1
|
Zhai S, Li Y, Yang Y, Lang W, Liu X, Liu K, Qu J, Zhu L. Scinderin is a potential prognostic biomarker and correlated with immunological regulation: from pan-cancer analysis to liver hepatocellular carcinoma. Front Immunol 2024; 15:1361657. [PMID: 39108273 PMCID: PMC11300247 DOI: 10.3389/fimmu.2024.1361657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/05/2024] [Indexed: 09/17/2024] Open
Abstract
Aim This study aimed to systematically dissect the role of Scinderin (SCIN) in tumorigenesis. Methods Bioinformatics techniques were employed based on cancer data from TCGA, ENCORI, HPA, GEPIA2, UALCAN, Kaplan-Meier plotter, TIMER, TISIDB, cBioPortal, HCCDB, GeneMANIA and LinkedOmics database. Experiments in vitro and in vivo were conducted to dissect the role of SCIN in liver hepatocellular carcinoma (LIHC). Results Significantly differential expression of SCIN was found in nine types of cancers, including LIHC. Through pan-cancer analysis, the correlations between SCIN expression with prognosis and immune cell infiltration were proven, especially in LIHC, ovarian serous cystadenocarcinoma and lung adenocarcinoma. The highest frequency of alteration in SCIN (6.81%) was seen in patients with uterine corpus endometrial carcinoma, in which "mutation" was the predominant type, with a frequency of about 5.29%; meanwhile, S673F and S381Y were the two most frequent mutation sites. Furthermore, the abnormal expression of SCIN exhibited a strong relationship with immune cell subtypes, immune checkpoint genes, tumor mutation burden, microsatellite instability, neoantigen, molecular subtypes, mismatch repair signatures and DNA methyl-transferase in different cancer types. Through comparative analysis, we discovered that SCIN was dramatically up-regulated in LIHC, and associated with poor survival. Experiments in vitro and in vivo suggested the knockdown of SCIN could suppress tumor cell proliferation and improve the survival rate partly in animal models. Conclusion This study reveals SCIN may be a promising biomarker for prognosis and treatment in certain cancers, especially in LIHC.
Collapse
Affiliation(s)
- Shengyong Zhai
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Yuhua Li
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Yuanyuan Yang
- Department of Nuclear Medicine, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Wei Lang
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Xiaoxia Liu
- Department of Anesthesiology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Kai Liu
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Jianjun Qu
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Lingyu Zhu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| |
Collapse
|
2
|
Bainbridge LJ, Daigaku Y. Adaptive use of error-prone DNA polymerases provides flexibility in genome replication during tumorigenesis. Cancer Sci 2024; 115:2125-2137. [PMID: 38651239 PMCID: PMC11247608 DOI: 10.1111/cas.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
3
|
Gong Z, Bi C, Liu W, Luo B. Comprehensive Analysis Based on the TCGA Database Identified SCIN as a Key DNA Methylation-Driver Gene in Epstein-Barr Virus-Associated Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10702-y. [PMID: 38411940 DOI: 10.1007/s10528-024-10702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
An important feature of EBV-associated gastric cancer (EBVaGC) is extensive methylation of viral and host genomes. This study aims to analyze DNA methylation-driven genes (DMDG) in EBVaGC through bioinformatics methods, providing an important bioinformatics basis for the differential diagnosis and treatment of potential methylation biomarkers in EBVaGC. We downloaded the mRNA expression profiles and methylation datasets of EBVaGC and EBV-negative gastric cancer (EBVnGC) through the TCGA database to screen methylated-differentially expressed genes (MDEGs). DNA methylation-driver genes were identified based on MethylMix algorithm and key genes were further identified by LASSO regression and Random Forest algorithm. Then, we performed gene enrichment analysis for key genes and validated them by GEO database. Gene expression differences in EBVaGC and EBVnGC cell lines was determined by quantitative real-time PCR (qRT-PCR) and western blotting and in GT38 cell and SNU719 cell which all treated by 5-Aza-CdR. Finally, the effect of key gene on the migration and proliferation capacity of EBVaGC cells was determined by Transwells assay and Cell counting Kit-8 (CCK-8) assay. We obtained a total of 687 hypermethylation-low expression genes (Hyper-LGs) and further obtained 53 DNA methylation-driver genes based on the MethylMix algorithm. A total of six key genes (SCIN, ETNK2, PCDH20, PPP1R3C, MATN2, and HOXA5) were identified by LASSO regression and Random Forest algorithm. Among them, SCIN expression was significantly lower in EBVaGC cell lines than in EBVnGC cell lines, and its expression was significantly recovered in EBVaGC cell lines treated with 5-Aza-CdR. Overexpression of SCIN can promote the proliferation and migration capacity of EBVaGC cells. Our study will provide some bioinformatics basis for the study of EBVaGC-related methylation. SCIN may be used as potential methylation biomarkers for the diagnosis and treatment of EBVaGC.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunxia Bi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Lin X, Zhao Z, Sun SP, Liu W. Scinderin promotes glioma cell migration and invasion via remodeling actin cytoskeleton. World J Clin Oncol 2024; 15:32-44. [PMID: 38292665 PMCID: PMC10823943 DOI: 10.5306/wjco.v15.i1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Glioma is one of the most common intracranial tumors, characterized by invasive growth and poor prognosis. Actin cytoskeletal rearrangement is an essential event of tumor cell migration. The actin dynamics-related protein scinderin (SCIN) has been reported to be closely related to tumor cell migration and invasion in several cancers. AIM To investigate the role and mechanism of SCIN in glioma. METHODS The expression and clinical significance of SCIN in glioma were analyzed based on public databases. SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting. Gene silencing was performed using short hairpin RNA transfection. Cell viability, migration, and invasion were assessed using cell counting kit 8 assay, wound healing, and Matrigel invasion assays, respectively. F-actin cytoskeleton organization was assessed using F-actin staining. RESULTS SCIN expression was significantly elevated in glioma, and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase. Furthermore, SCIN-deficient cells exhibited decreased proliferation, migration, and invasion in U87 and U251 cells. Moreover, knockdown of SCIN inhibited the RhoA/focal adhesion kinase (FAK) signaling to promote F-actin depolymerization in U87 and U251 cells. CONCLUSION SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling, thereby promoting the migration and invasion of glioma cells. This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Xin Lin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, China
| | - Zhao Zhao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, China
| | - Shu-Peng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, China
| | - Wei Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, China
| |
Collapse
|
5
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Zhao J, Chen HQ, Yang HF, Li XY, Liu WB. Gene expression network related to DNA methylation and miRNA regulation during the process of aflatoxin B1-induced malignant transformation of L02 cells. J Appl Toxicol 2021; 42:475-489. [PMID: 34561900 DOI: 10.1002/jat.4233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/12/2023]
Abstract
Aflatoxin is a secondary metabolite secreted by Aspergillus flavus, parasitic Aspergillus, and other fungi through the polyketone pathway, and it can be detected in many foods. Aflatoxin has strong toxicity and carcinogenicity, and many studies have shown that aflatoxin is highly associated with liver cancer. In the present study, malignant transformation of L02 cells was induced by aflatoxin B1 (AFB1), and the gene expression, miRNA expression, and methylation level were detected by high-throughput sequencing. The gene and miRNA expression results showed that 2547 genes and 315 miRNAs were changed in the AFB1-treated group compared with the DMSO group. Among them, RSAD2 and SCIN were significantly upregulated, whereas TRAPPC3L and UBE2L6 were significantly downregulated. Has-miR-33b-3p was significantly upregulated, whereas Has-miR-3613-5p was significantly downregulated. The methylation results showed that 2832 CpG sites were methylated on the promoter or coding DNA sequence (CDS) of the gene, whereas the expression of DNMT3a and DNMT3b was significantly upregulated. Moreover, hypermethylation occurred in TRAPPC3L, CDH13, and SPINK13. The results of GO and KEGG pathway analyses showed that significantly changed genes and miRNAs were mainly involved in tumor formation, proliferation, invasion, and migration. The results of network map analysis showed that Hsa-miR-3613-5p, Hsa-miR-615-5p, Hsa-miR-615-3p, and Hsa-miR-3158-3p were the key miRNAs for malignant transformation of L02 cells induced by AFB1. In addition, the expression of ONECUT2, RAP1GAP2, and FSTL4 was regulated by DNA methylation and miRNAs. These results suggested that the gene expression network regulated by DNA methylation and miRNAs may play a vital role in AFB1-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Xiao-Yu Li
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Long Noncoding RNA FENDRR Inhibits Lung Fibroblast Proliferation via a Reduction of β-Catenin. Int J Mol Sci 2021; 22:ijms22168536. [PMID: 34445242 PMCID: PMC8395204 DOI: 10.3390/ijms22168536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.
Collapse
|
8
|
Luan J, Zhang Q, Song L, Wang Y, Ji C, Cong R, Zheng Q, Xu Z, Xia J, Song N. Identification and validation of a six immune-related gene signature for prediction of biochemical recurrence in localized prostate cancer following radical prostatectomy. Transl Androl Urol 2021; 10:1018-1029. [PMID: 33850736 PMCID: PMC8039594 DOI: 10.21037/tau-20-1231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is the second lethal heterogeneous cancer among males worldwide, and approximately 20% of PCa patients following radical prostatectomy (RP) will undergo biochemical recurrence (BCR). This study is aimed to identify the immune-related gene signature that can predict BCR in localized PCa following RP. Methods Expression profile of genes together with clinical parameters from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database (GEO) and the immune-related genes from the Molecular Signatures Database v4.0 were applied to construct and validate the gene signature. The Cox regression analyses were conducted to identify the candidate genes and establish the gene signature. To estimate the prognostic power of the risk score, the time-dependent receiver operating characteristic (ROC) analysis and Harrell's index of concordance (C-index) were utilized. We also established a nomogram to forecast the probability of patients' survival. Results A total of 268 patients from the TCGA and 77 patients from GSE70770 and six immune-related genes (SCIN, THY1, TBX1, NOTCH4, MAL, BNIP3L) were eventually selected. The Kaplan-Meier analysis demonstrated that patients in the low-risk group had a significantly longer recurrence-free survival (RFS) compared to those in the high-risk group. In the multivariate Cox model, the signature was identified as an independent prognostic factor, which was significantly associated with RFS (TCGA: HR =5.232, 95% CI: 1.762-15.538, P=0.003; GSE70770: HR =2.158, 95% CI: 1.051-4.432, P=0.036). Moreover, the C-index got improved after incorporating the risk score into original clinicopathological parameters. In addition, the novel nomogram was constructed to better predict the 1-, 3- and 5-year RFS. Conclusions This signature could serve as an independent prognostic factor for BCR. Incorporation of our signature into traditional risk classification might further stratify patients with different prognosis, which could assist practitioners in developing clinical decision-making.
Collapse
Affiliation(s)
- Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lebin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qitong Zheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
9
|
Tavabe Ghavami TS, Irani S, Mirfakhrai R, Shirkoohi R. Differential expression of Scinderin and Gelsolin in gastric cancer and comparison with clinical and morphological characteristics. EXCLI JOURNAL 2020; 19:750-761. [PMID: 32636728 PMCID: PMC7332812 DOI: 10.17179/excli2020-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/07/2022]
Abstract
Gastric cancer is the first cause of cancer-related death in males and the second in female patients in Iran. Advanced cancer is usually associated with distant metastasis, which is uncontrollable. This study was conducted to compare the expression of Scinderin and Gelsolin genes between gastric cancer and adjacent normal tissue samples in Iranian patients in order to better understand the role of these genes in this disease and to assess them as potential gastric cancer diagnostic or prognostic biomarkers. This case-control study was conducted in 41 Iranian patients suffering from stage I to IV of Gastric Cancer diagnosed by pathologic and endoscopic tests. In this study, significant down-regulation of Gelsolin (p=0.001) and over-expression of Scinderin (p=0.001) were observed in tumor tissues compared to the adjacent normal tissues. The results of the present study showed decreased Gelsolin expression in patients above 40 years, while the relationship between Gelsolin expression and age was not significant; also, a significant increase was observed in Scinderin expression in patients above 40 years. Furthermore, Lymph node metastasis was observed in 59.52 % of the cases. The results showed that reduced Gelsolin and increased Scinderin expression were related to lymph node metastasis. Based on results, a significant association was observed between tumor size and Scinderin expression level. Furthermore, Gelsolin and Scinderin expressions were assessed in different grades and stages to determine the association of this gene with cancer progression. The result indicates significant alteration in Scinderin expression level of I and IV, II and IV, and III and IV stages. Although no significant association was observed between Scinderin expression level and GC grade, the mean Gelsolin expression showed a significant difference between grade II and III as well as grade I and IV. Based on our results, these genes would be potential biomarkers.
Collapse
Affiliation(s)
| | - Shiva Irani
- Department of Biology, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhrai
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zhou B, Chen TW, Jiang YB, Wei XB, Lu CD, Li JJ, Xie D, Cheng SQ. Scinderin suppresses cell proliferation and predicts the poor prognosis of hepatocellular carcinoma. Oncol Lett 2020; 19:2011-2020. [PMID: 32194697 DOI: 10.3892/ol.2020.11262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an intractable disease despite numerous advancements made in the available treatments over recent decades. Therefore, investigation of the underlying pathogenesis of HCC is urgently required. Our previous microarray result showed that SCIN was generally downregulated in 23 paired tumor/normal tissues. Reverse transcription-quantitative PCR, western blotting and immunohistochemistry were performed in the present study in order to detect the expression of scinderin (SCIN). Lentivirus-mediated gene delivery was used in order to produce SCIN-manipulated cell lines. MTT and crystal violet assays were performed in order to investigate cell growth, and fluorescence-activated cell sorting analysis was used in order to determine cell cycle distribution. SCIN was downregulated in HCC samples, and low SCIN expression predicted the poor prognosis of patients with HCC. Notably, SCIN may have the potential to serve as an independent risk factor for overall survival (3-year overall survival rate of 28.6 and 10.3% in high SCIN expression and low SCIN expression groups, respectively) and disease-free survival (3-year recurrence rate of 71.4 and 84.6% in high SCIN expression and low SCIN expression groups, respectively) in HCC. SCIN inhibited HCC cell proliferation both in vitro and in subcutaneous tumor formation assay. Furthermore, SCIN decreased the levels of phosphorylated STAT3, thereby downregulating cyclin A1 levels in HCC cells. The results of the present study demonstrate the tumor suppressive role of SCIN in HCC, providing a candidate strategy to treat this disease.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Tian-Wei Chen
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Ya-Bo Jiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xu-Biao Wei
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Chong-De Lu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Jing-Jing Li
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Dong Xie
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
11
|
Lin Q, Li J, Zhu D, Niu Z, Pan X, Xu P, Ji M, Wei Y, Xu J. Aberrant Scinderin Expression Correlates With Liver Metastasis and Poor Prognosis in Colorectal Cancer. Front Pharmacol 2019; 10:1183. [PMID: 31736743 PMCID: PMC6836707 DOI: 10.3389/fphar.2019.01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022] Open
Abstract
Many genes and mutations have been reported for colorectal cancer (CRC); however, very few have been associated with colorectal cancer liver metastasis (CRLM). We performed gene expression profiling experiments to identify genetic markers for CRLM and elucidate the molecular mechanisms. Microarray experiments were performed on CRC primary tumor samples with or without liver metastasis (LM) using the Affymetrix U133 plus 2.0 GeneChip Array. A new identified gene-scinderin (SCIN) was overexpressed with synchronous LM at both the RNA level evaluated with quantitative real-time PCR and protein level evaluated with immunohistochemistry and also with short overall survival analyzed with Kaplan-Meier method. With multivariate analysis indicated that SCIN served as an independent poor prognostic predictor for CRC patients. Disease-free survival was also significantly lower in SCIN overexpressing CRC patients with metachronous LM. In addition, SCIN knockdown significantly reduced cell proliferation, induced cell cycle arrest, and promoted the expression of some cell cycle apoptosis-related protein. Moreover, the DIAPH1, STAT3, CDK2, CDK4, and EGFR levels were downregulated, whereas CDKN2B and COL4A1 were upregulated in DLD-1-shSCIN cells by microarray analysis compared with DLD-1 shCon cells. These findings revealed that SCIN may serve as an important predictor of CRLM and poor outcome for CRC patients. SCIN may be a potential therapeutic target in human CRC. However, translation of its roles into clinical practice will require further investigation and additional experimental validation.
Collapse
Affiliation(s)
- Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangou Pan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pingping Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wu Y, Zhou L, Deng Y, Li N, Yang P, Dong S, Yang S, Zheng Y, Yao L, Zhang M, Zhai Z, Dai Z, Wu Y. The polymorphisms (rs3213801 and rs5744533) of DNA polymerase kappa gene are not related with glioma risk and prognosis: A case-control study. Cancer Med 2019; 8:7446-7453. [PMID: 31595696 PMCID: PMC6885875 DOI: 10.1002/cam4.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
DNA polymerase kappa (POLK), one of the specialized Y family DNA polymerases, functions in translesion synthesis and is suggested to be related with cancers. Single nucleotide polymorphisms (SNPs) in specialized DNA polymerases have been demonstrated to be associated with cancer risk. To evaluate the association of two common POLK variants (rs3213801 C>T and rs5744533 C>T) with glioma, we conducted a case‐control study and genotyped these two POLK variants in 605 patients and 1300 healthy controls. The association analysis revealed no significant correlations were observed between these two POLK SNPs and glioma risk. However, the POLK rs3213801 CT genotype was found to be higher in older glioma patients (≥40) than in younger patients (P = .026). Compared with patients harboring the CC genotype, the frequencies of POLK rs5744533 CT and CT+TT genotypes were increased in patients with lower World Health Organization (WHO) grade glioma (P = .028, 0.044, respectively). According to Kaplan‐Meier analysis and log‐rank tests, POLK SNPs were not correlated with either the overall survival or progression‐free survival. Nevertheless, multivariate analysis revealed that the age (≥40) could increase the risk of death in glioma patients (P < .05), while gross‐total resection and temozolomide treatment were found to play protective roles in glioma prognosis (P < .001, respectively). Overall, our results indicated that POLK variants rs3213801 and rs5744533 are not associated with glioma risk and prognosis. However, these polymorphisms are likely to be associated with certain glioma characteristics, such as age and WHO grade. The age, surgery types, and chemotherapy could be independent prognostic factors in glioma. More studies are required to confirm our findings.
Collapse
Affiliation(s)
- Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| |
Collapse
|
13
|
Adseverin modulates morphology and invasive function of MCF7 cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2716-2725. [DOI: 10.1016/j.bbadis.2019.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/01/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023]
|
14
|
Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol 2018; 141:315-325. [PMID: 30460633 DOI: 10.1007/s11060-018-03051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Peritumoural brain zone (PT) of glioblastoma (GBM) is the area where tumour recurrence is often observed. We aimed to identify differentially regulated genes between tumour core (TC) and PT to understand the underlying molecular characteristics of infiltrating tumour cells in PT. METHODS 17 each histologically characterised TC and PT tissues of GBM along with eight control tissues were subjected to cDNA Microarray. PT tissues contained 25-30% infiltrating tumour cells. Data was analysed using R Bioconductor software. Shortlisted genes were validated using qRT-PCR. Expression of one selected candidate gene, PDZ Binding Kinase (PBK) was correlated with patient survival, tumour recurrence and functionally characterized in vitro using gene knock-down approach. RESULTS Unsupervised hierarchical clustering showed that TC and PT have distinct gene expression profiles compared to controls. Further, comparing TC with PT, we observed a significant overlap in gene expression profile in both, despite PT having fewer infiltrating tumour cells. qRT-PCR for 13 selected genes validated the microarray data. Expression of PBK was higher in PT as compared to TC and recurrent when compared to newly diagnosed GBM tumours. PBK knock-down showed a significant reduction in cell proliferation, migration and invasion with increase in sensitivity to radiation and Temozolomide treatment. CONCLUSIONS We show that several genes of TC are expressed even in PT contributing to the vulnerability of PT for tumour recurrence. PBK is identified as a novel gene up-regulated in PT of GBM with a strong role in conferring aggressiveness, including radio-chemoresistance, thus contributing to recurrence in GBM tumours.
Collapse
|
15
|
Deng W, Han W, Fan T, Wang X, Cheng Z, Wan B, Chen J. Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed Pharmacother 2018; 107:1505-1513. [PMID: 30257368 DOI: 10.1016/j.biopha.2018.08.127] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/18/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Scutellarin is a naturally flavone glycoside that has been shown to exhibit anti-proliferative and anti-apoptotic activities among various human malignancies. However, the anti-cancer effect of Scutellarin in Renal cell carcinoma (RCC) and the underlying mechanism remains unclear. METHODS AND MATERIALS RCC cell lines ACHN and 786-O were treated with different concentrations (0-210 μM) of Scutellarin in vitro. Cell viability and proliferation were investigated by MTT and colony formation assays. Cell invasion and migration were detected by Transwell assays. Cell apoptosis and cell cycle distribution was measured by flow cytometry. Western blot was used to investigate the expression levels of crucial proteins. Xenograft tumor model was established to evaluate tumor growth in vivo. RESULTS Scutellarin significantly inhibited RCC cell proliferation in a dose- and time- dependent manner. Treatment of RCC cells with Scutellarin (30, 60, and 90 μM) markedly induced apoptosis and cell cycle arrested at G0/G1 phase in a concentration-dependent characteristic. Cell invasion and migration capacities of RCC cells were also dose-dependently suppressed by Scutellarin treatment. Western blot assays revealed that the crucial proteins including cyclin D1, CDK2, Bcl2, MMP-2, and MMP-9 were significantly reduced while Bax, cleaved caspase 3 and p21 were increased by Scutellarin in RCC cells. In vivo assay indicated that Scutellarin possessed anti-cancer effect on xenograft without triggering toxic effect. Mechanically, Scutellarin dramatically increased the protein level of phosphatase and tensin homologue (PTEN) and inhibited the activity of P13K/AKT/mTOR signaling. Ectopic expression of PTEN enhanced the inhibitory effect of Scutellarin on RCC proliferation while knockdown of PTEN abrogated it through regulating its downstream P13K/AKT/mTOR signaling pathway. CONCLUSION Scutellarin inhibited RCC cell proliferation and invasion partially by enhancing the expression of PTEN through inhibition of P13K/AKT/mTOR pathway, suggesting that Scutellarin might serve as a potential therapeutic agent in RCC treatment.
Collapse
Affiliation(s)
- Wenting Deng
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China.
| | - Wei Han
- Department of Medical Equipment, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, 710068, Xi'an, Shaanxi, China
| | - Tao Fan
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China
| | - Xiaoku Wang
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China
| | - Zhao Cheng
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China
| | - Bo Wan
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China
| | - Jinlian Chen
- College of Pharmacy, Xi'an Medical University, No. 1 Xinwang Road of Weiyang District, 710021, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Jian W, Zhang X, Wang J, Liu Y, Hu C, Wang X, Liu R. Scinderin-knockdown inhibits proliferation and promotes apoptosis in human breast carcinoma cells. Oncol Lett 2018; 16:3207-3214. [PMID: 30127916 DOI: 10.3892/ol.2018.9009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/11/2018] [Indexed: 01/16/2023] Open
Abstract
Previous studies have reported that scinderin (SCIN) affects multiple cellular processes, including proliferation, migration and differentiation in cancer. However, the specific role of SCIN in breast cancer (BC) cells is unknown. Immunohistochemistry was used to investigate SCIN expression in 46 BC and 21 mammary fibroadenoma or fibroadenomatoid hyperplasia tissue samples. SCIN expression was ablated in MDA-MB-231 and T-47D cells using lentivirus-mediated small interfering RNA technology. Cell proliferation was tested using Celigo and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell apoptosis was analyzed by measuring Caspase 3/7 activity and annexin-V staining. The results of the present study demonstrated that SCIN expression was elevated in BC tissues compared with mammary fibroadenoma or fibroadenomatoid hyperplasia tissues. Specifically, higher SCIN expression was observed in Ki-67-positive BC tissues (78.6%) compared with Ki-67-negative BC tissues. Furthermore, knockdown of SCIN expression in the BC cell lines significantly suppressed cell proliferation and induced apoptosis. The data presented in the present study indicate that SCIN serves an important role in the development of breast cancer.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xiaoli Zhang
- Central Laboratory, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Jiguo Wang
- Department of Medical Oncology, Baoan District Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518133, P.R. China
| | - Yunlong Liu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chuting Hu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xianming Wang
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Renbin Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
17
|
Lai X, Su W, Zhao H, Yang S, Zeng T, Wu W, Wang D. Loss of scinderin decreased expression of epidermal growth factor receptor and promoted apoptosis of castration-resistant prostate cancer cells. FEBS Open Bio 2018; 8:743-750. [PMID: 29744289 PMCID: PMC5929937 DOI: 10.1002/2211-5463.12412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 02/10/2018] [Indexed: 12/28/2022] Open
Abstract
Most patients with prostate cancer will eventually develop the castration-resistant form characterised by metastasis. Cytoskeleton constituents, including F-actin, play important roles in maintaining epithelial integrity and their disruption is a major cause of cancer progression. We previously showed that scinderin (SCIN), an important regulator of F-actin organisation, is highly expressed in poorly differentiated cancer tissues. This study aimed to explore the mechanism of its regulation of cell proliferation. We discovered that SCIN knockdown significantly downregulated epidermal growth factor receptor (EGFR) protein expression, and inhibited epidermal growth factor (EGF)-mediated cell proliferation and activation of the downstream mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway. Silencing of SCIN promoted apoptosis in two cell lines (PC-3 and DU145), inhibited B-cell lymphoma-extra-large (Bcl-xl) expression and activated caspase signalling. Furthermore, in vivo studies showed that SCIN deletion slowed tumour growth and decreased EGFR expression. Thus, we conclude that SCIN promotes prostate cancer cell survival by stabilising EGFR and MEK/ERK signalling.
Collapse
Affiliation(s)
- Xiaofeng Lai
- State Key Laboratory of Cancer Biology Department of Biochemistry and Molecular Biology The Fourth Military Medical University Xi'an China
| | - Weipeng Su
- Department of Urology Fuzhou General Hospital Fujian Medical University Fuzhou China
| | - Hu Zhao
- Department of Urology Fuzhou General Hospital (Dongfang Hospital) Xiamen University Fuzhou China
| | - Shunliang Yang
- Department of Urology Fuzhou General Hospital Fujian Medical University Fuzhou China
| | - Tengyue Zeng
- Department of Urology Fuzhou General Hospital Fujian Medical University Fuzhou China
| | - Weizhen Wu
- Department of Urology Fuzhou General Hospital Fujian Medical University Fuzhou China
| | - Dong Wang
- Department of Urology Fuzhou General Hospital Fujian Medical University Fuzhou China
| |
Collapse
|
18
|
Zhang ZH, Zhang W, Zhou JD, Zhang TJ, Ma JC, Xu ZJ, Lian XY, Wu DH, Wen XM, Deng ZQ, Lin J, Qian J. Decreased SCIN expression, associated with promoter methylation, is a valuable predictor for prognosis in acute myeloid leukemia. Mol Carcinog 2018; 57:735-744. [PMID: 29457658 DOI: 10.1002/mc.22794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
The present study was aimed to investigate SCIN expression as well as promoter methylation and further explore their clinical relevance in acute myeloid leukemia (AML) patients. Real-time quantitative PCR was carried out to detect the expression level of SCIN in 119 AML patients and 37 healthy controls. Real-time quantitative methylation-specific PCR and bisulfite sequencing PCR were carried out to detect SCIN promoter methylation levels in 103 AML patients and 29 controls. As compared with controls, the level of SCIN transcript was significantly down-regulated in AML patients (P = 0.001), and the level of methylated SCIN promoter was significantly higher in AML patients (P = 0.001). Moreover, the level of promoter methylation was weakly negatively correlated with SCIN expression in AML patients (R = -0.265, P = 0.027). Demethylation of SCIN promoter by 5-aza-2'-deoxycytidine could restore its expression in leukemic cell line THP1. The age of SCINlow patients was significantly higher and C/EBPA mutation was significantly less than SCINhigh patients (P = 0.039 and 0.038, respectively). Moreover, the rate of complete remission (CR) of SCINlow patients was significantly lower than SCINhigh patients (P = 0.009). Kaplan-Meier analysis showed that low SCIN expression was associated with shorter overall survival (P = 0.036). Cox regression analysis demonstrated low SCIN expression was an independent poor prognostic factor (P = 0.047). Furthermore, SCIN expression was restored in those patients who achieved CR after induction therapy (P = 0.003). These findings indicate that decreased SCIN expression associated with its promoter methylation is a valuable biomarker for predicting adverse prognosis in AML patients.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of KunShan City, Kunshan, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Sequeiros T, Rigau M, Chiva C, Montes M, Garcia-Grau I, Garcia M, Diaz S, Celma A, Bijnsdorp I, Campos A, Di Mauro P, Borrós S, Reventós J, Doll A, Paciucci R, Pegtel M, de Torres I, Sabidó E, Morote J, Olivan M. Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer. Oncotarget 2018; 8:4960-4976. [PMID: 27903962 PMCID: PMC5354884 DOI: 10.18632/oncotarget.13634] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023] Open
Abstract
Rapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods lack specificity. In addition, identification of PCa biomarkers that can classify patients into high- and low-risk groups for disease progression at early stage will improve treatment decision-making. Here, we describe a set of protein-combination panels in urinary extracellular vesicles (EVs), defined by targeted proteomics and immunoblotting techniques that improve early non-invasive detection and stratification of PCa patients.We report a two-protein combination in urinary EVs that classifies benign and PCa patients (ADSV-TGM4), and a combination of five proteins able to significantly distinguish between high- and low-grade PCa patients (CD63-GLPK5-SPHM-PSA-PAPP). Proteins composing the panels were validated by immunohistochemistry assays in tissue microarrays (TMAs) confirming a strong link between the urinary EVs proteome and alterations in PCa tissues. Moreover, ADSV and TGM4 abundance yielded a high diagnostic potential in tissue and promising TGM4 prognostic power. These results suggest that the proteins identified in urinary EVs distinguishing high- and low grade PCa are a reflection of histological changes that may be a consequence of their functional involvement in PCa development. In conclusion, our study resulted in the identification of protein-combination panels present in urinary EVs that exhibit high sensitivity and specificity for PCa detection and patient stratification. Moreover, our study highlights the potential of targeted proteomic approaches–such as selected reaction monitoring (SRM)–as diagnostic assay for liquid biopsies via urinary EVs to improve diagnosis and prognosis of suspected PCa patients.
Collapse
Affiliation(s)
- Tamara Sequeiros
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marina Rigau
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Melania Montes
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iolanda Garcia-Grau
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Garcia
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sherley Diaz
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Celma
- Department of Urology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Irene Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alex Campos
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Primiano Di Mauro
- Sagetis-Biotech; Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià, Barcelona, Spain
| | - Salvador Borrós
- Sagetis-Biotech; Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià, Barcelona, Spain
| | - Jaume Reventós
- Departement of Basic Science, International University of Catalonia, Barcelona, Spain.,IDIBELL-Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Andreas Doll
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rosanna Paciucci
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Michiel Pegtel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Inés de Torres
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Morote
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Department of Urology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mireia Olivan
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
20
|
Wang Y, Chai Z, Wang M, Jin Y, Yang A, Li M. COPB2 suppresses cell proliferation and induces cell cycle arrest in human colon cancer by regulating cell cycle-related proteins. Exp Ther Med 2017; 15:777-784. [PMID: 29399086 PMCID: PMC5772868 DOI: 10.3892/etm.2017.5506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/31/2017] [Indexed: 01/28/2023] Open
Abstract
Coat proteins (COPs), including the major types clathrin, COPI and COPII, play a considerable role in intracellular transport by initiating the formation of transport vesicles. Coatomer protein complex subunit β2 (COPB2) is one of the seven subunits that make up a COPI complex. In the present study, we found that COPB2 was highly expressed in human colon cancer specimens. However, to date, there have been no reports describing the functions of COPB2 in human colon cancer cells. In this study, we analyzed the functions of COPB2 in the proliferation and cell cycle arrest of human RKO and HCT116 colon cancer cells by using lentivirus-mediated RNAi infection. Our results demonstrated that the silencing of COPB2 in vitro could inhibit the proliferation and colony formation abilities of RKO and HCT116 cells. Furthermore, measurement of cell cycle distribution indicated that the downregulation of COPB2 could induce G0/G1 or S phase cell cycle arrest by regulating cell cycle-related proteins. In conclusion, our results suggest that COPB2 plays a key role in the proliferation and cell cycle progression of human RKO and HCT116 colon cancer cells, thus indicating that COPB2 might be a potential therapeutic target for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Telemedicine Consultation Centre, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhi Chai
- Department of Telemedicine Consultation Centre, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Min Wang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanling Jin
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Aijun Yang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Min Li
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
21
|
Liang X, Liu T, Zhang W, Zhang K, Guo S, Liang J. Lentivirus-mediated knockdown of M-phase phosphoprotein 8 inhibits proliferation of colon cancer cells. Biotechnol Appl Biochem 2017; 64:911-917. [PMID: 27174009 DOI: 10.1002/bab.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
Abstract
M-phase phosphoprotein 8 (MPP8) has been reported to be overexpressed in various human carcinoma cells and was associated with tumor malignant characters. However, its functional role in colon cancer (CRC) is still unclear. In the present study, lentivirus-mediated short hairpin RNAs were designed to silence the MPP8 gene in CRC cells including RKO and SW1116 cells. The fluorescence microscopy was used to determine the knockdown efficiency of MPP8 by observing lentivirus-mediated green fluorescent protein expression. MPP8 expression in infected RKO and SW1116 was evaluated by real-time PCR and Western blot analysis. Cell proliferation was assessed by MTT assay and colony formation. Flow cytometry was applied to measure cell cycle and apoptosis. Transwell assay was used to determine the effect of MMP8 silencing on cell migration. Our results demonstrated that loss of MPP8 inhibited cell proliferation and migration and promoted cell apoptosis. These results indicate that MPP8 plays an important role in the proliferation and metastasis of CRC cells and suggest that silencing of MPP8 may be an effective therapeutic approach for the treatment of CRC.
Collapse
Affiliation(s)
- Xianjun Liang
- Department of Gastroenterology, Taizhou Central Hospital, Taizhou, People's Republic of China
| | - Tongjun Liu
- Department of Colorectal, Second Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Weizhong Zhang
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Zhang
- Department of Colorectal, Second Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Guo
- Department of Endocrinology, Taizhou Central Hospital, Taizhou, People's Republic of China
| | - Jianhua Liang
- Department of Gastroenterology, Taizhou Central Hospital, Taizhou, People's Republic of China
| |
Collapse
|
22
|
Dong P, Xiong Y, Hanley SJB, Yue J, Watari H. Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:150. [PMID: 29073938 PMCID: PMC5659032 DOI: 10.1186/s13046-017-0617-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/09/2017] [Indexed: 01/16/2023]
Abstract
Background Although previous studies have shown promise for targeting Musashi RNA-binding protein 2 (MSI-2) in diverse tumors, the role and mechanism of MSI-2 for cervical cancer (CC) progression and the regulation of MSI-2 expression remains unclear. Methods Using gene expression and bioinformatic analysis, together with gain- and loss-of-function assays, we identified MSI-2 as a novel oncogenic driver and a poor prognostic marker in CC. We explored the regulation of c-FOS by MSI-2 via RNA-immunoprecipitation and luciferase assay, and confirmed a direct inhibition of MSI-2 by miR-143/miR-107 using luciferase assay. We assessed the effect of a natural antibiotic Mithramycin A on p53, miR-143/miR-107 and MSI-2 expression in CC cells. Results MSI-2 mRNA is highly expressed in CC tissues and its overexpression correlates with lower overall survival. MSI-2 promotes CC cell growth, invasiveness and sphere formation through directly binding to c-FOS mRNA and by increasing c-FOS protein expression. Furthermore, miR-143/miR-107 are two tumor suppressor miRNAs that directly bind and inhibit MSI-2 expression in CC cells, and downregulation of miR-143/miR-107 associates with poor patient prognosis. Importantly, we found that p53 decreases the expression of MSI-2 through elevating miR-143/miR-107 levels, and treatment with a natural antibiotic Mithramycin A increased p53 and miR-143/miR-107 expression and reduced MSI-2 expression, resulting in the inhibition of CC cell proliferation, invasion and sphere formation. Conclusions These results suggest that MSI-2 plays a crucial role in promoting the aggressive phenotypes of CC cells, and restoration of miR-143/miR-107 by Mithramycin A via activation of p53 may represent a novel therapeutic approach for CC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
23
|
Shelake S, Sankpal UT, Paul Bowman W, Wise M, Ray A, Basha R. Targeting specificity protein 1 transcription factor and survivin using tolfenamic acid for inhibiting Ewing sarcoma cell growth. Invest New Drugs 2017; 35:158-165. [PMID: 28025760 DOI: 10.1007/s10637-016-0417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
Transcription factor Specificity protein 1 (Sp1) and its downstream target survivin (inhibitor of apoptosis protein), play major roles in the pathogenesis of various cancers. Ewing Sarcoma (ES) is a common soft tissue/bone tumor in adolescent and young adults. Overexpression of survivin is also linked to the aggressiveness and poor prognosis of ES. Small molecule Tolfenamic acid (TA) inhibits Sp1 and survivin in cancer cells. In this investigation, we demonstrate a strategy to target Sp1 and survivin using TA and positive control Mithramycin A (Mit) to inhibit ES cell growth. Knock down of Sp1 using small interfering RNA (siRNA) resulted in significant (p < 0.05) inhibition of CHLA-9 and TC-32 cell growth as assessed by CellTiter-Glo assay kit. TA or Mit treatment caused dose/time-dependent inhibition of cell viability, and this inhibition was correlated with a decrease in Sp1 and survivin protein levels in ES cells. Quantitative PCR results showed that Mit treatment decreased the mRNA expression of both survivin and Sp1, whereas TA diminished only survivin but not Sp1. Proteasome inhibitor restored TA-induced inhibition of Sp1 protein expression suggesting that TA might cause proteasome-dependent degradation. Gel shift assay using ES cell nuclear extract and biotinylated Sp1 consensus oligonucleotides confirmed that both TA and Mit decreased DNA-binding activity of Sp1. These results demonstrate that both Mit and TA reduce expression of Sp1 and survivin, disrupt Sp1 DNA-binding and inhibit ES cell proliferation. This investigation suggests that targeting Sp1 and survivin could be an effective strategy for inhibiting ES cell growth.
Collapse
Affiliation(s)
- Sagar Shelake
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Umesh T Sankpal
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - W Paul Bowman
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA
| | - Matthew Wise
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Anish Ray
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA.
| | - Riyaz Basha
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA.
| |
Collapse
|
24
|
Vaysse A, Fang S, Brossard M, Wei Q, Chen WV, Mohamdi H, Vincent-Fetita L, Margaritte-Jeannin P, Lavielle N, Maubec E, Lathrop M, Avril MF, Amos CI, Lee JE, Demenais F. A comprehensive genome-wide analysis of melanoma Breslow thickness identifies interaction between CDC42 and SCIN genetic variants. Int J Cancer 2016; 139:2012-20. [PMID: 27347659 PMCID: PMC5116391 DOI: 10.1002/ijc.30245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
Breslow thickness (BT) is a major prognostic factor of cutaneous melanoma (CM), the most fatal skin cancer. The genetic component of BT has only been explored by candidate gene studies with inconsistent results. Our objective was to uncover the genetic factors underlying BT using an hypothesis-free genome-wide approach. Our analysis strategy integrated a genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) for BT followed by pathway analysis of GWAS outcomes using the gene-set enrichment analysis (GSEA) method and epistasis analysis within BT-associated pathways. This strategy was applied to two large CM datasets with Hapmap3-imputed SNP data: the French MELARISK study for discovery (966 cases) and the MD Anderson Cancer Center study (1,546 cases) for replication. While no marginal effect of individual SNPs was revealed through GWAS, three pathways, defined by gene ontology (GO) categories were significantly enriched in genes associated with BT (false discovery rate ≤5% in both studies): hormone activity, cytokine activity and myeloid cell differentiation. Epistasis analysis, within each significant GO, identified a statistically significant interaction between CDC42 and SCIN SNPs (pmeta-int =2.2 × 10(-6) , which met the overall multiple-testing corrected threshold of 2.5 × 10(-6) ). These two SNPs (and proxies) are strongly associated with CDC42 and SCIN gene expression levels and map to regulatory elements in skin cells. This interaction has important biological relevance since CDC42 and SCIN proteins have opposite effects in actin cytoskeleton organization and dynamics, a key mechanism underlying melanoma cell migration and invasion.
Collapse
Affiliation(s)
- Amaury Vaysse
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Myriam Brossard
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wei V. Chen
- Laboratory Informatics System, Department of Clinical Applications & Support, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hamida Mohamdi
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Patricia Margaritte-Jeannin
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nolwenn Lavielle
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eve Maubec
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- AP-HP, Service de Dermatologie, Hôpital Avicenne et Université Paris 13, Bobigny, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | | | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel College of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florence Demenais
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Prefoldin 1 promotes EMT and lung cancer progression by suppressing cyclin A expression. Oncogene 2016; 36:885-898. [PMID: 27694898 PMCID: PMC5318667 DOI: 10.1038/onc.2016.257] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
Prefoldin (PFDN) is a co-chaperone protein that is primarily known for its classic cytoplasmic functions in the folding of actin and tubulin monomers during cytoskeletal assembly. Here, we report a marked increase in prefoldin subunit 1 (PFDN1) levels during the transforming growth factor (TGF)-β1-mediated epithelial-mesenchymal transition (EMT) and in human lung tumor tissues. Interestingly, the nuclear localization of PFDN1 was also detected. These observations suggest that PFDN1 may be essential for important novel functions. Overexpression of PFDN1 induced EMT and cell invasion. In sharp contrast, knockdown of PFDN1 generated the opposite effects. Overexpression of PFDN1 was also found to induce lung tumor growth and metastasis. Further experiments showed that PFDN1 overexpression inhibits the expression of cyclin A. PFDN1 suppressed cyclin A expression by directly interacting with the cyclin A promoter at the transcriptional start site. Strikingly, cyclin A overexpression abolished the above PFDN1-mediated effects on the behavior of lung cancer cells, whereas cyclin A knockdown alone induced EMT and increased cell migration and invasion ability. This study reveals that the TGF-β1/PFDN1/cyclin A axis is essential for EMT induction and metastasis of lung cancer cells.
Collapse
|
26
|
Scinderin promotes the invasion and metastasis of gastric cancer cells and predicts the outcome of patients. Cancer Lett 2016; 376:110-7. [PMID: 27033455 DOI: 10.1016/j.canlet.2016.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Invasion and metastasis are major malignant characteristics of human gastric cancer (GC), but the underlying molecular mechanisms are poorly understood. Recent studies have shown that scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. Accordingly, this study aimed to investigate the potential role of SCIN in the invasion and metastasis of human GC cells and to evaluate its prognostic value for GC patients. We found that high levels of SCIN expression in GC tumors were correlated with poor overall survival of patients. Silencing of SCIN effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Furthermore, knockdown of SCIN markedly inhibited the formation of filopodia, decreasing GC cell migration and the expression of Cdc42, an important regulator of filopodia by GC cells. These findings suggest that SCIN may be a novel prognostic marker and a potential therapeutic target in human GC.
Collapse
|
27
|
Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1. Exp Mol Med 2015; 47:e199. [PMID: 26642432 PMCID: PMC4686697 DOI: 10.1038/emm.2015.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022] Open
Abstract
Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-κB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.
Collapse
|
28
|
Calcium-controlled conformational choreography in the N-terminal half of adseverin. Nat Commun 2015; 6:8254. [PMID: 26365202 PMCID: PMC4647846 DOI: 10.1038/ncomms9254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/03/2015] [Indexed: 01/23/2023] Open
Abstract
Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.
Collapse
|
29
|
Tian F, Xing X, Xu F, Cheng W, Zhang Z, Gao J, Ge J, Xie H. Downregulation ofSKA1Gene Expression Inhibits Cell Growth in Human Bladder Cancer. Cancer Biother Radiopharm 2015. [PMID: 26197237 DOI: 10.1089/cbr.2014.1715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Feng Tian
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaoxiao Xing
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Feng Xu
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wen Cheng
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhengyu Zhang
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jianping Gao
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingping Ge
- Department of Urology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hailong Xie
- Institute of Cancer Research, School of Medicine, University of South China, Hengyang, China
| |
Collapse
|
30
|
Inoshita M, Numata S, Tajima A, Kinoshita M, Umehara H, Yamamori H, Hashimoto R, Imoto I, Ohmori T. Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions. Biol Sex Differ 2015; 6:11. [PMID: 26113971 PMCID: PMC4480901 DOI: 10.1186/s13293-015-0029-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/06/2015] [Indexed: 12/31/2022] Open
Abstract
Background DNA methylation, which is most frequently the transference of a methyl group to the 5-carbon position of the cytosine in a CpG dinucleotide, plays an important role in both normal development and diseases. To date, several genome-wide methylome studies have revealed sex-biased DNA methylation, yet no studies have investigated sex differences in DNA methylation by taking into account cellular heterogeneity. The aim of the present study was to investigate sex-biased DNA methylation on the autosomes in human blood by adjusting for estimated cellular proportions because cell-type proportions may vary by sex. Methods We performed a genome-wide DNA methylation profiling of the peripheral leukocytes in two sets of samples, a discovery set (49 males and 44 females) and a replication set (14 males and 10 females) using Infinium HumanMethylation450 BeadChips for 485,764 CpG dinucleotides and then examined the effect of sex on DNA methylation with a multiple linear regression analysis after adjusting for age, the estimated 6 cell-type proportions, and the covariates identified in a surrogate variable analysis. Results We identified differential DNA methylation between males and females at 292 autosomal CpG site loci in the discovery set (Bonferroni-adjusted p < 0.05). Of these 292 CpG sites, significant sex differences were also observed at 98 sites in the replication set (p < 0.05). Conclusions These findings provided further evidence that DNA methylation may play a role in the differentiation or maintenance of sexual dimorphisms. Our methylome mapping of the effects of sex may be useful to understanding the molecular mechanism involved in both normal development and diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0029-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masatoshi Inoshita
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| | - Atsushi Tajima
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan ; Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640 Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| | - Hidehiro Umehara
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| | - Hidenaga Yamamori
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 5650871 Japan ; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 5650871 Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 5650871 Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 5650871 Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503 Japan
| |
Collapse
|
31
|
Li X, Jiang H, Huang Y, Gong Q, Wang J, Ling J. Expression and Function of the Actin-severing Protein Adseverin in the Proliferation, Migration, and Differentiation of Dental Pulp Cells. J Endod 2015; 41:493-500. [DOI: 10.1016/j.joen.2014.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/29/2014] [Accepted: 11/30/2014] [Indexed: 12/18/2022]
|
32
|
Wang J, Yu S, Cui L, Wang W, Li J, Wang K, Lao X. Role of SMC1A overexpression as a predictor of poor prognosis in late stage colorectal cancer. BMC Cancer 2015; 15:90. [PMID: 25884313 PMCID: PMC4352287 DOI: 10.1186/s12885-015-1085-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/12/2015] [Indexed: 12/18/2022] Open
Abstract
Background Structural maintenance of chromosomes 1A (SMC1A) is a member of the cohesion family of proteins that plays crucial roles in cell cycle control. Recent studies have concluded that SMC1A is involved in the pathogenesis of cancer. This study aims to evaluate the functional role of SMC1A in colorectal cancer (CRC) both in vitro and in vivo, and the underlying molecular mechanisms. Methods We firstly investigated the expression levels of SMC1A in 427 CRC specimens. Antigen expression was determined by immunohistochemical analysis of SMC1A on tissue microarrays. Stable SMC1A knockdown CRC cell lines were employed. The effects of SMC1A depletion on cell growth in vitro were examined by MTT, colony formation and flow cytometry assays. Tumor forming was evaluated by nude mice model in vivo. To detect the activation of intracellular signaling, pathscan intracellular signaling array and western blotting were performed. Results The expression of SMC1A was much stronger in CRC tumor tissues than in adenomas and normal colorectal tissues. High SMC1A expression, indicated as an independent poor prognostic predictor for patients with stage III and stage IV CRC, was correlated with overall survival (OS) (p = 0.008). Functional analysis indicated that SMC1A knockdown by small interfering RNA (siRNA) mediated the significant inhibition of cell proliferation; induced cell cycle arrest and apoptosis via the suppression of CDK4, PCNA and PARP; and blocked the activation of the Erk1/2 and Akt cascades in CRC cells. In addition, SMC1A depletion significantly decreased the growth of subcutaneously inoculated tumors in nude mice. Conclusions These results suggest that SMC1A plays an essential role in the development of CRC and may be a predictive factor in patients with CRC. The inhibition of SMC1A may serve as a promising therapeutic strategy for human CRC.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shaojun Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Liming Cui
- Holly Lab Shanghai, Shanghai, 200233, China.
| | - Wenhui Wang
- Holly Lab Shanghai, Shanghai, 200233, China.
| | - Jun Li
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ke Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xinyuan Lao
- Holly Lab Shanghai, Shanghai, 200233, China.
| |
Collapse
|
33
|
siRNA-mediated knockdown against NUF2 suppresses pancreatic cancer proliferation in vitro and in vivo. Biosci Rep 2015; 35:BSR20140124. [PMID: 25370920 PMCID: PMC4293903 DOI: 10.1042/bsr20140124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NUF2 (NUF2, Ndc80 kinetochore complex component) plays an important role in kinetochore-microtubule attachment. It has been reported that NUF2 is associated with multiple human cancers. However, the functional role of NUF2 in pancreatic cancer remains unclear. In this study, we found that NUF2 expression was stronger in tumour tissues than in normal pancreatic tissues, and its overexpression could be related to poor prognosis. Moreover, NUF2 was highly expressed in several human pancreatic cancer cell lines. We took advantage of lentivirus-mediated siRNA (small interfering RNA) to suppress NUF2 expression in PANC-1 and Sw1990 cell lines aiming to investigate the role of NUF2 in pancreatic cancer. NUF2 silencing by RANi (RNA interference) reduced the proliferation and colony formation ability of pancreatic cancer cells in vitro. Cell cycle analysis showed that NUF2 knockdown induced cell cycle arrest at G0/G1 phase via suppression of Cyclin B1, Cdc2 and Cdc25A. More importantly, NUF2 silencing was able to alleviate in vivo tumourigenesis in pancreatic cancer xenograft nude mice. Collectively, the present study indicates that the siRNA-mediated knockdown against NUF2 may be a promising therapeutic method for the treatment of pancreatic cancer. NUF2 is overexpressed in pancreatic cancer tissues and cell lines. siRNA-mediated knockdown against NUF2 resulted in a significant reduction in pancreatic cancer cell growth both in vitro and in vivo. NUF2 may be a promising therapeutic target in pancreatic cancer.
Collapse
|
34
|
Wang Z, Zhang H, Wang J, Yang Y, Wu Q. RNA interference-mediated silencing of G protein-coupled receptor 137 inhibits human gastric cancer cell growth. Mol Med Rep 2014; 11:2578-84. [PMID: 25514843 PMCID: PMC4337595 DOI: 10.3892/mmr.2014.3091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptor 137 (GPR137) is an integral membrane protein, which belongs to the GPR137 family of cell surface mediators of signal transduction. GPF137 was recently identified; however, its role in human disease onset has remained to be elucidated. GPR137 is highly expressed in multiple human gastric cancer cell lines. A GPR137 short hairpin RNA (shRNA)-expressing vector was transfected into AGS and MGC80-3 gastric cancer cells, and the subsequent depletion of GPR137 resulted in a significant reduction in cell proliferation and colony formation, as determined by MTT and colony formation assays. In addition, cell cycle analysis indicated that GPR137 knockdown arrested MGC80-3 cells in G2/M phase. To the best of our knowledge, the present study was the first to investigate the role of GPR137 in gastric tumorigenesis and revealed that knockdown of GPR137 by lentivirus-mediated shRNA transfection inhibited the growth of gastric cancer cells in vitro. These results indicated that GPR137 may present a novel target for the development of pharmacological therapeutics for human gastric cancer.
Collapse
Affiliation(s)
- Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hui Zhang
- Department of Surgery Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Junbin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
35
|
CHEN XIAOMIN, GUO JUNMING, CHEN PING, MAO LIANGANG, FENG WEIYUN, LE DONGHAI, LI KEQIANG. Suppression of scinderin modulates epithelial-mesenchymal transition markers in highly metastatic gastric cancer cell line SGC-7901. Mol Med Rep 2014; 10:2327-33. [DOI: 10.3892/mmr.2014.2523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/17/2014] [Indexed: 11/05/2022] Open
|
36
|
Liu L, Zhang H, Shi L, Zhang W, Yuan J, Chen X, Liu J, Zhang Y, Wang Z. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells. Oncol Rep 2014; 32:1395-400. [PMID: 25109327 DOI: 10.3892/or.2014.3388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023] Open
Abstract
Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.
Collapse
Affiliation(s)
- Linna Liu
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hongmei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Shi
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wenjuan Zhang
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Juanli Yuan
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiang Chen
- Department of orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Juanjuan Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Zhang
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhipeng Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
37
|
Shao M, Jin B, Niu Y, Ye J, Lu D, Han B. Association of POLK Polymorphisms with Platinum-Based Chemotherapy Response and Severe Toxicity in Non-small Cell Lung Cancer Patients. Cell Biochem Biophys 2014; 70:1227-37. [DOI: 10.1007/s12013-014-0046-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|