B, providing a novel and effective therapeutic option for bladder cancer management.
Collapse
Affiliation(s)
- Chia-Cheng Su
- 1 Chi Mei Medical Center, Tainan City, Taiwan.,2 Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | | | | | - Hsien-Chun Tseng
- 3 Chung Shan Medical University, Taichung City, Taiwan.,5 Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Fen-Pi Chou
- 3 Chung Shan Medical University, Taichung City, Taiwan.,5 Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
26
|
Zhao J, Zhu D, Zhang X, Zhang Y, Zhou J, Dong M. TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal‐regulated kinase signaling pathways. J Cell Physiol 2018; 234:10888-10898. [DOI: 10.1002/jcp.27751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jinbo Zhao
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Dehua Zhu
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Xiupeng Zhang
- Department of Pathology The First Affiliated Hospital of China Medical University Shenyang China
| | - Yong Zhang
- Department of Pathology Liaoning Provincial People's Hospital China Medical University Shenyang China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Ming Dong
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| |
Collapse
|
27
|
Ciccarelli C, Di Rocco A, Gravina GL, Mauro A, Festuccia C, Del Fattore A, Berardinelli P, De Felice F, Musio D, Bouché M, Tombolini V, Zani BM, Marampon F. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. J Cancer Res Clin Oncol 2018; 144:1685-1699. [PMID: 29959569 DOI: 10.1007/s00432-018-2696-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. METHODS LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. RESULTS Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. CONCLUSIONS The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.
Collapse
Affiliation(s)
- Carmela Ciccarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Agnese Di Rocco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Andrea Del Fattore
- Multi-Factorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesca De Felice
- Division of Radiotherapy, Department of Radiology, Radiation Oncology and Human Pathology, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Musio
- Division of Radiotherapy, Department of Radiology, Radiation Oncology and Human Pathology, "Sapienza" University of Rome, Rome, Italy
| | - Marina Bouché
- Unit of Histology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Unit of Histology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Bianca Maria Zani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
- Unit of Histology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
28
|
Umstead M, Xiong J, Qi Q, Du Y, Fu H. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget 2018; 8:28359-28372. [PMID: 28177880 PMCID: PMC5438655 DOI: 10.18632/oncotarget.15049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/07/2017] [Indexed: 11/25/2022] Open
Abstract
In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras. Further more, the interaction of Aurora A and H-Ras exists in a protein complex with Raf-1. We show that binding of H-Ras to Raf-1 and subsequent MAPK signaling is enhanced by Aurora A, and requires active H-Ras. Thus, the functional linkage between Aurora A and the H-Ras/Raf-1 protein complex may provide a mechanism for Aurora A's oncogenic activity through direct activation of the Ras/MAPK pathway.
Collapse
Affiliation(s)
- MaKendra Umstead
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinglin Xiong
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
29
|
Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D, Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 2017; 7:11002-17. [PMID: 26716904 PMCID: PMC4905454 DOI: 10.18632/oncotarget.6760] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) is one of the most important strategies in cancer treatment. Radioresistance (the failure to RT) results in locoregional recurrence and metastasis. Therefore, it is critically important to investigate the mechanisms leading to cancer radioresistance to overcome this problem and increase patients' survival. Currently, the majority of the radioresistance-associated researches have focused on preclinical studies. Although the exact mechanisms of cancer radioresistance have not been fully uncovered, accumulating evidence supports that cancer stem cells (CSCs) and different signaling pathways play important roles in regulating radiation response and radioresistance. Therefore, targeting CSCs or signaling pathway proteins may hold promise for developing novel combination modalities and overcoming radioresistance. The present review focuses on the key evidence of CSC markers and several important signaling pathways in cancer radioresistance and explores innovative approaches for future radiation treatment.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - David Malouf
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - David Gillatt
- Department of Urology, St George Hospital, Kogarah, NSW, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
30
|
Megiorni F, Gravina GL, Camero S, Ceccarelli S, Del Fattore A, Desiderio V, Papaccio F, McDowell HP, Shukla R, Pizzuti A, Beirinckx F, Pujuguet P, Saniere L, der Aar EV, Maggio R, De Felice F, Marchese C, Dominici C, Tombolini V, Festuccia C, Marampon F. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells. J Hematol Oncol 2017; 10:161. [PMID: 28985758 PMCID: PMC6389084 DOI: 10.1186/s13045-017-0530-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM). GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg) in vivo activity alone or in combination with irradiation (2 Gy) was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that its pharmacological inhibition might represent a potential therapeutic strategy to impair stemness and to rescue myogenic program in ERMS cells.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Del Fattore
- Multi-Factorial Disease and Complex Phenotype Research Area, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embriology, Second University of Naples, Naples, Italy
| | - Federica Papaccio
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery "F. Magrassi A. Lanzara", Second University of Naples, Naples, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Antonio Pizzuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Filip Beirinckx
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Philippe Pujuguet
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Laurent Saniere
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Ellen Van der Aar
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, Division of Pharmacology, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
31
|
Bahreyni A, Samani SS, Ghorbani E, Rahmani F, Khayami R, Toroghian Y, Behnam-Rassouli R, Khazaei M, Ryzhikov M, Parizadeh MR, Hasanzadeh M, Avan A, Hassanian SM. Adenosine: An endogenous mediator in the pathogenesis of gynecological cancer. J Cell Physiol 2017; 233:2715-2722. [PMID: 28617999 DOI: 10.1002/jcp.26056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022]
Abstract
Extracellular concentration of adenosine increases in the hypoxic tumor microenvironment. Adenosine signaling regulates apoptosis, angiogenesis, metastasis, and immune suppression in cancer cells. Adenosine-induced cell responses depend upon different subtypes of adenosine receptors activation and type of cancer. Suppression of adenosine signaling via inhibition of adenosine receptors or adenosine generating enzymes including CD39 and CD73 on ovarian or cervical cancer cells is a potentially novel therapeutic approach for gynecological cancer patients. This review summarizes the role of adenosine in the pathogenesis of gynecological cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Seyed S Samani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Farzad Rahmani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Toroghian
- Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Mohammad R Parizadeh
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Faculty of Medicine, Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
|
33
|
Zhang Y, Dong W, Wang J, Cai J, Wang Z. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. Onco Targets Ther 2017; 10:1655-1663. [PMID: 28360526 PMCID: PMC5364023 DOI: 10.2147/ott.s129502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC) cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs) in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM) from O-ADSCs (O-ADSC), and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE), followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Junjie Wang
- Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People's Republic of China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
34
|
Sini P, Gürtler U, Zahn SK, Baumann C, Rudolph D, Baumgartinger R, Strauss E, Haslinger C, Tontsch-Grunt U, Waizenegger IC, Solca F, Bader G, Zoephel A, Treu M, Reiser U, Garin-Chesa P, Boehmelt G, Kraut N, Quant J, Adolf GR. Pharmacological Profile of BI 847325, an Orally Bioavailable, ATP-Competitive Inhibitor of MEK and Aurora Kinases. Mol Cancer Ther 2016; 15:2388-2398. [PMID: 27496137 DOI: 10.1158/1535-7163.mct-16-0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Although the MAPK pathway is frequently deregulated in cancer, inhibitors targeting RAF or MEK have so far shown clinical activity only in BRAF- and NRAS-mutant melanoma. Improvements in efficacy may be possible by combining inhibition of mitogenic signal transduction with inhibition of cell-cycle progression. We have studied the preclinical pharmacology of BI 847325, an ATP-competitive dual inhibitor of MEK and Aurora kinases. Potent inhibition of MEK1/2 and Aurora A/B kinases by BI 847325 was demonstrated in enzymatic and cellular assays. Equipotent effects were observed in BRAF-mutant cells, whereas in KRAS-mutant cells, MEK inhibition required higher concentrations than Aurora kinase inhibition. Daily oral administration of BI 847325 at 10 mg/kg showed efficacy in both BRAF- and KRAS-mutant xenograft models. Biomarker analysis suggested that this effect was primarily due to inhibition of MEK in BRAF-mutant models but of Aurora kinase in KRAS-mutant models. Inhibition of both MEK and Aurora kinase in KRAS-mutant tumors was observed when BI 847325 was administered once weekly at 70 mg/kg. Our studies indicate that BI 847325 is effective in in vitro and in vivo models of cancers with BRAF and KRAS mutation. These preclinical data are discussed in the light of the results of a recently completed clinical phase I trial assessing safety, tolerability, pharmacokinetics, and efficacy of BI 847325 in patients with cancer. Mol Cancer Ther; 15(10); 2388-98. ©2016 AACR.
Collapse
Affiliation(s)
- Patrizia Sini
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| | - Ulrich Gürtler
- Department of R&D Project Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stephan K Zahn
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christoph Baumann
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Dorothea Rudolph
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Rosa Baumgartinger
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Eva Strauss
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christian Haslinger
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Ulrike Tontsch-Grunt
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Irene C Waizenegger
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Flavio Solca
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Gerd Bader
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Andreas Zoephel
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Matthias Treu
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Ulrich Reiser
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Pilar Garin-Chesa
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Guido Boehmelt
- Research Networking, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Norbert Kraut
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Jens Quant
- Research ADME, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Günther R Adolf
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
35
|
Marampon F, Gravina GL, Festuccia C, Popov VM, Colapietro A, Sanità P, Musio D, De Felice F, Lenzi A, Jannini EA, Di Cesare E, Tombolini V. Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis. J Endocrinol Invest 2016; 39:411-22. [PMID: 26335302 DOI: 10.1007/s40618-015-0381-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE Radiotherapy toxicity is related to oxidative stress-mediated endothelial dysfunction. Here, we investigated on radioprotective properties of Vitamin D (Vit.D) on human endothelial cells (HUVEC). METHODS HUVEC, pre-treated with Vit.D, were exposed to ionizing radiation (IR): ROS production, cellular viability, apoptosis, senescence and western blot for protein detection were performed. The role of MAPKs pathway was investigated by using U0126 (10 μM) MEKs/ERKs-, SB203580 (2.5 μM) p38-inhibitor or by over/expressing MKK6 p38-upstream activator. RESULTS Vit.D reduced IR-induced ROS production protecting proliferating and quiescent HUVEC from cellular apoptosis or senescence, respectively, by regulating MAPKs pathways. In proliferating HUVEC, Vit.D prevented IR-induced apoptosis by activating ERKs while in quiescent HUVEC counteracted IR-induced senescence by inhibiting the p38-IR-induced activation. MEKs&ERKs inhibition in proliferating or MKK6/mediated p38 activation in quiescent HUVEC, respectively, reverted anti-apoptotic or anti-senescent Vit.D properties. SirT1 protein expression levels were up-regulated by Vit.D. ERKs inhibition blocked Vit.D-induced SirT1 protein up-regulation in proliferating cells. In quiescent HUVEC cells, p38 inhibition counteracted the IR-induced SirT1 protein down-regulation, while MKK6 transfection abrogated the Vit.D positive effects on SirT1 protein levels after irradiation. SirT1 inhibition by sirtinol blocked the Vit.D radioprotective effects. CONCLUSION Vit.D protects HUVEC from IR induced/oxidative stress by positively regulating the MAPKs/SirT1 axis.
Collapse
Affiliation(s)
- F Marampon
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - G L Gravina
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - C Festuccia
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V M Popov
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - A Colapietro
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Sanità
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Musio
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - F De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - A Lenzi
- Department Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - E A Jannini
- Department of System Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - E Di Cesare
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V Tombolini
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
36
|
A phase I study of two dosing schedules of oral BI 847325 in patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 77:99-108. [PMID: 26650227 DOI: 10.1007/s00280-015-2914-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE This study determined the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary efficacy of BI 847325, an oral dual MEK and Aurora kinase inhibitor, in patients with refractory solid tumors. METHODS This trial recruited patients with an advanced non-resectable and/or metastatic solid tumor following failure of conventional treatment (NCT01324830; 1287.1). BI 847325 was administered orally, once daily (starting at 6 mg in the first cohort) using two dosing schedules: Schedule A (2 weeks on, 1 week off) and Schedule B (three periods of 5 days on, 2 days off). The primary objective was to identify the MTD of BI 847325 for both dosing schedules. RESULTS Sixty-nine patients (Schedule A, n = 47; Schedule B, n = 22) were treated. The MTD was 120 mg per day for Schedule A (cumulative dose of 1680 mg per 3-week cycle) and 150 mg per day for Schedule B (cumulative dose of 2250 mg per 3-week cycle). Reversible hematologic and gastrointestinal toxicities were the most common dose-limiting toxicities. One patient with esophageal cancer (receiving 160 mg BI 847325, Schedule A) experienced a partial response for 67 days, and 21 patients (n = 11 [23.4%], Schedule A; n = 10 [45.5%], Schedule B) had stable disease. Pharmacokinetic analyses showed at least bi-exponential disposition, with high inter-subject variability. There was no obvious relationship between markers of MEK or Aurora kinase inhibition and exposure to BI 847325 (exploratory analysis). CONCLUSIONS This first-in-human trial suggests that BI 847325 has an acceptable safety profile. However, due to insufficient drug exposure at the MTD to achieve relevant MEK inhibition, a decision was taken to halt the development of BI 847325.
Collapse
|
37
|
Abdel-Rahman O, Fouad M. Risk of cardiovascular toxicities in patients with solid tumors treated with sorafenib: an updated systematic review and meta-analysis. Future Oncol 2015; 10:1981-92. [PMID: 25386814 DOI: 10.2217/fon.14.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We performed a systematic review and meta-analysis of cardiovascular toxicities associated with sorafenib. PATIENTS & METHODS Eligible studies included randomized Phase II and III trials of patients with solid tumors receiving daily sorafenib treatment that described the following events: hypertension, bleeding, venous thromboembolism, left ventricular dysfunction myocardial ischemia and cerebrovascular events. RESULTS A total of 18 randomized clinical trials were considered eligible for the meta-analysis. Patients treated with sorafenib had a significantly increased risk of hypertension (relative risk [RR]: 2.93; 95% CI: 1.52-5.66), bleeding (RR: 2.42; 95% CI: 1.63-3.62) and left ventricular dysfunction (RR: 9.38; 95% CI: 1.24-71.22). The risk for venous thromboembolism, myocardial ischemia and cerebrovascular events was nonsignificant. Subgroup analyses showed that tumor type and treatment regimen had no effect on the RR of cardiovascular toxicities. CONCLUSION Our meta-analysis demonstrated that sorafenib is associated with a higher risk of developing all grade hypertension and bleeding compared with controls.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
38
|
Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, Kang H, Chen X, Sun X, Xu J. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol 2015; 32:57. [PMID: 25647783 DOI: 10.1007/s12032-015-0490-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Small-molecule inhibitors targeted MAPK have been wildly used for some cancer therapeutics as a biologically viable model, but no one has been used for cervical caner. ERK1/2, one of MAPK kinases, is expressed high in cervical cancer tissue. The aim of the present study was to evaluate the effects of ERK1/2 inhibitor U0126 on proliferation and apoptosis of cervical cancer cells and appraise the correlated mechanism of the effects. In this study, the cell proliferation of Hela and C33A cervical cancer cells was tested by Cell Counting Kit-8 (CCK8) assay and cell counting after treated with ERK1/2 inhibitor U0126. The cell cycle and apoptosis were evaluated by flow cytometry (FCM). The protein levels of ERK1/2 and c-Fos and c-Jun were detected by Western blot. The results indicated that after down-regulating ERK1/2 proteins with the inhibitor U0126, Hela and C33A cells proliferation was inhibited, cell apoptosis was promoted, the proportions of G0/G1 stage in cell cycle increased, and G2/M stages decreased. After down-regulating ERK1/2 proteins of Hela and C33A cells, the expression levels of p-c-Fos protein decreased, while p-c-Jun protein increased. The results of this study indicated that ERK1/2 may promote the development of cervical cancer cells, suggesting ERK1/2 inhibitor may be used as an effective target for cervical cancer therapies working for. It might inhibit cervical cancer cells growth via regulating the transcription factors expression of c-Fos and c-Jun.
Collapse
Affiliation(s)
- Lixia Bai
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
He JY, Xi WH, Zhu LB, Long XH, Chen XY, Liu JM, Luo QF, Zhu XP, Liu ZL. Knockdown of Aurora-B alters osteosarcoma cell malignant phenotype via decreasing phosphorylation of VCP and NF-κB signaling. Tumour Biol 2015; 36:3895-902. [PMID: 25874486 DOI: 10.1007/s13277-014-3032-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
The aim of this study is to investigate the effects of inhibiting Aurora-B on osteosarcoma (OS) cell malignant phenotype, phosphorylation of valosin-containing protein (VCP), and the activity of NF-κB signaling in vitro. The expressions of Aurora-B and p-VCP proteins were detected by immunohistochemistry in 24 OS tissues, and the relationship between Aurora-B and p-VCP was investigated. The results showed that there was a positive correlation between Aurora-B and p-VCP proteins. The expression of Aurora-B in human OS cell lines U2-OS and HOS cells was inhibited by specific short hairpin RNA (shRNA) lentivirus (AURKB-shRNA lentivirus, Lv-shAURKB) which targeted Aurora-B. The results showed that the phosphorylation of VCP, the activity of NF-κB signaling pathway and the malignant phenotype of OS cells were all suppressed by knockdown of Aurora-B. It indicated that the inhibition of Aurora-B alters OS cells malignant phenotype by downregulating phosphorylation of VCP and activating of the NF-κB signaling pathway in vitro.
Collapse
Affiliation(s)
- Jian Ying He
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol 2014; 133:128-37. [DOI: 10.1016/j.ygyno.2014.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
|
41
|
Abdel-Rahman O, Fouad M. Risk of mucocutaneous toxicities in patients with solid tumors treated with sorafenib: an updated systematic review and meta-analysis. Expert Rev Anticancer Ther 2014; 14:751-60. [PMID: 24666215 DOI: 10.1586/14737140.2014.894465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We performed a systematic review and meta-analysis of mucocutaneous toxicities associated with sorafenib, an oral multi tyrosine kinase inhibitor. Eligible studies included randomized Phase II and III trials of patients with solid tumors on sorafenib daily describing events of hand foot skin reaction, skin rash, alopecia, stomatitis or pruritis. Patients treated with sorafenib had a significantly increased risk of all-grade mucocutaneous toxicities. The RR of all-grade hand foot skin reaction, skin rash, alopecia, stomatitis and pruritis were 4.33 (95% CI: 3.06-6.14), 2.67 (95% CI: 1.86-3.83), 3.93 (95% CI: 2.07-7.45), 2.9 (95% CI: 2.26-3.73), 2.29 (95% CI: 1.87-3.03); respectively. Exploratory subgroup analysis showed no effect of tumor types or treatment regimen (monotherapy versus combination) on the RR of mucocutaneous toxicities. Our meta-analysis has demonstrated that sorafenib is associated with a higher risk of developing all grade mucocutaneous toxicities compared with control.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|