1
|
Dżaman K, Czerwaty K. Extracellular Vesicle-Based Drug Delivery Systems for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Pharmaceutics 2023; 15:pharmaceutics15051327. [PMID: 37242569 DOI: 10.3390/pharmaceutics15051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that there are over 890,000 new cases of head and neck squamous cell carcinoma (HNSCC) worldwide each year, accounting for approximately 5% of all cancer cases. Current treatment options for HNSCC often cause significant side effects and functional impairments, thus there is a challenge to discover more acceptable treatment technologies. Extracellular vesicles (EVs) can be utilized for HNSCC treatment in several ways, for example, for drug delivery, immune modulation, as biomarkers for diagnostics, gene therapy, or tumor microenvironment modulation. This systematic review summarizes new knowledge regarding these options. Articles published up to 11 December 2022, were identified by searching the electronic databases PubMed/MEDLINE, Scopus, Web of Science, and Cochrane. Only full-text original research papers written in English were considered eligible for analysis. The quality of studies was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies, modified for the needs of this review. Of 436 identified records, 18 were eligible and included. It is important to note that the use of EVs as a treatment for HNSCC is still in the early stages of research, so we summarized information on challenges such as EV isolation, purification, and standardization of EV-based therapies in HNSCC.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
2
|
Ganapathy T, Radhakrishnan R, Sakshi S, Martin S. CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green? Cancer Immunol Immunother 2023; 72:277-286. [PMID: 35960333 DOI: 10.1007/s00262-022-03260-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Engineered immune cell therapy to treat malignancies refractory to conventional therapies is modernizing oncology. Although αβ T cells are time-tested chassis for CAR, potential graft versus host disease (GvHD) apart from cytokine toxicity and antigen escape pose limitations to this approach. αβ T cell malignancy challenges isolation and expansion of therapeutic T cells. Moreover, αβ T cells may pose toxicity risk to inflammation sensitive vital tissues bearing the tumor. The HLA independent, multivalent, versatile and systemic anti-tumor immunity increases the desirability of γδ T cells as an alternate chassis for CAR. Indeed, CD19 γδ CAR T cell therapy to treat advanced lymphoma reached a milestone with the fast track status by FDA. However, reduced tumor-toxicity, homing, in vivo persistence and heterogeneity limits the translation of this therapy. The field is gaining momentum in recent years with optimization of gene delivery approaches and mechanistic insights into co-signaling requirements in γδ T cells. There is a renewed interest in customizing design of CAR guided by the biology of the host immune cells. Progress has been made in the current good manufacturing practice compatible expansion and engineering protocols for the δ1 and δ2 T cells. γδ CAR T cells may find its niche in the clinical situations wherein conventional CAR therapy is less suitable due to propensity for cytokine toxicity or off-tumor effect. As the therapy is moving towards clinical trials, this review chronicles the hitherto progress in the therapeutic engineering of γδ T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Thamizhselvi Ganapathy
- Immune Cell Engineering and Therapy (iCET) Laboratory, Christian Medical College Vellore, Bagayam, Tamil Nadu, 632002, India
| | - Rajalingam Radhakrishnan
- Synthetic Immunology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Seth Sakshi
- Immune Cell Engineering and Therapy (iCET) Laboratory, Christian Medical College Vellore, Bagayam, Tamil Nadu, 632002, India
| | - Sunil Martin
- Synthetic Immunology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
3
|
Ghosh A, Mondal RK, Romani S, Bagchi S, Cairo C, Pauza CD, Kottilil S, Poonia B. Persistent gamma delta T-cell dysfunction in chronic HCV infection despite direct-acting antiviral therapy induced cure. J Viral Hepat 2019; 26:1105-1116. [PMID: 31074195 PMCID: PMC7152509 DOI: 10.1111/jvh.13121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Immune dysfunction is a hallmark of chronic HCV infection and viral clearance with direct antivirals recover some of these immune defects. TCRVγ9Vδ2 T-cell dysfunction in treated HCV patients however is not well studied and was the subject of this investigation. Peripheral blood cells from patients who had achieved sustained virologic response (SVR) or those who had relapsed after interferon-free therapy were phenotyped using flow cytometry. Functional potential of Vγ9Vδ2 T cells was tested by measuring proliferation in response to aminobisphosphonate zoledronic acid, and cytotoxicity against HepG2 hepatoma cell line. TCR sequencing was performed to analyse impact of HCV infection on Vδ2 T-cell repertoire. Vγ9Vδ2 cells from patients were activated and therapy resulted in reduction of CD38 expression on these cells in SVR group. Relapsed patients had Vδ2 cells with persistently activated and terminally differentiated cytotoxic phenotype (CD38+ CD45RA+ CD27- CD107a+ ). Irrespective of outcome with therapy, majority of patients had persistently poor Vδ2 T-cell proliferative response to zoledronate along with lower expression of CD56, which identifies anti-tumour cytotoxic subset, relative to healthy controls. There was no association between the number of antigen reactive Vγ2-Jγ1.2 TCR rearrangements at baseline and levels of proliferation indicating nonresponse to zoledronate is not due to depletion of phosphoantigen responding chains. Thus, HCV infection results in circulating Vγ9Vδ2 T cells with a phenotype equipped for immediate effector function but poor cytokine response and expansion in response to antigen, a functional defect that may have implications for susceptibility for carcinogenesis despite HCV cure.
Collapse
Affiliation(s)
- Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine
| | - Rajiv K Mondal
- Institute of Human Virology, University of Maryland School of Medicine
| | - Sara Romani
- Institute of Human Virology, University of Maryland School of Medicine
| | - Shashwatee Bagchi
- Institute of Human Virology, University of Maryland School of Medicine
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine
| | - C David Pauza
- American Gene Technologies, Rockville, Maryland 20850
| | | | - Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine
| |
Collapse
|
4
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
Li L, Lu S, Liang X, Cao B, Wang S, Jiang J, Luo H, He S, Lang J, Zhu G. γδTDEs: An Efficient Delivery System for miR-138 with Anti-tumoral and Immunostimulatory Roles on Oral Squamous Cell Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:101-113. [PMID: 30594069 PMCID: PMC6307324 DOI: 10.1016/j.omtn.2018.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023]
Abstract
In this study, we sought to investigate the potential application of γδ T cell-derived extracellular vesicles (γδTDEs) as drug delivery system (DDS) for miR-138 in the treatment of oral squamous cell carcinoma (OSCC). Our data showed that overexpression of miR-138 in γδ T cells obtained miR-138-rich γδTDEs accompanying increased expansion and cytotoxicity of γδ T cells. γδTDEs inherited the cytotoxic profile of γδ T cells and could efficiently deliver miR-138 to OSCC cells, resulting in synergetic inhibition on OSCC both in vitro and in vivo. The pre-immunization by miR-138-rich γδTDEs inhibited the growth of OSCC tumors in immunocompetent C3H mice, but not in nude mice, suggesting an immunomodulatory role by miR-13-rich γδTDEs. γδTDEs and miR-138 additively increased the proliferation, interferon-γ (IFN-γ) production, and cytotoxicity of CD8+ T cells against OSCC cells. Only delivered by γδTDEs can miR-138 efficiently target programmed cell death 1 (PD-1) and CTLA-4 in CD8+ T cells. We conclude that γδTDEs delivering miR-138 could achieve synergetic therapeutic effects on OSCC, which is benefited from the individual direct anti-tumoral effects on OSCC and immunostimulatory effects on T cells by both γδTDEs and miR-138; γδTDEs could serve as an efficient DDS for microRNAs (miRNAs) in the treatment of cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Bangrong Cao
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shaoxin Wang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.
| | - Guiquan Zhu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
6
|
Abstract
γδ T cells are one of the three immune cell types that express antigen receptors. They contribute to lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. γδ T cells have the capacity of secreting abundant cytokines and exerting potent cytotoxicity against a wide range of cancer cells. γδ T cells exhibit important roles in immune-surveillance and immune defense against tumors and have become attractive effector cells for cancer immunotherapy. γδ T cells mediate anti-tumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines, or through a TCR-dependent pathway. Recently, γδ T cells are making their way into clinical trials. Some clinical trials demonstrated that γδ T cell-based immunotherapy is well tolerated and efficient. Despite the advantages that could be exploited, there are obstacles have to be addressed for the development of γδ T cell immunotherapies. Future direction for immunotherapy using γδ T cells should focus on overcoming the side effects of γδ T cells and exploring better antigens that help stimulating γδ T cell expansion in vitro.
Collapse
|
7
|
Severe Sepsis After Living Donor Liver Transplantation: Risk Factors and Outcomes. Transplant Proc 2016; 48:2124-9. [DOI: 10.1016/j.transproceed.2016.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 01/05/2023]
|
8
|
Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vγ9Vδ2 T lymphocyte-mediated killing is increased by zoledronate. Int J Oncol 2016; 48:1794-804. [PMID: 26936487 PMCID: PMC4809658 DOI: 10.3892/ijo.2016.3403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
The limited efficacy of vaccines in hepatocellular carcinoma (HCC), due to the low frequency of tumor-infiltrating cytotoxic T lymphocytes (CTLs), indicates the importance of innate immune surveillance, which assists acquired immunity by directly recognizing and eliminating HCC. Innate Vγ9Vδ2 T cells have major histocompatibility complex-unrestricted antitumor activity and are activated by phosphoantigens, which are upregulated in cancer cells by the nitrogen-containing bisphosphonate, zoledronate (Zol). A better understanding of HCC susceptibility to Zol and downstream γδ T cell-mediated killing is essential to optimize γδ T cell-mediated immunotherapy. This study systematically examined the interactions between γδ T cells and Zol-treated HCC cell lines (HepG2, HLE, HLF, HuH-1, JHH5, JHH7, and Li-7) in vitro. All HCC cell lines expressed the DNAX accessory molecule-1 ligands, poliovirus receptor, and Nectin-2, and γδ T cell-mediated killing of these cells was significantly enhanced by Zol. Small interfering RNA-mediated knockdown of these ligands did not affect the susceptibility to γδ T cell lysis. This killing activity was partly inhibited by mevastatin, an inhibitor of the mevalonate pathway, and markedly reduced by a monoclonal antibody to γ- and δ-chain T cell receptor, indicating that this is crucial for Zol-induced HCC killing. In addition, Zol-treated HCC cell lines triggered γδ T cell proliferation and induced production of Th1 and Th2, but not Th17, cytokines. The Zol concentration that enhanced HCC cell susceptibility to γδ T cell killing was lower than that required to directly inhibit HCC proliferation. Thus, γδ T cells may be important effector cells in the presence of Zol, especially where there are insufficient number of cancer antigen-specific CTLs to eliminate HCC. Our in vitro data support the proposal that Zol-treatment, combined with adaptive γδ T cell immunotherapy, may provide a feasible and effective approach for treatment of HCC.
Collapse
Affiliation(s)
- Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|