1
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Zhang J, Yang G, Liu J, Lin Z, Zhang J, Zhao J, Sun G, Lin H. Glucagon-like peptide-1 analog liraglutide reduces fat deposition in chicken adipocytes. Poult Sci 2024; 103:103766. [PMID: 38759567 PMCID: PMC11107459 DOI: 10.1016/j.psj.2024.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024] Open
Abstract
Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.
Collapse
Affiliation(s)
- Jianmei Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guangcheng Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jingbo Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Zhenxian Lin
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jie Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jin Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guozheng Sun
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China.
| |
Collapse
|
4
|
Li H, Wang H, Cui L, Liu K, Guo L, Li J, Dong J. The effect of selenium on the proliferation of bovine endometrial epithelial cells in a lipopolysaccharide-induced damage model. BMC Vet Res 2024; 20:109. [PMID: 38500165 PMCID: PMC10946195 DOI: 10.1186/s12917-024-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted β-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/β-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Heng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Luying Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Kangjun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Long Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Jianji Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| | - Junsheng Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Korowash SI, Keskin-Erdogan Z, Hemdan BA, Barrios Silva LV, Ibrahim DM, Chau DYS. Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications. J Biomater Appl 2023; 38:351-360. [PMID: 37604458 PMCID: PMC10494480 DOI: 10.1177/08853282231198726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Atomic substitution or doping of a bioceramic material hydroxyapatite (HA) with specific ions is an appealing approach for improving its biocompatibility and activity, as well as imparting antibacterial properties. In this study, selenium- and/or copper-substituted hydroxyapatite powders were synthesized by an aqueous precipitation method and using the freeze-drying technique. The molar concentrations of constituents were calculated based on the proposed mechanism whereby selenium (Se4+) ions partially substitute phosphorus (P5+) sites, and copper (Cu2+) ions partially substitute (Ca2+) sites in the HA lattice. Dried precipitated samples were characterized using Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). Accordingly, substitution of Se4+ and/or Cu2+ ions took place in the crystal lattice of HA without the formation of any impurities. The presence of sulphur (S2-) ions in the hydroxyapatite was detected by ICP-OES in all samples with copper substituted in the lattice. The cytotoxicity of the powders on osteoblastic (MC3T3-E1) cells was evaluated in vitro. Selenium substituted hydroxyapatite (SeHA), at the concentration (200 μg/mL), demonstrated higher populations of the live cells than that of control (cells without powders), suggesting that selenium may stimulate the proliferation of these cells. In addition, the copper substituted hydroxyapatite (CuHA) and the selenium and copper substituted hydroxyapatite (SeCuHA) at the concentrations (200 and 300 μg/mL) and (200 μg/mL), respectively demonstrated better results than the unsubstituted HA. Antimicrobial activity was assessed using a well-diffusion method against Streptococcus mutans and Candida albicans, and superior results has obtained with SeCuHA samples. Presented findings imply that selenium and/or copper substituted modified hydroxyapatite nanoparticles, may be an attractive antimicrobial and cytocompatible substrate to be considered for use in a range of translational applications.
Collapse
Affiliation(s)
- Sara I Korowash
- Department of Refractories, Ceramics and Building Materials, National Research Centre, Cairo, Egypt
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
- Chemical Engineering Department, Imperial College London, London, UK
| | - Bahaa A Hemdan
- Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Lady V Barrios Silva
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| | - Doreya M Ibrahim
- Department of Refractories, Ceramics and Building Materials, National Research Centre, Cairo, Egypt
| | - David YS Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| |
Collapse
|
6
|
Ergun DD, Ozsobaci NP, Yilmaz T, Ozcelik D, Kalkan MT. Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure. Electromagn Biol Med 2023; 42:123-132. [PMID: 37638990 DOI: 10.1080/15368378.2023.2252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Although there are numerous studies on the health impacts of electromagnetic field (EMF) of mobile phone operation frequency 2100 MHz, the published works present contradicting results. Long-term exposure to mobile phone frequencies has unclear health hazards. Therefore, it is important to investigate the molecular mechanism of possible biological effects in mobile phone exposure and to determine the corresponding biological markers. Towards this end, this study was designed to assess the effect of 200 nM selenium (Se) on cell viability% [trypan blue], cell cycle biomarker [cyclin D1] and the transcription factor [nuclear factor kappa b (NF-κB)] in NIH/3T3 fibroblast cells when exposed to 2100 MHz mobile phone frequency. When 2100 MHz EMF was exposed to NIH/3T3 fibroblast cells, the cell viability% was reduced, whereas cyclin D1 level and NF-kB activity increased. Also we show that Se supplementation decreases the effects of 2100 MHz EMF on these parameters. Although future studies will be required to investigate the biological effects of EMF emitted by mobile phones, the results obtained here provide an insight into the molecular mechanisms and specifically underlying selenium's protective effect against 2100 MHz EMF exposure.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuba Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Tunaya Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
7
|
Rahimi B, Panahi M, Lotfi H, Khalili M, Salehi A, Saraygord-Afshari N, Alizadeh E. Sodium selenite preserves rBM-MSCs' stemness, differentiation potential, and immunophenotype and protects them against oxidative stress via activation of the Nrf2 signaling pathway. BMC Complement Med Ther 2023; 23:131. [PMID: 37098557 PMCID: PMC10127330 DOI: 10.1186/s12906-023-03952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.
Collapse
Affiliation(s)
- Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Moghaddam SV, Abedi F, Lotfi H, Salehi R, Barzegar A, Eslaminejad MB, Khalili M, Alizadeh E. An efficient method for cell sheet bioengineering from rBMSCs on thermo-responsive PCL-PEG-PCL copolymer. J Biol Eng 2023; 17:27. [PMID: 37024910 PMCID: PMC10080813 DOI: 10.1186/s13036-023-00346-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Utilizing both medium enrichment and a thermos-responsive substrate to maintain the cell-to-cell junctions and extracellular matrix (ECM) intact, cell sheet technology has emerged as a ground-breaking approach. Investigating the possibility of using sodium selenite (as medium supplementation) and PCL-PEG-PCL (as vessel coating substrate) in the formation of the sheets from rat bone marrow-derived mesenchymal stem cells (rBMSCs) was the main goal of the present study. To this end, first, Polycaprolactone-co-Poly (ethylene glycol)-co-Polycaprolactone triblock copolymer (PCEC) was prepared by ring-opening copolymerization method and characterized by FTIR, 1 H NMR, and GPC. The sol-gel-sol phase transition temperature of the PCEC aqueous solutions with various concentrations was either measured. Next, rBMSCs were cultured on the PCEC, and let be expanded in five different media containing vitamin C (50 µg/ml), sodium selenite (0.1 µM), vitamin C and sodium selenite (50 µg/ml + 0.1 µM), Trolox, and routine medium. The proliferation of the cells exposed to each material was evaluated. Produced cell sheets were harvested from the polymer surface by temperature reduction and phenotypically analyzed via an inverted microscope, hematoxylin and eosin (H&E) staining, and field emission scanning electron microscopy (FESEM). Through the molecular level, the expression of the stemness-related genes (Sox2, Oct-4, Nanog), selenium-dependent enzymes (TRX, GPX-1), and aging regulator gene (Sirt1) were measured by q RT-PCR. Senescence in cell sheets was checked by beta-galactosidase assay. The results declared the improved ability of the rBMSCs for osteogenesis and adipogenesis in the presence of antioxidants vitamin C, sodium selenite, and Trolox in growth media. The data indicated that in the presence of vitamin C and sodium selenite, the quality of the cell sheet was risen by reducing the number of senescent cells and high transcription of the stemness genes. Monolayers produced by sodium selenite was in higher-quality than the ones produced by vitamin C.
Collapse
Affiliation(s)
- Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
10
|
Selenium-Stimulated Exosomes Enhance Wound Healing by Modulating Inflammation and Angiogenesis. Int J Mol Sci 2022; 23:ijms231911543. [PMID: 36232844 PMCID: PMC9570007 DOI: 10.3390/ijms231911543] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes have emerged as an attractive cell-free tool in tissue engineering and regenerative medicine. The current study aimed to examine the anti-inflammatory, pro-angiogenic, and wound-repair effects of both exosomes and selenium-stimulated exosomes, and check whether the latter had superior wound healing capacity over others. The cellular and molecular network of exosomes, as a paracrine signal, was extensively studied by performing miRNA arrays to explore the key mediators of exosomes in wound healing. Selenium is known to play a critical role in enhancing the proliferation, multi-potency, and anti-inflammatory effects of MSCs. Selenium-stimulated exosomes showed significant effects in inhibiting inflammation and improving pro-angiogenesis in human umbilical vein endothelial cells. Cell growth and the migration of human dermal fibroblasts and wound regeneration were more enhanced in the selenium-stimulated exosome group than in the selenium and exosome groups, thereby further promoting the wound healing in vivo. Taken together, selenium was found to augment the therapeutic effects of adipose MSC-derived exosomes in tissue regeneration. We concluded that selenium may be considered a vital agent for wound healing in stem cell-based cell-free therapies.
Collapse
|
11
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Liu Y, Liu N, Li X, Luo Z, Zhang J. Ginsenoside Rb1 Modulates the Migration of Bone-Derived Mesenchymal Stem Cells through the SDF-1/CXCR4 Axis and PI3K/Akt Pathway. DISEASE MARKERS 2022; 2022:5196682. [PMID: 35308137 PMCID: PMC8930258 DOI: 10.1155/2022/5196682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Methods Wound-healing assay and Transwell assay were utilized to evaluate the effect of ginsenoside Rb1 on the migration of BMSCs. RT-PCR and Western blotting were performed to evaluate the expression of stromal-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR4), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB; AKT). Results Ginsenoside Rb1 significantly enhanced the migration of BMSCs through the activation of SDF-1, CXCR4, p-PI3K/PI3K, and p-Akt/Akt relative expression. Furthermore, this stimulus was blocked by the pretreatment with AMD3100 and LY294002. Conclusions Ginsenoside Rb1 facilitated the migration of BMSCs through the activation of the SDF-1/CXCR4 axis and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yimei Liu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ninghua Liu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Xiangyang Li
- Department of Nursing, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jing Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
13
|
Lin ZZ, Li ZQ, Li JJ, Yu CL, Yang CW, Ran JS, Yin LQ, Zhang DH, Zhang GF, Liu YP. Mfsd2a Promotes the Proliferation, Migration, Differentiation and Adipogenesis of Chicken Intramuscular Preadipocytes. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- ZZ Lin
- Sichuan Agricultural University, China
| | - ZQ Li
- Sichuan Agricultural University, China
| | - JJ Li
- Sichuan Agricultural University, China
| | - CL Yu
- Sichuan Animal Science Academy, China
| | - CW Yang
- Sichuan Animal Science Academy, China
| | - JS Ran
- Sichuan Agricultural University, China
| | - LQ Yin
- Sichuan Agricultural University, China
| | - DH Zhang
- Sichuan Agricultural University, China
| | - GF Zhang
- Sichuan Agricultural University, China
| | - YP Liu
- Sichuan Agricultural University, China
| |
Collapse
|
14
|
Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring. Br J Nutr 2021; 126:1498-1509. [PMID: 33427139 DOI: 10.1017/s0007114521000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the association between daily Se intake and postpartum weight retention (PPWR) among Chinese lactating women, and the impact of their Se nutritional status on infants' physical development. Se contents in breast milk and plasma collected from 264 lactating Chinese women at the 42nd day postpartum were analysed with inductively coupled plasma MS. Daily Se intake was calculated based on plasma Se concentration. The dietary data of 24-h records on three consecutive days were collected. Infant growth status was evaluated with WHO standards by Z-scores. Linear regression analyses and multinomial logistic regression were conducted to examine the impact of Se disequilibrium (including other factors) on PPWR and growth of infants, respectively. The results indicated that: (1) the daily Se intake of the subjects was negatively associated with their PPWR (B = -0·002, 95 % CI - 0·003, 0·000, P = 0·039); (2) both insufficient Se daily intake (B = -0·001, OR 0·999, 95 % CI 0·998, 1·000, P = 0·014) and low level of Se in milk (B = -0·025, OR 0·975, 95 % CI 0·951, 0·999, P = 0·021) had potential associations with their infants' wasting, and low level of Se in milk (B = -0·159, OR 0·853, 95 % CI 0·743, 0·980, P = 0·024) had a significant association with their infants' overweight. In conclusion, the insufficient Se nutritional status of lactating Chinese women was first found as one possible influencing factor of their PPWR as well as low physical development of their offspring.
Collapse
|
15
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
16
|
Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E. Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 2020; 235:6462-6495. [PMID: 32239727 DOI: 10.1002/jcp.29660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Collapse
Affiliation(s)
- Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Serum Microelements in Early Pregnancy and their Risk of Large-for-Gestational Age Birth Weight. Nutrients 2020; 12:nu12030866. [PMID: 32213887 PMCID: PMC7146262 DOI: 10.3390/nu12030866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Excessive birth weight has serious perinatal consequences, and it “programs” long-term health. Mother’s nutritional status can be an important element in fetal “programming”; microelements such as selenium (Se), zinc (Zn), copper (Cu), and iron (Fe) are involved in many metabolic processes. However, there are no studies assessing the relationship of the microelements in the peri-conceptual period with the risk of excessive birth weight. We performed a nested case control study of serum microelements’ levels in the 10–14th week of pregnancy and assessed the risk of large-for-gestational age (LGA) newborns using the data from a prospective cohort of pregnant women recruited in 2015–2016 in Poznań, Poland. Mothers delivering LGA newborns (n = 66) were examined with matched mothers delivering appropriate-for-gestational age (AGA) newborns (n = 264). Microelements’ levels were quantified using mass spectrometry. The odds ratios of LGA (and 95% confidence intervals) were calculated by multivariate logistic regression. In the whole group, women with the lowest quartile of Se had a 3 times higher LGA risk compared with women in the highest Se quartile (AOR = 3.00; p = 0.013). Importantly, the result was sustained in the subgroup of women with the normal pre-pregnancy BMI (AOR = 4.79; p = 0.033) and in women with a male fetus (AOR = 6.28; p = 0.004), but it was not sustained in women with a female fetus. There were no statistical associations between Zn, Cu, and Fe levels and LGA. Our study provides some preliminary evidence for the relationships between lower serum Se levels in early pregnancy and a higher risk of large-for-gestational age birth weight. Appropriate Se intake in the periconceptual period may be important for optimal fetal growth.
Collapse
|
18
|
Shi L, Duan Y, Yao X, Song R, Ren Y. Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Anim Reprod Sci 2020; 215:106330. [PMID: 32216931 DOI: 10.1016/j.anireprosci.2020.106330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
The objective of this study was to investigate effects of selenium (Se) on proliferation and apoptosis of sheep spermatogonial stem cells (SSC) in vitro. The SSC were assigned to five treatment groups (0, 2.0, 4.0, 8.0 and 16.0 μmol/L Se). After treatment with Se for 96 h, cell proliferation and apoptosis were evaluated. The relative abundance of P53 mRNA transcript and protein, cell cycle and apoptosis-related genes were detected using real-time PCR and Western blot quantifications, respectively. The results indicate there were the least cell proliferation rates in the Se16.0 group. Treatments with relatively greater Se concentrations (8.0 and 16.0 μmol/L) resulted in a greater percentage of apoptotic cells, which was consistent with the relative abundances of P53, P21, P27 and pro-apoptosis mRNA transcripts. There were relatively greater ROS concentrations in the control, Se8.0 and Se16.0 groups. Compared with the control group, treatment with the Se concentration of 16.0 μmol/L resulted in an increased abundance of P53, P21, P27 and BAX proteins. Treatment with Pifithrin-α suppressed the increase in abundance of P53 and P21 proteins induced by the relatively greater concentration of Se (16.0 μmol/L), however, did not result in a change in abundances of P27 and BAX proteins. These results indicate the regulatory functions of Se on proliferation and apoptosis of sheep SSC is associated with the P21-mediated P53 signalling pathway. The P27 and BAX proteins have limited functions during the apoptotic process of SSC induced by the relatively greater concentrations of Se.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yunli Duan
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruigao Song
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
19
|
Sun W, Zhu J, Li S, Tang C, Zhao Q, Zhang J. Selenium supplementation protects against oxidative stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT. Metallomics 2020; 12:1965-1978. [PMID: 33237045 DOI: 10.1039/d0mt00225a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress significantly contributes to heart disease, and thus might be a promising target for ameliorating heart failure. Mounting evidence suggests that selenium has chemotherapeutic potential for treating heart disease due to its regulation of selenoproteins, which play antioxidant regulatory roles. Oxidative stress-induced cardiomyocyte cell cycle arrest contributes to the loss of cardiomyocytes during heart failure. The protective effects and mechanism of selenium against oxidative stress-induced cell cycle arrest in cardiomyocytes warrant further study. H9c2 rat cardiomyoblast cells were treated with hydrogen peroxide in the presence or absence of selenium supplementation. Na2SeO3 pretreatment alleviated H2O2-induced oxidative stress, increased thioredoxin reductase (TXNRD) activity and glutathione peroxidase (GPx) activity and counteracted the H2O2-induced cell cycle arrest at the S phase. These effects were accompanied by attenuation of the H2O2-induced strengthening of the G2/M-phase inhibitory system, including increased mRNA and protein levels of cyclin-dependent kinase 1 (CDK1) and decreased p21 mRNA levels. Notably, Na2SeO3 pretreatment activated the PI3K/AKT signaling pathway, and inhibition of PI3K counteracted the protective effects of selenium on H2O2-induced cell cycle arrest. We corroborated our findings in vivo by inducing oxidative stress in pig heart by feeding a selenium deficient diet, which decreased the TXNRD activity, inactivated PI3K/AKT signaling and strengthened the G2/M-phase inhibitory system. We concluded that the cardioprotective effects of selenium supplementation against oxidative stress-induced cell cycle arrest in cardiomyocytes might be mediated by the selenoprotein-associated (GPx and TXNRD) antioxidant capacity, thereby activating redox status-associated PI3K/AKT pathways, which promote cell cycle progression by targeting the G2/M phase inhibitory system. This study provides new insight into the underlying mechanisms of cardioprotection effects of selenium at the cellular level.
Collapse
Affiliation(s)
- Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
20
|
Pang KL, Chin KY. Emerging Anticancer Potentials of Selenium on Osteosarcoma. Int J Mol Sci 2019; 20:E5318. [PMID: 31731474 PMCID: PMC6862058 DOI: 10.3390/ijms20215318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to humans and forms complexes with proteins, which exert physiological functions in the body. In vitro studies suggested that selenium possesses anticancer effects and may be effective against osteosarcoma. This review aims to summarise current evidence on the anticancer activity of inorganic and organic selenium on osteosarcoma. Cellular studies revealed that inorganic and organic selenium shows cytotoxicity, anti-proliferative and pro-apoptotic effects on various osteosarcoma cell lines. These actions may be mediated by oxidative stress induced by selenium compounds, leading to the activation of p53, proapoptotic proteins and caspases. Inorganic selenium is selective towards cancer cells, but can cause non-selective cell death at a high dose. This condition challenges the controlled release of selenium from biomaterials. Selenium treatment in animals inoculated with osteosarcoma reduced the tumour size, but did not eliminate the incidence of osteosarcoma. Only one study investigated the relationship between selenium and osteosarcoma in humans, but the results were inconclusive. In summary, although selenium may exert anticancer properties on osteosarcoma in experimental model systems, its effects in humans require further investigation.
Collapse
Affiliation(s)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
21
|
Liu X, Long X, Liu W, Yao G, Zhao Y, Hayashi T, Hattori S, Fujisaki H, Ogura T, Tashiro SI, Onodera S, Yamato M, Ikejima T. Differential levels of reactive oxygen species in murine preadipocyte 3T3-L1 cells cultured on type I collagen molecule-coated and gel-covered dishes exert opposite effects on NF-κB-mediated proliferation and migration. Free Radic Res 2018; 52:913-928. [DOI: 10.1080/10715762.2018.1478088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Guodong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Shin-ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
22
|
Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells. Mol Cell Biochem 2018; 450:87-96. [DOI: 10.1007/s11010-018-3375-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
23
|
Yao X, Ei-Samahy MA, Fan L, Zheng L, Jin Y, Pang J, Zhang G, Liu Z, Wang F. In vitro influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology 2018; 114:70-80. [PMID: 29602134 DOI: 10.1016/j.theriogenology.2018.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022]
Abstract
In this study, we investigated the effects of Selenium (Se) on the proliferation of and steroidogenesis in goat luteinized granulosa cells (LGCs) and elucidated the mechanisms underlying these effects. Our results showed that proliferating cell nuclear antigen (PCNA), Akt, and phosphoinositide 3-kinase (PI3K) were expressed mainly in ovarian oocytes and granulosa cells (GCs). We observed that 5 ng/mL Se significantly stimulated LGC proliferation, which could be attributed to increases in PCNA, cyclin-dependent kinase 1 (CDK1), phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK; Thr172), and phosphorylated Akt (p-Akt; Ser473) and decreases in p21 (P < 0.05). Se treatment also significantly increased estradiol (E2) production, which could be, at least partially, due to increased levels of 3β-hydroxysteroid dehydrogenase(3β-HSD), steroidogenic acute regulatory protein (StAR), p-Akt (Ser473), and cyclic adenosine monophosphate (cAMP) (P < 0.05); however, follicle-stimulating hormone (FSH) significantly enhanced the production of E2, progesterone (P4) and cAMP (P < 0.05). Moreover, Se treatment stimulated proliferation and the synthesis of E2 and cAMP in the presence of FSH (P < 0.05). Additionally, the expression of antioxidant-related genes [glutathione peroxidase (GSH-Px) and superoxide dismutase 2 (SOD2)] and the activity of GSH-Px and SOD were progressively elevated by Se treatment (P < 0.05). These data suggested that Se plays an important role in the proliferation of and steroidogenesis in LGC by activating the PI3K/Akt and AMPK pathways, thereby increasing the expression of its downstream cell-cycle- and steroid-synthesis-related genes, as well as regulating cellular oxidative stress.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - M A Ei-Samahy
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lijie Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Linfeng Zheng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuyue Jin
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Pang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guomin Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zifei Liu
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
24
|
Aminizadeh N, Tiraihi T, Mesbah-Namin SA, Taheri T. A Comparative Study of the Effects of Sodium Selenite and Glutathione Mono Ethyl Ester on Aged Adipose-Derived Stem Cells: The Telomerase and Cellular Responses. Rejuvenation Res 2017. [PMID: 28622077 DOI: 10.1089/rej.2017.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proliferation and differentiation potential of adipose-derived stem cells (ADSCs) decline with aging. Moreover, Alzheimer's disease is associated with progressive decline in cholinergic neurons. The purpose of this study is to enhance the proliferation potential of aged rat ADSCs and their differentiation into cholinergic neurons. The ADSCs were collected from aged male rats cultured and treated with different concentrations of sodium selenite for 3 days or glutathione mono ethyl ester (GSH-MEE) for 1 day. Incubating the ADSCs with 27 nM sodium selenite for 3 days significantly increased the relative cell proliferation, compared with the control, without any change in the telomerase activity, the related telomerase gene expression, and the telomere length, but it does improve differentiation of the aged ADSCs to cholinergic neuron-like cells. GSH-MEE at a concentration of 2 mM for 1 day resulted in increased relative cell proliferation, but it did not change the telomerase activity, the related telomerase gene expression, the telomere length, and differentiation potential. Sodium selenite is more effective than GSH-MEE in improving the aged ADSCs' properties. However, both did not have any effect on telomerase activity.
Collapse
Affiliation(s)
- Najmeh Aminizadeh
- 1 Department of Anatomical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Taki Tiraihi
- 1 Department of Anatomical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- 2 Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Taher Taheri
- 3 Shefa Neuroscience Research Center , Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
25
|
Guo G, Yao G, Zhan G, Hu Y, Yue M, Cheng L, Liu Y, Ye Q, Qing G, Zhang Y, Liu H. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation. Toxicol Appl Pharmacol 2014; 280:475-83. [DOI: 10.1016/j.taap.2014.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|