1
|
Zagami P, Nicolò E, Corti C, Valenza C, Curigliano G. New Concepts in Cardio-Oncology. Cancer Treat Res 2023; 188:303-341. [PMID: 38175351 DOI: 10.1007/978-3-031-33602-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer and cardiovascular disease are the two major causes of morbidity and mortality in worldwide. Discovering new therapeutic agents for the management of breast cancer (BC) has increased the numbers of cancer survivors but with the risk of cardiovascular adverse events (CV-AEs). All drugs can potentially damage the cardiovascular system, with different types of clinical manifestations from ischemic myocardial disease to vasculitis, thrombosis or pericarditis. An early detection of CV-AEs guarantees an earlier treatment, which is associated with better outcomes. Cardio-oncology field enlarged its studies to improve prevention, monitoring and treatment of all cardiotoxic manifestations related to old or modern oncological agents. A multidisciplinary approach with a close partnership between oncologists and cardiologists is essential for an optimal management and therapeutic decision-making. The aim of this chapter is to review all types of cardiotoxic manifestations related to novel and old agents approved for treatment of BC patients including chemotherapy, anti-HER2 agents, cyclin-dependent kinase 4/6 inhibitors, PolyADP-ribose polymerase (PARP) inhibitors, antiangiogenic drugs and immunotherapy. We also focused our discussion on prevention, monitoring, treatment, and management of CV-AEs.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hematology, University of Milano, Milan, Italy.
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Carmine Valenza
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
2
|
Sheoran S, Arora S, Samsonraj R, Govindaiah P, vuree S. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022; 8:e09403. [PMID: 35663739 PMCID: PMC9160046 DOI: 10.1016/j.heliyon.2022.e09403] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Investigators were continuously creating novel nanotechnologies to address unmet requirements throughout the administration of therapeutic medicines & imaging agents for cancer treatment & diagnostics, appropriately. LNPs(Lipid nanoparticles) are legitimate particulates (approx. 100 nm in size) gathered from various lipid as well as other biochemical compounds which overall functionality to resolve biological barriers (biobarriers), allowing LNPs to selectively collect somewhere outside of disease-target cells again for responsive therapeutics. Most pharmaceutically important compounds were insoluble throughout water solutions, were chemical & physiologically unstable, or have toxicities. Among the most potential drug carrier for bioactive organic compounds is LBNPs (Lipid based nanoparticles) technologies. Its present use in chemotherapy have transformed treatment for cancer by increasing the antitumor effect of a number of chemotherapeutics. Because they may be created using naturally occurring sources, LBNPs have great temporal and thermal stability, maximum load potential, simplicity of preparations, cheap manufacturing costs, & big manufacturing output. Furthermore, combining chemotherapeutic drugs with LNPs reduces active therapeutic dosage and toxicities, lowers treatment resistance, & raises drug concentration in tumour cells while reducing concentrations in normal tissue. LBNPs were widely studied in cancer treatment, both in vitro and in vivo, with encouraging outcomes in certain clinical trials. This study provides an overview of the many types of LBNPs which have been created in latest years and their applications and contributions in different types of cancers.
Collapse
Affiliation(s)
- Sumit Sheoran
- Dept. of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Jalandhar
- Bioclues.org, Hyderabad, India
| | - Swati Arora
- Dept. of Biotechnology and Bioinformatics, School of Biosciences and Bioengineering, Lovely Professional University, Jalandhar
- Bioclues.org, Hyderabad, India
| | - R. Samsonraj
- Dept. of Molecular Biology, School of Biosciences and Bioengineering, Lovely Professional University, Jalandhar
- Research and Development, Biocon Research Limited, Bengaluru
| | - Pilli Govindaiah
- Dept. of Pharmaceutical Chemistry, School of Pharmacy, Lovely Professional University, Jalandhar
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Sugunakar vuree
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, 144111 Punjab, India
- Bioclues.org, Hyderabad, India
| |
Collapse
|
3
|
Schettini F, Giuliano M, Lambertini M, Bartsch R, Pinato DJ, Onesti CE, Harbeck N, Lüftner D, Rottey S, van Dam PA, Zaman K, Mustacchi G, Gligorov J, Awada A, Campone M, Wildiers H, Gennari A, Tjan-Heijnen VCG, Cortes J, Locci M, Paris I, Del Mastro L, De Placido S, Martín M, Jerusalem G, Venturini S, Curigliano G, Generali D. Anthracyclines Strike Back: Rediscovering Non-Pegylated Liposomal Doxorubicin in Current Therapeutic Scenarios of Breast Cancer. Cancers (Basel) 2021; 13:4421. [PMID: 34503231 PMCID: PMC8430783 DOI: 10.3390/cancers13174421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most active chemotherapies (CT) in breast cancer (BC). However, cardiotoxicity is a risk and peculiar side effect that has been limiting their use in clinical practice, especially after the introduction of taxanes. Non-pegylated liposomal doxorubicin (NPLD) has been developed to optimize the toxicity profile induced by anthracyclines, while maintaining its unquestionable therapeutic index, thanks to its delivering characteristics that increase its diffusion in tumor tissues and reduce it in normal tissues. This feature allows NPLD to be safely administered beyond the standard doxorubicin maximum cumulative dose of 450-480 mg/m2. Following three pivotal first-line phase III trials in HER2-negative metastatic BC (MBC), this drug was finally approved in combination with cyclophosphamide in this specific setting. Given the increasing complexity of the therapeutic scenario of HER2-negative MBC, we have carefully revised the most updated literature on the topic and dissected the potential role of NPLD in the evolving therapeutic algorithms.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Research Group, 08036 Barcelona, Spain;
- Department of Medical Oncology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.G.); (S.D.P.)
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (L.D.M.)
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine 1, Medical University of Vienna, 1090 Vienna, Austria;
| | - David James Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
- Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Nadia Harbeck
- Breast Center, Department OB&GYN and CCCLMU, LMU University Hospital, 81377 Munich, Germany;
| | - Diana Lüftner
- Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Sylvie Rottey
- Department of Medical Oncology, UZ Gent, 9000 Gent, Belgium;
| | - Peter A. van Dam
- Oncology Department, University Hospital Antwerp (UZA), 2650 Edegem, Belgium;
| | - Khalil Zaman
- Oncology Department, Lausanne University Hospital CHUV, 1011 Lausanne, Switzerland;
| | - Giorgio Mustacchi
- Division of Medical Oncology, University of Trieste, 34127 Trieste, Italy;
| | - Joseph Gligorov
- Department of Medical Oncology, Tenon Hospital, Institut Universitaire de Cancérologie AP-HP, Sorbonne University, 75004 Paris, France;
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium;
| | - Mario Campone
- Division of Medical Oncology, Institut de Cancérologie de l’Ouest-Pays de la Loire, 44800 Saint-Herblain, France;
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
| | - Alessandra Gennari
- Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
| | - Vivianne C. G. Tjan-Heijnen
- Division of Medical Oncology, Maastricht University Medical Center (MUMC), 6229 Maastricht, The Netherlands;
| | - Javier Cortes
- Oncology Department, IOB Institute of Oncology, Quiron Group, 08023 Madrid, Spain;
- Vall d’Hebron Institute of Oncology (VHIO), Centro Cellex, 08035 Carrer de Natzaret, Spain
| | - Mariavittoria Locci
- Department of Neuroscience, Reproductive Medicine, Odontostomatology, University of Naples Federico II, 80131 Naples, Italy;
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Woman Health Area, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (L.D.M.)
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.G.); (S.D.P.)
| | - Miguel Martín
- Departamento de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón Universidad Complutense, 28007 Madrid, Spain;
| | - Guy Jerusalem
- Division of Medical Oncology, CHU Sart Tilman Liège and University of Liège, 4000 Liège, Belgium;
| | - Sergio Venturini
- Management Department, University of Turin, 10124 Torino, Italy;
| | - Giuseppe Curigliano
- Istituto Europeo di Oncologia, IRCCS ed Università di Milano, 20141 Milano, Italy;
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Viale Concordia 1, 26100 Cremona, Italy
| |
Collapse
|
4
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
5
|
Cardiovascular toxicity of breast cancer treatment: an update. Cancer Chemother Pharmacol 2021; 88:15-24. [PMID: 33864486 DOI: 10.1007/s00280-021-04254-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Novel chemotherapeutic agents have marked a new era in oncology during the past decade, prolonging significantly the overall survival of breast cancer patients. Nevertheless, contemporary antineoplastic treatments can frequently cause adverse cardiovascular side effects. Common manifestations of chemotherapy-induced cardiotoxicity include cardiomyopathy, ischemia, conduction disturbances, hypertension and thromboembolic events, while the type of the treatment regimen administered crucially determines clinical outcome. The aim of this literature review is to analyze the incidence and the underlying mechanisms of cardiovascular toxicity caused by agents approved for breast cancer, as well as to describe ways of monitoring and treating the cardiotoxic effects in breast cancer patients. Moreover, our work intends to provide an easy-to-grasp synopsis of recent and clinically meaningful advances in the field.
Collapse
|
6
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
7
|
Komorowski AS, MacKay HJ, Pezo RC. Quality of adverse event reporting in phase III randomized controlled trials of breast and colorectal cancer: A systematic review. Cancer Med 2020; 9:5035-5050. [PMID: 32452660 PMCID: PMC7367648 DOI: 10.1002/cam4.3095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clinical trial reports often emphasize efficacy over harms, leading to misinterpretation of the risk-to-benefit ratio of new therapies. Clear and sufficiently detailed reporting of methods and results is especially important in the abstracts of trial reports, as readers often base their assessment of a trial on such information. In this study, we evaluated the quality of adverse event (AE) reporting and abstract quality in phase III randomized controlled trials (RCTs) of systemic therapies in breast and colorectal cancer. METHODS Medline, EMBASE, Cochrane Database of RCTs, and Cochrane Database of Systematic Reviews were searched from November 2005 to September 2018. Phase III RCTs evaluating systemic therapies in breast or colorectal cancer were included. Each article was independently reviewed by two investigators using a standardized data extraction form based on guidelines developed by the Consolidated Standards of Reporting Trials (CONSORT) group. Descriptive statistics, bivariate analysis, and multivariable linear regression were used to analyze data. All statistical tests were two-sided. RESULTS Of 166 RCTs identified, 99.4% reported harms in the manuscript body, and 59.6% reported harms in the abstract. Reporting was restricted to severe harms in 15.6% of RCTs. Statistical comparison of AE rates went unreported in 59.0% of studies. Information regarding AEs leading to dose reductions, treatment discontinuations, or study withdrawals went unreported in 59.3%, 18.7%, and 86.8% of studies, respectively. Recently published RCTs (P = .009) and those sponsored at least partially by for-profit companies (P = .003) had higher abstract quality scores. CONCLUSIONS Breast and colorectal cancer phase III RCTs inadequately report CONSORT-compliant AE data. Improved guideline adherence and abstract reporting is required to properly weigh benefits and harms of new oncologic therapies. SYSTEMATIC REVIEW REGISTRATION NUMBER CRD42019140673.
Collapse
Affiliation(s)
- Adam S. Komorowski
- Division of Medical MicrobiologyMcMaster UniversityHamiltonONCanada
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONCanada
| | - Helen J. MacKay
- Division of Medical OncologySunnybrook Health Sciences CentreTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| | - Rossanna C. Pezo
- Division of Medical OncologySunnybrook Health Sciences CentreTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| |
Collapse
|
8
|
Chung K, Ullah I, Kim N, Lim J, Shin J, Lee SC, Jeon S, Kim SH, Kumar P, Lee SK. Intranasal delivery of cancer-targeting doxorubicin-loaded PLGA nanoparticles arrests glioblastoma growth. J Drug Target 2020; 28:617-626. [PMID: 31852284 DOI: 10.1080/1061186x.2019.1706095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumour and treatment is very challenging. Despite the recent advances in drug delivery systems, various approaches that allow sufficient deposition of anti-cancer drugs within the brain remain unsuccessful due to limited drug delivery throughout the brain. In this study, we utilised an intranasal (IN) approach to allow delivery of anti-cancer drug, encapsulated in PLGA nanoparticles (NPs). PLGA NPs were modified with the RGD ligand to enable Avβ3 expressing tumour-specific delivery. IN delivery of RGD-conjugated-doxorubicin (DOX)-loaded-PLGA-nanoparticles (RGD-DOX-NP) showed cancer-specific delivery of NP and inhibition of brain tumour growth compared to the free-DOX or non-modified DOX-NP in the C6-implanted GBM model. Further, IN treatment with RGD-DOX-NP induces apoptosis in the tumour region without affecting normal brain cells. Our study provides therapeutic evidence to treat GBM using a non-invasive IN approach, which may further be translated to other brain-associated diseases.
Collapse
Affiliation(s)
- Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Nahyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Samsung Bioepis, Incheon, Korea
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Celltrion, Incheon, Korea
| | - Jungah Shin
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Chong Kun Dang Pharmaceutics, Seoul, Korea
| | - Sangah C Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Department of Health Services, Policy, and Practice, Brown University, Providence, RI, USA
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea
| |
Collapse
|
9
|
Emerging Trends in Nanotheranostics. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol 2019; 84:689-706. [DOI: 10.1007/s00280-019-03910-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
|
11
|
Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. NANOMATERIALS 2019; 9:nano9040638. [PMID: 31010180 PMCID: PMC6523119 DOI: 10.3390/nano9040638] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.
Collapse
|
12
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
13
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Li L, Pan Z. Progression-Free Survival and Time to Progression as Real Surrogate End Points for Overall Survival in Advanced Breast Cancer: A Meta-Analysis of 37 Trials. Clin Breast Cancer 2017; 18:63-70. [PMID: 28818493 DOI: 10.1016/j.clbc.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Progression-free survival (PFS) and time to progression (TTP) have been reported to correlate with overall survival (OS) in several cancer types. To our knowledge, however, the correlation between them is unclear. METHODS A literature-based meta-analysis was performed to assess whether PFS and TTP can be considered reliable surrogate end points for OS in a phase 3 clinical trial of advanced breast cancer (ABC). The median hazard ratios of PFS/TTP and OS were analyzed by determining their nonparametric Spearman rank correlation coefficients (Rs). RESULTS A total of 37 trials with 38 treatment arms and 14,966 patients were selected for analysis. The Rs between the median PFS/TTP and OS was 0.405 (95% confidence interval [CI], 0.191-0.582; P = .003), and the correlation coefficient between the hazard ratios of PFS/TTP and OS was 0.555 (95% CI, 0.277-0.748; P = .003). PFS/TTP was closely correlated with OS in the trials of targeted therapy-based treatment (Rs = 0.872; 95% CI, 0.619-0.962; P = .0001) and of PFS/TTP or OS benefit (Rs = 0.753 and Rs = 0.821, respectively) for ABC. CONCLUSIONS Both PFS and TTP can be considered valid surrogate end points for OS in the trials of targeted therapy-based treatments and clinical benefits for ABC. Further research is necessary to clarify the surrogacy of PFS/TTP for OS in other trials of targeted therapy-based treatments for ABC.
Collapse
Affiliation(s)
- Ling Li
- Department of Integrated Traditional and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhanyu Pan
- Department of Integrated Traditional and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
15
|
|
16
|
Meng F, Han N, Yeo Y. Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opin Drug Deliv 2016; 14:427-446. [PMID: 27476442 DOI: 10.1080/17425247.2016.1218464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chemotherapeutic drugs are used in combination to target multiple mechanisms involved in cancer cell survival and proliferation. Carriers are developed to deliver drug combinations to common target tissues in optimal ratios and desirable sequences. Nanoparticles (NP) have been a popular choice for this purpose due to their ability to increase the circulation half-life and tumor accumulation of a drug. Areas covered: We review organic NP carriers based on polymers, proteins, peptides, and lipids for simultaneous delivery of multiple anticancer drugs, drug/sensitizer combinations, drug/photodynamic therapy or drug/photothermal therapy combinations, and drug/gene therapeutics with examples in the past three years. Sequential delivery of drug combinations, based on either sequential administration or built-in release control, is introduced with an emphasis on the mechanistic understanding of such control. Expert opinion: Recent studies demonstrate how a drug carrier can contribute to co-localizing drug combinations in optimal ratios and dosing sequences to maximize the synergistic effects. We identify several areas for improvement in future research, including the choice of drug combinations, circulation stability of carriers, spatiotemporal control of drug release, and the evaluation and clinical translation of combination delivery.
Collapse
Affiliation(s)
- Fanfei Meng
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Ning Han
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,c Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Yoon Yeo
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,d Weldon School of Biomedical Engineering , Purdue University , West Lafayette , IN , USA
| |
Collapse
|