1
|
Alfano L, Iannuzzi CA, Barone D, Forte IM, Ragosta MC, Cuomo M, Mazzarotti G, Dell'Aquila M, Altieri A, Caporaso A, Roma C, Marra L, Boffo S, Indovina P, De Laurentiis M, Giordano A. CDK9-55 guides the anaphase-promoting complex/cyclosome (APC/C) in choosing the DNA repair pathway choice. Oncogene 2024; 43:1263-1273. [PMID: 38433256 DOI: 10.1038/s41388-024-02982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3-ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error-prone NHEJ. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Luigi Alfano
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy.
| | - Carmelina Antonella Iannuzzi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Iris Maria Forte
- Breast Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | | | - Maria Cuomo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulio Mazzarotti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Milena Dell'Aquila
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Angela Altieri
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonella Caporaso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Laura Marra
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Paola Indovina
- Sbarro Research Health Organization, Candiolo, Torino, Italy
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. Oncogene 2024; 43:729-743. [PMID: 38243078 PMCID: PMC11157427 DOI: 10.1038/s41388-024-02947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Merck, Bioinformatics Oncology Discovery, Boston, MA, USA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546707. [PMID: 37425776 PMCID: PMC10327161 DOI: 10.1101/2023.06.27.546707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
- Current Affiliation: Merck, Bioinformatics Oncology Discovery, Boston, MA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
6
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.531983. [PMID: 37398090 PMCID: PMC10312454 DOI: 10.1101/2023.03.10.531983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or NF-kB inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L. McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J. Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L. Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G. Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J. Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Safaroghli-Azar A, Emadi F, Lenjisa J, Mekonnen L, Wang S. Kinase inhibitors: Opportunities for small molecule anticancer immunotherapies. Drug Discov Today 2023; 28:103525. [PMID: 36907320 DOI: 10.1016/j.drudis.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 03/12/2023]
Abstract
As the fifth pillar of cancer treatment, immunotherapy has dramatically changed the paradigm of therapeutic strategies by focusing on the host's immune system. In the long road of immunotherapy development, the identification of immune-modulatory effects for kinase inhibitors opened a new chapter in this therapeutic approach. These small molecule inhibitors not only directly eradicate tumors by targeting essential proteins of cell survival and proliferation but can also drive immune responses against malignant cells. This review summarizes the current standings and challenges of kinase inhibitors in immunotherapy, either as a single agent or in a combined modality.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Fatemeh Emadi
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Jimma Lenjisa
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
8
|
Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers (Basel) 2022; 14:cancers14225500. [PMID: 36428594 PMCID: PMC9688434 DOI: 10.3390/cancers14225500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: After primary platinum-based chemoradiation of locally advanced uterine cervical cancer, a substantial proportion of women present with persistent, recurrent or metastatic disease, indicating an unmet need for biomarker development. Methods: We evaluated the clinical records of 69 cervical cancer patients (Federation of Gynecology and Obstetrics, FIGO Stage > IB3) who were subjected to definitive CRT. Immunohistochemical scoring of caspase-8, cyclin dependent kinase 9 (CDK9) and phosphorylated (phospho-)CDK9 (threonine (Thr) 186) was performed on pretreatment samples and correlated with the histopathological and clinical endpoints, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), cancer-specific survival (CSS) and overall survival (OS). Results: Lower levels of caspase-8 were more prevalent in patients with a higher T-stage (p = 0.002) and a higher FIGO stage (p = 0.003), and were significantly correlated with CDK9 expression (p = 0.018) and inversely with pCDK9 detection (p = 0.014). Increased caspase-8 levels corresponded to improved RFS (p = 0.005), DMFS (p = 0.038) and CSS (p = 0.017) in the univariate analyses. Low CDK9 expression was associated with worse RFS (p = 0.008), CSS (p = 0.015) and OS (p = 0.007), but not DMFS (p = 0.083), and remained a significant prognosticator for RFS (p = 0.003) and CSS (p = 0.009) in the multivariate analyses. Furthermore, low pCDK9 staining was significantly associated with superior RFS (p = 0.004) and DMFS (p = 0.001), and increased CSS (p = 0.022), and remained significant for these endpoints in the multivariate analyses. Conclusion: Increased caspase-8 and CDK9 levels correlate with improved disease-related outcomes in cervical cancer patients treated with CRT, whereas elevated pCDK9 levels predict worse survival in this patient population.
Collapse
|
9
|
miR-302a-3p Promotes Radiotherapy Sensitivity of Hepatocellular Carcinoma by Regulating Cell Cycle via MCL1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1450098. [PMID: 36262872 PMCID: PMC9576429 DOI: 10.1155/2022/1450098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Background. The relationship between tumor suppressor gene miR-302a-3p and radiotherapy for hepatocellular carcinoma (HCC) remains unclear. This study intended to illustrate the molecular mechanism how miR-302a-3p regulated radiotherapy sensitivity of HCC. Methods. miR-302a-3p expression in HCC tissues and cells was examined by qRT-PCR. The effect of miR-302a-3p on HCC radiotherapy sensitivity were detected by CCK-8, colony formation, and flow cytometry assays. The expression levels of cell cycle-related proteins were detected by Western blot. The influence of miR-302a-3p on radiotherapy sensitivity of HCC was further investigated via cell cycle inhibitor (Caudatin) treatment. The target gene (MCL1) of miR-302a-3p was obtained by bioinformatics analysis, and their binding relationship was confirmed by RNA-binding protein immunoprecipitation assay. The mechanisms of miR-302a-3p regulating cell cycle and affecting radiotherapy sensitivity of HCC cells through MCL1 were further explored through the rescue experiments. Results. miR-302a-3p expression was remarkably reduced in radiotherapy-resistant tissues and cells of HCC. miR-302a-3p overexpression restored sensitivity of radiotherapy-resistant HCC cells to radiotherapy. Treatment with cell cycle inhibitor Caudatin could reverse suppressive effect of miR-302a-3p downregulation on sensitivity of HCC to radiotherapy. Additionally, miR-302a-3p could restrain MCL1 expression. In vitro cell assays further revealed that miR-302a-3p/MCL1 axis could enhance radiotherapy sensitivity of HCC cells by inducing G0/G1 arrest. Conclusions. miR-302a-3p facilitated radiotherapy sensitivity of HCC cells by regulating cell cycle via MCL1, which provided a new underlying target for radiotherapy resistance of HCC patients.
Collapse
|
10
|
Gondane A, Poulose N, Walker S, Mills IG, Itkonen HM. O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition. Glycobiology 2022; 32:751-759. [PMID: 35708495 PMCID: PMC9387508 DOI: 10.1093/glycob/cwac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
Co-targeting of O-GlcNAc transferase (OGT) and the transcriptional kinase CDK9 is toxic to prostate cancer cells. As OGT is an essential glycosyltransferase, identifying an alternative target showing similar effects is of great interest. Here, we used a multiomics approach (transcriptomics, metabolomics and proteomics) to better understand the mechanistic basis of the combinatorial lethality between OGT and CDK9 inhibition. CDK9 inhibition preferentially affected transcription. In contrast, depletion of OGT activity predominantly remodeled the metabolome. Using an unbiased systems biology approach (weighted gene correlation network analysis), we discovered that CDK9 inhibition alters mitochondrial activity / flux, and high OGT activity is essential to maintain mitochondrial respiration when CDK9 activity is depleted. Our metabolite profiling data revealed that pantothenic acid (vitamin B5) is the metabolite that is most robustly induced by both OGT and OGT+CDK9 inhibitor treatments, but not by CDK9 inhibition alone. Finally, supplementing prostate cancer cell lines with vitamin B5 in the presence of CDK9 inhibitor mimics the effects of co-targeting OGT and CDK9.
Collapse
Affiliation(s)
- Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ninu Poulose
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK, BT9 7AE.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK, BT9 7AE.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Funke K, Düster R, Wilson PDG, Arévalo L, Geyer M, Schorle H. Transcriptional CDK Inhibitors as Potential Treatment Option for Testicular Germ Cell Tumors. Cancers (Basel) 2022; 14:1690. [PMID: 35406461 PMCID: PMC8997165 DOI: 10.3390/cancers14071690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Type II testicular germ cell tumors (TGCT) are the most frequently diagnosed solid malignancy in young men. Up to 15% of patients with metastatic non-seminomas show cisplatin resistance and a very poor survival rate due to lacking treatment options. Transcriptional cyclin-dependent kinases (CDK) have been shown to be effective targets in the treatment of different types of cancer. Here, we investigated the effects of the CDK inhibitors dinaciclib, flavopiridol, YKL-5-124, THZ1, NVP2, SY0351 and THZ531. An XTT viability assay revealed a strong cytotoxic impact of CDK7/12/13 inhibitor SY0351 and CDK9 inhibitor NVP2 on the TGCT wild-type cell lines (2102EP, NCCIT, TCam2) and the cisplatin-resistant cell lines (2102EP-R, NCCIT-R). The CDK7 inhibitor YKL-5-124 showed a strong impact on 2102EP, 2102EP-R, NCCIT and NCCIT-R cell lines, leaving the MPAF control cell line mostly unaffected. FACS-based analysis revealed mild effects on the cell cycle of 2102EP and TCam2 cells after SY0351, YKL-5-124 or NVP2 treatment. Molecular analysis showed a cell-line-specific response for SY0351 and NVP2 inhibition while YKL-5-124 induced similar molecular changes in 2102EP, TCam2 and MPAF cells. Thus, after TGCT subtype determination, CDK inhibitors might be a potential alternative for optimized and individualized therapy independent of chemotherapy sensitivity.
Collapse
Affiliation(s)
- Kai Funke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Robert Düster
- The Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany; (R.D.); (M.G.)
| | - Prince De-Graft Wilson
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Matthias Geyer
- The Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany; (R.D.); (M.G.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| |
Collapse
|
12
|
Borowczak J, Szczerbowski K, Maniewski M, Zdrenka M, Słupski P, Antosik P, Kołodziejska S, Sekielska-Domanowska M, Dubiel M, Bodnar M, Szylberg Ł. The Prognostic Role of CDK9 in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14061492. [PMID: 35326643 PMCID: PMC8945910 DOI: 10.3390/cancers14061492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction: Most patients with urothelial carcinoma are diagnosed with non-invasive tumors, but the prognosis worsens with the progression of the disease. Overexpression of cyclin-dependent kinase 9 has been recently linked to increased cancer proliferation, faster progression, and worse prognosis. However, some cancers seem to contradict this rule. In this work, we explored the prognostic role of CDK9 expression in urothelial carcinoma. Materials and Methods: We performed immunohistochemical analysis on 72 bladder cancer samples. To assess a larger group of patients, the Cancer Genome Atlas (TCGA) database containing 406 cases and transcriptomics information through the Human Pathology Atlas were analyzed. Results: CDK9 is overexpressed in urothelial cancer tissues when compared to normal urothelial tissues (p < 0.05). High CDK9 expression was observed in low-stage, low-grade, and non-muscle-invasive tumors (p < 0.05). The patients with high CDK9 expression had a significantly higher 5-year overall survival rate than those with low CDK9 expression (77.54% vs. 53.6% in the TMA group and 57.75% vs. 35.44% in the TCGA group, respectively) (p < 0.05). The results were consistent in both cohorts. Multivariate Cox regression analysis indicated that low CDK9 status was an independent predictor for poor prognosis in the TCGA cohort (HR 1.60, CL95% 1.1−2.33, p = 0.014). Conclusions: High CDK9 expression predicts a favorable prognosis in urothelial carcinoma and is associated with clinicopathological features characteristic for early-stage disease. The decrease in CDK9 expression can be associated with the build-up of genetic instability and may indicate a key role for CDK9 in the early stages of urothelial carcinoma.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Correspondence: ; Tel.: +48-52-5854200; Fax: +48-52-5854049
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Mateusz Maniewski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Piotr Słupski
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Sylwia Kołodziejska
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynecology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland; (M.S.-D.); (M.D.)
| | - Mariusz Dubiel
- Department of Obstetrics, Gynecology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland; (M.S.-D.); (M.D.)
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| |
Collapse
|
13
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Ding AS, Huq S, Casaos J, Raj D, Morales M, Zhao T, Kim T, Srivastava S, Pant A, Serra R, Gorelick NL, Brem H, Tyler B. Targeting of cyclin-dependent kinases in atypical teratoid rhabdoid tumors with multikinase inhibitor TG02. J Neurosurg Pediatr 2021; 28:734-743. [PMID: 34479190 DOI: 10.3171/2021.5.peds20920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/21/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Atypical teratoid rhabdoid tumors (ATRTs) are aggressive pediatric brain tumors with no current standard of care and an estimated median patient survival of 12 to 18 months. Previous genetic analyses have implicated cyclin D1 and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase that is implicated in many cancers, as key drivers of tumorigenicity in ATRTs. Since the effects of EZH2 and cyclin D1 are facilitated by a host of cyclin-dependent kinases (CDKs), the authors sought to investigate the potential therapeutic effects of targeting CDKs in ATRTs with the multi-CDK inhibitor, TG02. METHODS Human ATRT cell lines BT12, BT37, CHLA05, and CHLA06 were selected for investigation. The effects of TG02 on cell viability, proliferation, clonogenicity, and apoptosis were assessed via Cell Counting Kit-8 assays, cell counting, clonogenic assays, and flow cytometry, respectively. Similar methods were used to determine the effects of TG02 combined with radiation therapy (RT) or cisplatin. Synergism indices for TG02-cisplatin combination therapy were calculated using CompuSyn software. RESULTS TG02 was observed to significantly impair ATRT cell growth in vitro by limiting cell proliferation and clonogenicity, and by inducing apoptosis. TG02 inhibited ATRT cell proliferation and decreased cell viability in a dose-dependent manner with nanomolar half maximal effective concentration (EC50) values (BT12, 207.0 nM; BT37, 127.8 nM; CHLA05, 29.7 nM; CHLA06, 18.7 nM). TG02 (150 nM) dramatically increased the proportion of apoptotic ATRT cells 72 hours posttreatment (TG02 8.50% vs control 1.52% apoptotic cells in BT12, p < 0.0001; TG02 70.07% vs control 15.36%, p < 0.0001). Combination therapy studies revealed that TG02 acted as a potent radiosensitizer in ATRT cells (BT12 surviving fraction, RT 51.2% vs RT + TG02 21.7%). Finally, CompuSyn analysis demonstrated that TG02 acted synergistically with cisplatin against ATRT cells at virtually all therapeutic doses. These findings were consistent in cell lines that cover all three molecular subgroups of ATRTs. CONCLUSIONS The results of this investigation have established that TG02 is an effective therapeutic against ATRTs in vitro. Given the lack of standard therapy for ATRTs, these findings help fill an unmet need and support further study of TG02 as a potential therapeutic option for patients with this deadly disease.
Collapse
|
15
|
Ranjan A, Pang Y, Butler M, Merchant M, Kim O, Yu G, Su YT, Gilbert MR, Levens D, Wu J. Targeting CDK9 for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:3039. [PMID: 34207158 PMCID: PMC8234280 DOI: 10.3390/cancers13123039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary malignant brain tumor, and more than two-thirds of patients with glioblastoma die within two years of diagnosis. The challenges of treating this disease mainly include genetic and microenvironmental features that often render the tumor resistant to treatments. Despite extensive research efforts, only a small number of drugs tested in clinical trials have become therapies for patients. Targeting cyclin-dependent kinase 9 (CDK9) is an emerging therapeutic approach that has the potential to overcome the challenges in glioblastoma management. Here, we discuss how CDK9 inhibition can impact transcription, metabolism, DNA damage repair, epigenetics, and the immune response to facilitate an anti-tumor response. Moreover, we discuss small-molecule inhibitors of CDK9 in clinical trials and future perspectives on the use of CDK9 inhibitors in treating patients with glioblastoma.
Collapse
Affiliation(s)
- Alice Ranjan
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Ying Pang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Madison Butler
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Mythili Merchant
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Olga Kim
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.R.); (Y.P.); (M.B.); (M.M.); (O.K.); (G.Y.); (Y.-T.S.); (M.R.G.)
| |
Collapse
|
16
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
17
|
Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev 2021; 40:153-171. [PMID: 33161487 PMCID: PMC7897202 DOI: 10.1007/s10555-020-09940-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinases (CDK) control the cell cycle and play a crucial role in oncogenesis. Pharmacologic inhibition of CDK has contributed to the recent clinical approval of dual CDK4/6 inhibitors for the treatment of breast and small cell lung cancer. While the anticancer cell effects of CDK inhibitors are well-established, preclinical and early clinical studies describe additional mechanisms of action such as chemo- and radiosensitization or immune stimulation. The latter offers great potential to incorporate CDK inhibitors in immune-based treatments. However, dosing schedules and accurate timing of each combination partner need to be respected to prevent immune escape and resistance. In this review, we provide a detailed summary of CDK inhibitors in the two solid cancer types head and neck cancer and glioblastoma multiforme; it describes the molecular mechanisms of response vs. resistance and covers strategies to avoid resistance by the combination of immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Christin Riess
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Inken Salewski
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Carl-Friedrich Classen
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
18
|
Wu T, Qin Z, Tian Y, Wang J, Xu C, Li Z, Bian J. Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update. J Med Chem 2020; 63:13228-13257. [DOI: 10.1021/acs.jmedchem.0c00744] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Chenxi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
19
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
20
|
Choi H, Jin S, Cho H, Won H, An HW, Jeong G, Park Y, Kim H, Park MK, Son T, Min K, Jang K, Oh Y, Lee J, Kong G. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling. EMBO Rep 2019; 20:e48058. [PMID: 31468695 PMCID: PMC6776914 DOI: 10.15252/embr.201948058] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.
Collapse
Affiliation(s)
- Hee‐Joo Choi
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Sora Jin
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hani Cho
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee‐Young Won
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee Woon An
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ga‐Young Jeong
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Un Park
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hyung‐Yong Kim
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | | | - Taekwon Son
- College of PharmacySeoul National UniversitySeoulKorea
| | - Kyueng‐Whan Min
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ki‐Seok Jang
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Ha Oh
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Jeong‐Yeon Lee
- Department of MedicineCollege of MedicineHanyang UniversitySeoulKorea
| | - Gu Kong
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| |
Collapse
|
21
|
Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR, Clemens TL. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci U S A 2019; 116:17980-17989. [PMID: 31434789 PMCID: PMC6731662 DOI: 10.1073/pnas.1905489116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fat mass and obesity-associated gene (FTO) encodes an m6A RNA demethylase that controls mRNA processing and has been linked to both obesity and bone mineral density in humans by genome-wide association studies. To examine the role of FTO in bone, we characterized the phenotype of mice lacking Fto globally (FtoKO ) or selectively in osteoblasts (FtoOcKO ). Both mouse models developed age-related reductions in bone volume in both the trabecular and cortical compartments. RNA profiling in osteoblasts following acute disruption of Fto revealed changes in transcripts of Hspa1a and other genes in the DNA repair pathway containing consensus m6A motifs required for demethylation by FtoFto KO osteoblasts were more susceptible to genotoxic agents (UV and H2O2) and exhibited increased rates of apoptosis. Importantly, forced expression of Hspa1a or inhibition of NF-κB signaling normalized the DNA damage and apoptotic rates in Fto KO osteoblasts. Furthermore, increased metabolic stress induced in mice by feeding a high-fat diet induced greater DNA damage in osteoblast of FtoOc KO mice compared to controls. These data suggest that FTO functions intrinsically in osteoblasts through Hspa1a-NF-κB signaling to enhance the stability of mRNA of proteins that function to protect cells from genotoxic damage.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Qian Yang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Clifford R Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Denis C Guttridge
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Naomi Dirckx
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | | | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287;
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
22
|
Schlafstein AJ, Withers AE, Rudra S, Danelia D, Switchenko JM, Mister D, Harari S, Zhang H, Daddacha W, Ehdaivand S, Li X, Torres MA, Yu DS. CDK9 Expression Shows Role as a Potential Prognostic Biomarker in Breast Cancer Patients Who Fail to Achieve Pathologic Complete Response after Neoadjuvant Chemotherapy. Int J Breast Cancer 2018; 2018:6945129. [PMID: 30405916 PMCID: PMC6204190 DOI: 10.1155/2018/6945129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023] Open
Abstract
Failure to achieve pathologic complete response is associated with poor prognosis in breast cancer patients following neoadjuvant chemotherapy (NACT). However, prognostic biomarkers for clinical outcome are unclear in this patient population. Cyclin-dependent kinase 9 (CDK9) is often dysregulated in breast cancer, and its deficiency results in genomic instability. We reviewed the records of 84 breast cancer patients from Emory University's Winship Cancer Institute who had undergone surgical resection after NACT and had tissue available for tissue microarray analysis (TMA). Data recorded included disease presentation, treatment, pathologic response, overall survival (OS), locoregional recurrence free survival (LRRFS), distant-failure free survival (DFFS), recurrence-free survival (RFS), and event-free survival (EFS). Immunohistochemistry was performed on patient samples to determine CDK9 expression levels after NACT. Protein expression was linked with clinical data to determine significance. In a Cox proportional hazards model, using a time-dependent covariate to evaluate the risk of death between groups beyond 3 years, high CDK9 expression was significantly associated with an increase in OS (HR: 0.26, 95% CI: 0.07-0.98, p=0.046). However, Kaplan-Meier curves for OS, LRRFS, DFFS, RFS, and EFS did not reach statistical significance. The results of this study indicate that CDK9 may have a potential role as a prognostic biomarker in patients with breast cancer following NACT. However, further validation studies with increased sample sizes are needed to help elucidate the prognostic role for CDK9 in the management of these patients.
Collapse
Affiliation(s)
- Ashley J. Schlafstein
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E. Withers
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Soumon Rudra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M. Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donna Mister
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Saul Harari
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Zhang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Waaqo Daddacha
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shahrzad Ehdaivand
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaoxian Li
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mylin A. Torres
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S. Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Kang MA, Kim W, Jo HR, Shin YJ, Kim MH, Jeong JH. Anticancer and radiosensitizing effects of the cyclin-dependent kinase inhibitors, AT7519 and SNS‑032, on cervical cancer. Int J Oncol 2018; 53:703-712. [PMID: 29901072 DOI: 10.3892/ijo.2018.4424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/17/2018] [Indexed: 11/05/2022] Open
Abstract
Cyclin-dependent kinases (CDK) are considered to be potential targets of anticancer drugs that can interrupt the uncontrolled division of cancer cells. In this study, we selected two selective CDK inhibitors, AT7519 and SNS‑032, from current clinical trials and examined their anticancer and radiosensitizing effects in a cervical cancer model. SNS‑032 was found to be more potent than AT7519, with a lower half maximal inhibitory concentration (IC50) value. Both AT7519 and SNS‑032 induced the apoptosis, premature senescence and cytostasis of cervical cancer cells, which led to the attenuation of tumor growth in vivo. Moreover, using these CDK inhibitors together with radiation synergistically inhibited tumor growth in a human xenograft tumor model. The concomitant activation of the p53 tumor suppressor and the suppression of cell cycle checkpoint responses mediated by Chk1 led to the cytostasis of cervical cancer cells. Finally, AT7519 and SNS‑032 inhibited cancer cell migration, invasion and angiogenesis in vitro, and suppressed lung metastases in a spontaneous metastasis model. On the whole, the findings of this study indicate that the utilization of AT7519 and SNS‑032 as part of an adjuvant treatment may help control cervical cancer progression.
Collapse
Affiliation(s)
- Mi Ae Kang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Wonwoo Kim
- Radiation Non-Clinic Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Hye-Ram Jo
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Young-Joo Shin
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul 01757, Republic of Korea
| | - Moon-Hong Kim
- Department of Obstetrics and Gynecology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jae-Hoon Jeong
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| |
Collapse
|
24
|
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem 2017; 119:1273-1284. [PMID: 28722178 DOI: 10.1002/jcb.26293] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.
Collapse
Affiliation(s)
- Lia Carolina Franco
- Escuela de Medicina, Universidad de las Americas (UDLA), Quito, Ecuador.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Fátima Morales
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Departamento de Química Orgánica, Universidad de Murcia, Murcia, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
25
|
Pang C, Huang G, Luo K, Dong Y, He F, Du G, Xiao M, Cai W. miR-206 inhibits the growth of hepatocellular carcinoma cells via targeting CDK9. Cancer Med 2017; 6:2398-2409. [PMID: 28940993 PMCID: PMC5633544 DOI: 10.1002/cam4.1188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/22/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022] Open
Abstract
miR‐206 plays an important role in regulating the growth of multiple cancer cells. Cyclin‐dependent kinase 9 (CDK9) stimulates the production of abundant prosurvival proteins, leading to impaired apoptosis of cancer cells. However, it is unknown whether CDK9 is involved in the miR‐206‐mediated growth suppression of hepatocellular carcinoma (HCC) cells. In this study, we found that the expression level of miR‐206 was significantly lower in HCC cell lines than that in normal hepatic cell line (L02). Meanwhile, CDK9 was upregulated in HCC cell lines. Moreover, miR‐206 downregulated CDK9 in HCC cells via directly binding to its mRNA 3′ UTR, which resulted in a decrease of RNA PolII Ser2 phosphorylation and Mcl‐1 level. Additionally, miR‐206 suppressed the cell proliferation, and induced cell cycle arrest and apoptosis. Similarly, silence or inhibition of CDK9 also repressed the cell proliferation, and induced cell cycle arrest and apoptosis. Taken together, the results demonstrated that miR‐206 inhibited the growth of HCC cells through targeting CDK9, suggesting that the miR‐206‐CDK9 pathway may be a novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Chi Pang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Kaili Luo
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Yuying Dong
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| |
Collapse
|
26
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
27
|
Stankevicius V, Vasauskas G, Rynkeviciene R, Venius J, Pasukoniene V, Aleknavicius E, Suziedelis K. Microenvironment and Dose-Delivery-Dependent Response after Exposure to Ionizing Radiation in Human Colorectal Cancer Cell Lines. Radiat Res 2017; 188:291-302. [PMID: 28686531 DOI: 10.1667/rr14658.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A significant body of knowledge about radiobiology is based on studies of single dose cellular irradiation, despite the fact that conventional clinical applications using dose fractionation. In addition, cellular radiation response strongly depends on cell-cell and cell-extracellular matrix (ECM) interactions, which are poorly established in cancer cells grown under standard 2D cell culture conditions. In this study, we investigated the response of human colorectal carcinoma (CRC) DLD1 and HT29 cell lines, bearing distinct p53 mutations, to a single 2 or 10 Gy dose or fractionated 5 × 2 Gy doses of radiation using global transcriptomics analysis. To examine cellular response to radiation in a cell-ECM-interaction-dependent manner, CRC cells were grown under laminin-rich ECM 3D cell culture conditions. Microarray data analysis revealed that, overall, a total of 1,573 and 935 genes were differentially expressed (fold change >1.5; P < 0.05) in DLD1 and HT29 cells, respectively, at 4 h postirradiation. However, compared to a single dose of radiation, fractionated doses resulted in significantly different transcriptomic response in both CRC cell lines. Furthermore, pathway enrichment analysis indicated that p53 pathway and cell cycle/DNA damage repair or immune response functional categories were most significantly altered in DLD1 or HT29 cells, respectively, after fractionated irradiations. Novel observations of radiation-response-mediated activation of pro-survival pathways in CRC cells grown under lr-ECM 3D cell culture conditions using fractionated doses provide new directions for the development of more efficient radiotherapy strategies. Our results also indicated that cell line specific radiation response with or without activation of the conventional p53 pathway is ECM dependent, suggesting that the ECM is a key component in cellular radiation response.
Collapse
Affiliation(s)
- Vaidotas Stankevicius
- a National Cancer Institute, Vilnius, Lithuania.,b Institute of Biotechnology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,c Institute of Biosciences, Life Sciences Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | - Eduardas Aleknavicius
- a National Cancer Institute, Vilnius, Lithuania.,d Department of Radiology, Nuclear Medicine and Physics of Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Kestutis Suziedelis
- a National Cancer Institute, Vilnius, Lithuania.,c Institute of Biosciences, Life Sciences Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
28
|
Abstract
Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies.
Collapse
Affiliation(s)
- Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Aurélie Mallinger
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| |
Collapse
|
29
|
Nepomuceno TC, Fernandes VC, Gomes TT, Carvalho RS, Suarez-Kurtz G, Monteiro AN, Carvalho MA. BRCA1 recruitment to damaged DNA sites is dependent on CDK9. Cell Cycle 2017; 16:665-672. [PMID: 28278048 DOI: 10.1080/15384101.2017.1295177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Double strand break lesions, the most toxic type of DNA damage, are repaired primarily through 2 distinct pathways: homology-directed recombination (HR) and non-homologous end-joining (NHEJ). BRCA1 and 53BP1, 2 proteins containing the BRCT modular domain, play an important role in DNA damage response (DDR) by orchestrating the decision between HR and NHEJ, but the precise mechanisms regarding both pathways are not entirely understood. Previously, our group identified a putative interaction between BRCA1 and BARD1 (BRCA1-associated RING domain 1) and the cyclin-dependent kinase (CDK9). CDK9 is a component of the positive transcription elongation complex and has been implicated in genome integrity maintenance associated with the replication stress response. Here we show that CDK9 interacts with endogenous BRCA1 and BARD1 mediated by their RING finger and BRCT domains, and describe CDK9 ionizing radiation-induced foci (IRIF) formation and its co-localization with BRCA1 in DNA damage sites. Cells lacking CDK9 are characterized by an altered γ-H2AX foci dynamics after DNA damage, a reduced efficiency in HR but not in NHEJ repair, failure to form BRCA1 and RAD51 IRIF and increased sensitivity to genotoxic agents. These data indicate that CDK9 is a player in the DDR and is consistent with its participation in HR pathway by modulating BRCA1 response.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | - Vanessa C Fernandes
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | - Thiago T Gomes
- b Instituto Federal do Rio de Janeiro - IFRJ , Rio de Janeiro , Brazil
| | - Renato S Carvalho
- c Faculdade de Farmácia - Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | | | - Alvaro N Monteiro
- d Cancer Epidemiology Program , H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Marcelo A Carvalho
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil.,b Instituto Federal do Rio de Janeiro - IFRJ , Rio de Janeiro , Brazil
| |
Collapse
|
30
|
Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med Chem 2016; 8:2047-2076. [DOI: 10.4155/fmc-2016-0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulation of the cell cycle is a common feature in human cancer. The inhibition of cyclin-dependent kinases (CDKs), which play a crucial role in control of the cell cycle, has always been one of the most promising areas in cancer chemotherapy. This review first summarizes the biology of CDKs and then focuses on the recent advances in both broad-range and selective CDK inhibitors during the last 5 years. The design rationale, structural optimization and structure–activity relationships analysis of these small molecules have been discussed in detail and the key interactions with the amino-acid residues of the most important compounds are highlighted. Future perspectives for CDKs inhibitors will be defined in the development of highly selective CDK inhibitors, an accurate knowledge of gene control mechanism and further predictive biomarker research.
Collapse
|
31
|
Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. J Med Chem 2016; 59:8667-8684. [PMID: 27171036 PMCID: PMC5636177 DOI: 10.1021/acs.jmedchem.6b00150] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Cyclin dependent kinase (CDK) inhibitors
have been the topic of intense research for nearly 2 decades due to
their widely varied and critical functions within the cell. Recently
CDK9 has emerged as a druggable target for the development of cancer
therapeutics. CDK9 plays a crucial role in transcription regulation;
specifically, CDK9 mediated transcriptional regulation of short-lived
antiapoptotic proteins is critical for the survival of transformed
cells. Focused chemical libraries based on a plethora of scaffolds
have resulted in mixed success with regard to the development of selective
CDK9 inhibitors. Here we review the regulation of CDK9, its cellular
functions, and common core structures used to target CDK9, along with
their selectivity profile and efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Margaret A Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - John Victor Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| |
Collapse
|