1
|
Yang B, Yuan K, Lu M, El-Kott AF, Negm S, Sun QP, Yang L. Anti-cancer, Anti-collagenase and Anti-elastase Potentials of Some Natural Derivatives: In vitro and in silico Studies. J Oleo Sci 2023; 72:557-570. [PMID: 37121681 DOI: 10.5650/jos.ess22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The anti-cancer activities of the compounds were evaluated against KYSE-150, KYSE-30, and KYSE-270 cell lines and also on investigated esophageal line HET 1 A as a standard. Modified inhibitory impact on enzymes of collagenase and elastase were used Thring and Moon methods, respectively. Among both compounds, both of them recorded impact on cancer cells being neutral against the control, both had IC50 lower than 100 µM and acted as a potential anticancer drug. The chemical activities of Skullcapflavone I and Skullcapflavone II against elastase and collagenase were investigated utilizing the molecular modeling study. IC50 values of Skullcapflavone I and Skullcapflavone II on collagenase enzyme were obtained 106.74 and 92.04 µM and for elastase enzyme were 186.70 and 123.52 µM, respectively. Anticancer effects of these compounds on KYSE 150, KYSE 30, and KYSE 270 esophageal cancer cell lines studied in this work. For Skullcapflavone I, IC50 values for these cell lines were obtained 14.25, 19.03, 25.10 µM, respectively. Also, for Skullcapflavone II were recorded 20.42, 34.17, 22.40 µM, respectively. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (CD44, EGFR, and PPARγ) in the mentioned cell lines were assessed using the molecular docking calculations. The calculations showed the possible interactions and their characteristics at an atomic level.
Collapse
Affiliation(s)
- Binfeng Yang
- Department of Medical Oncology, Suzhou Ninth People's Hospital·Suzhou Ninth Hospital Affiliated to Soochow University
| | - Kaisheng Yuan
- Department of Gastroenterology, People's Hospital of Hongze District
| | - Ming Lu
- Department of General Surgery-Gastrointestinal Surgery JiLin Central Hospital
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, College of Science, Damanhour University
| | - Sally Negm
- Department of Life Sciences, Faculty of Science and Art Mahail, King Khalid University
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health
| | - Qiu Ping Sun
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| | - Lu Yang
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Department of Comprehensive Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| |
Collapse
|
2
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
3
|
Zhao M, Jin X, Chen Z, Zhang H, Zhan C, Wang H, Wang Q. Weighted Correlation Network Analysis of Cancer Stem Cell-Related Prognostic Biomarkers in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221117003. [PMID: 35899307 PMCID: PMC9340319 DOI: 10.1177/15330338221117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The role of cancer stem cells in esophageal squamous
cell carcinoma (ESCC) remains unclear. Methods: The mRNA stemness
index (mRNAsi) of 179 ESCC patients (GSE53625) was calculated using a machine
learning algorithm based on their mRNA expression. Stemness-related genes were
identified by weighted correlation network analysis (WGCNA) and LASSO
regression, whose associations with mutation status, immune cell infiltrations,
and potential compounds were also analyzed. The role of these genes in
proliferation and their expressions was assessed in ESCC cell lines and 112
samples from our center. Results: The ESCC samples had
significantly higher mRNAsi than the normal tissues. Patients with high mRNAsi
exhibited higher worse OS. Seven stemness-related genes were identified by WGCNA
and LASSO regression, based on which a risk-predicted score model was
constructed. Among them, CST1, CILP, PITX2, F2RL2, and RIOX1 were favorable for
OS, which were adverse for DPP4 and ZFHX4 in the GSE53625 dataset. However,
RIOX1 was unfavorable for OS in patients from our center. In vitro assays showed
that CST1, CILP, PITX2, F2RL2, and RIOX1 were pro-proliferated, which were
opposite for DDP4 and ZFHX4. In addition, SMARCA4, NOTCH3, DNAH5, and KALRN were
more mutated in the low-score group. The low-score group had significantly more
memory B cells, monocytes, activated NK cells, and Tregs and less macrophages
M2, resting mast cells, and resting dendritic cells. Conclusions:
Seven stemness-related genes are significantly related to the prognosis, gene
mutations, and immune cell infiltration of ESCC. Some potential anticancer
compounds may be favorable for OS.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xing Jin
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Luta G, Butura M, Tiron A, Tiron CE. Enhancing Anti-Tumoral Potential of CD-NHF by Modulating PI3K/Akt Axis in U87 Ex Vivo Glioma Model. Int J Mol Sci 2021; 22:ijms22083873. [PMID: 33918086 PMCID: PMC8070499 DOI: 10.3390/ijms22083873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. METHODS Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. RESULTS Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. CONCLUSIONS Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.
Collapse
|
5
|
Luan S, Zeng X, Zhang C, Qiu J, Yang Y, Mao C, Xiao X, Zhou J, Zhang Y, Yuan Y. Advances in Drug Resistance of Esophageal Cancer: From the Perspective of Tumor Microenvironment. Front Cell Dev Biol 2021; 9:664816. [PMID: 33816512 PMCID: PMC8017339 DOI: 10.3389/fcell.2021.664816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance represents the major obstacle to get the maximum therapeutic benefit for patients with esophageal cancer since numerous patients are inherently or adaptively resistant to therapeutic agents. Notably, increasing evidence has demonstrated that drug resistance is closely related to the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic and ever-changing complex biological network whose diverse cellular and non-cellular components influence hallmarks and fates of tumor cells from the outside, and this is responsible for the development of resistance to conventional therapeutic agents to some extent. Indeed, the formation of drug resistance in esophageal cancer should be considered as a multifactorial process involving not only cancer cells themselves but cancer stem cells, tumor-associated stromal cells, hypoxia, soluble factors, extracellular vesicles, etc. Accordingly, combination therapy targeting tumor cells and tumor-favorable microenvironment represents a promising strategy to address drug resistance and get better therapeutic responses for patients with esophageal cancer. In this review, we mainly focus our discussion on molecular mechanisms that underlie the role of TME in drug resistance in esophageal cancer. We also discuss the opportunities and challenges for therapeutically targeting tumor-favorable microenvironment, such as membrane proteins, pivotal signaling pathways, and cytokines, to attenuate drug resistance in esophageal cancer.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajun Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyi Mao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology 2020; 53:470-477. [PMID: 33143904 DOI: 10.1016/j.pathol.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023]
Abstract
Nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA) and the common neurotrophin receptor (NGFR/p75NTR), are increasingly implicated in cancer progression, but their clinicopathological significance in oesophageal cancer is unclear. In this study, the expression of NGF, NTRK1 and NGFR were analysed by immunohistochemistry in a cohort of 303 oesophageal cancers versus 137 normal adjacent oesophageal tissues. Immunostaining was digitally quantified and compared to clinicopathological parameters. NGF and NGFR staining were found in epithelial cells and at similar levels between oesophageal cancers and normal oesophageal tissue. NGFR staining was slightly increased with grade (p=0.0389). Interestingly, NTRK1 staining was markedly higher in oesophageal squamous cell carcinoma (OR 2.31, 95%CI 1.13-4.38, p<0.0001) and significantly lower in adenocarcinoma (OR 0.50, 95%CI 0.44-0.63, p<0.0001) compared to normal oesophageal tissue. In addition, NTRK1 staining was decreased in grade 2 and grade 3 (OR 0.51, 95%CI 0.21-1.40, p<0.0001) compared to grade 1, suggesting a preferential involvement of this receptor in the more differentiated forms of oesophageal carcinomas. Together, these data point to NTRK1 as a biomarker and a candidate therapeutic target in oesophageal squamous cell carcinoma.
Collapse
|
7
|
Tiron A, Ristescu I, Postu PA, Tiron CE, Zugun-Eloae F, Grigoras I. Long-Term Deleterious Effects of Short-term Hyperoxia on Cancer Progression-Is Brain-Derived Neurotrophic Factor an Important Mediator? An Experimental Study. Cancers (Basel) 2020; 12:cancers12030688. [PMID: 32183322 PMCID: PMC7140073 DOI: 10.3390/cancers12030688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC). We hypothesized that high oxygen exposure, even of short duration, may have long-term effects on cancer growth. Considering that hyperoxic exposure results in reactive oxygen species (ROS) formation, increased oxidative stress and increased Brain-Derived Neurotrophic Factor (BDNF) expression, BDNF may mediate hyperoxia effects offering cancer cells a survival advantage by increased angiogenesis and epithelial mesenchymal transition (EMT). Human breast epithelial MCF10A, human MDA-MB-231 and murine 4T1 TNBC were investigated in 2D in vitro system. Cells were exposed to normoxia or hyperoxia (40%, 60%, 80% O2) for 6 h. We evaluated ROS levels, cell viability and the expression of BDNF, HIF-1α, VEGF-R2, Vimentin and E-Cadherin by immunofluorescence. The in vivo model consisted of 4T1 inoculation in Balb/c mice and tumor resection 2 weeks after and 6 h exposure to normoxia or hyperoxia (40%, 80% O2). We measured lung metastases and the same molecular markers, immediately and 4 weeks after surgery. The in vitro study showed that short-term hyperoxia exposure (80% O2) of TNBC cells increases ROS, increases BDNF expression and that promotes EMT and angiogenesis. The in vivo data indicates that perioperative hyperoxia enhances metastatic disease and this effect could be BDNF mediated.
Collapse
Affiliation(s)
- Adrian Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
| | - Irina Ristescu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Paula A. Postu
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
| | - Crina E. Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
- Correspondence:
| | - Florin Zugun-Eloae
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
- Department of Immunology, School of Medicine, “Grigore T Popa” University of Medicine and Pharmacy, 700400 Iasi, Romania
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
8
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
CD271 is a negative prognostic factor and essential for cell proliferation in lung squamous cell carcinoma. J Transl Med 2019; 99:1349-1362. [PMID: 31019292 DOI: 10.1038/s41374-019-0246-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Squamous cell carcinoma is a major type of cancer in the lung. While several therapeutic target molecules for lung adenocarcinoma have been identified, little is known about lung squamous cell carcinoma (LSCC). We recently reported that CD271 (p75 neurotrophin receptor) serves as a marker for tumor initiation and is a key regulator of cell proliferation in hypopharyngeal squamous cell carcinoma. In this study, we found that CD271 was also expressed in squamous cell carcinoma, but not in adenocarcinoma, of several tissues, including the lung, and the expression of CD271 was associated with a poor prognosis in LSCC. To examine CD271's role in LSCC, we established xenograft cell lines from LSCC patients. Within the sorted live LSCC cell population, the CD271high cells were primarily cycling through the G2/M phase, while the CD271low cells were mostly in the G0 phase. CD271 knockdown in the LSCC cells completely suppressed their proliferation and tumor-formation capability, and increased their cell-cycle arrest in the G0 phase. In the CD271-knockdown cells, ERK-phosphorylation was decreased, while no change was observed in the IκBα-phosphorylation, p65-phosphorylation, or Akt-phosphorylation. Treatment with the MEK inhibitor U0126 decreased the LSCC cells' proliferation capability. Microarray analysis revealed that CD271 knockdown attenuated the RAS-related pathways. The knockdown of TrkB, which forms a heterodimer with CD271 and accelerates its downstream signaling, partially inhibited the LSCC cell proliferation. These results indicated that LSCC exclusively depends on CD271 for cell proliferation, in part through ERK-signaling activation, and CD271 is a promising target for LSCC therapy.
Collapse
|
10
|
Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett 2019; 458:21-28. [PMID: 31125642 DOI: 10.1016/j.canlet.2019.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Esophageal cancer (EC) has been a leading cause of cancer death worldwide in part due to late detection and lack of precision treatment. EC includes two major malignancies, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Recent studies reveal that ESCC and EAC have distinct cell of origin and contain cancer stem cells (also known as tumor initiating cells) expressing different cell surface markers. These biomarkers have potentially important values for both early detection and finding effective therapy. In this review we summarize the updated findings for cell of origin and provide an overview of cancer cell biomarkers that have been tested for ESCC and EAC. In addition, we also discuss recent progress in the study of molecular mechanisms leading to these malignancies.
Collapse
|
11
|
Teixeira Buck MG, Souza Cabral Tuci P, Perillo Rosin FC, Pinheiro Barcessat AR, Corrêa L. Immunohistochemistry profile of p75 neurotrophin receptor in oral epithelial dysplasia and oral squamous cell carcinoma induced by 4-nitroquinoline 1-oxide in rats. Arch Oral Biol 2018; 96:169-177. [PMID: 30268558 DOI: 10.1016/j.archoralbio.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The 4-nitroquinoline 1-oxide (4-NQO) model for carcinogenesis has been used to investigate cancer stem cells (CSC), but no study has addressed the role of the p75 neurotrophin receptor (p75NTR) in 4-NQO-induced oral dysplasia and oral squamous cell carcinoma (OSCC). The aim of this study was to evaluate the immunohistochemistry profile of the p75NTR during 4-NQO-induced oral carcinogenesis in rats and to verify whether this profile has an association with proliferating cell nuclear antigen (PCNA) immunolabeling. DESIGN For 28 weeks, rats were exposed to 4-NQO, which was diluted in the drinking water. After 3, 5, 7, 16, and 28 weeks, the animals were euthanized and their tongues were histologically analyzed using p75NTR and PCNA immunolabeling. RESULTS In animals without 4-NQO exposure, the p75NTR and PCNA were expressed only in the basal epithelial layer and in a clustered manner. The oral epithelium showed dysplasia and a significant increase in the number of p75NTR- and PCNA-positive cells, which were localized mainly in the basal and suprabasal epithelial layers during weeks 5-16 of 4-NQO exposure. When the epithelium invaded the lamina propria and well-differentiated OSCC began, the p75NTR-positive cell frequency drastically decreased in epithelial cords and nests, showing a negative correlation with PCNA expression. p75NTR immunolabeling during 4-NQO-induced carcinogenesis was similar to that described for human head and neck dysplasia and neoplasia. CONCLUSIONS p75NTR immunolabeling observed in 4-NQO-induced oral dysplastic and OSCC lesions were related to the early phases of oral carcinogenesis and may help predict cell dysplasia and malignant transformation.
Collapse
Affiliation(s)
- Marina Gabriela Teixeira Buck
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Priscila Souza Cabral Tuci
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Flávia Cristina Perillo Rosin
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Ana Rita Pinheiro Barcessat
- Biological Health Sciences Department, School of Nursing, Federal University of Amapá, Rod. Juscelino Kubitschek, KM-02 Jardim Marco Zero Macapá, 68.903-419 Macapá, AP, Brazil
| | - Luciana Corrêa
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, Starr TK, Knights D, Blekhman R. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet 2018; 14:e1007376. [PMID: 29924794 PMCID: PMC6028121 DOI: 10.1371/journal.pgen.1007376] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/02/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.
Collapse
Affiliation(s)
- Michael B. Burns
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail: (MBB); (RB)
| | - Emmanuel Montassier
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- MiHAR lab, Université de Nantes, 44000 Nantes, France
| | - Juan Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sambhawa Priya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David E. Niccum
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy K. Starr
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (MBB); (RB)
| |
Collapse
|
13
|
Nerve Growth Factor (NGF)-Receptor Survival Axis in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19061771. [PMID: 29904026 PMCID: PMC6032238 DOI: 10.3390/ijms19061771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/27/2023] Open
Abstract
Neurotrophins and their receptors might regulate cell survival in head and neck squamous cell carcinoma (HNSCC). mRNA expression of nerve growth factor (NGF) and protein synthesis of high (NTRK1) and low affinity neurotrophin (p75 neurotrophin receptor; NTR) receptors were investigated in normal oral mucosa and in HNSCC. HNSCC cell lines were treated with mitomycin C (MMC) and cell survival was investigated. Normal and malignant epithelial cells expressed NGF mRNA. NTRK1 was upregulated in 80% of HNSCC tissue, and 50% of HNSCC samples were p75NTR positive. Interestingly, in HNSCC tissue: NTRK1 and p75NTR immunohistochemical reactions were mutually exclusive. Detroit 562 cell line contained only p75NTR, UPCI-SCC090 cells synthesized NTRK1 but not p75NTR and SCC-25 culture had p75NTR and NTRK1 in different cells. NGF (100 ng/mL) significantly improved (1.4-fold) the survival of cultured UPCI-SCC090 cells after MMC-induced cell cycle arrest, while Detroit 562 cells with high levels of p75NTR did not even get arrested by single short MMC treatment. p75NTR in HNSCC might be related with NGF-independent therapy resistance, while NTRK1 might transduce a survival signal of NGF and contribute in this way to improved tumor cell survival after cell cycle arrest.
Collapse
|
14
|
Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, Li X, Zhang X, Gong T, Guo J, Zhang X, Che S. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget 2018; 7:57050-57065. [PMID: 27489353 PMCID: PMC5302972 DOI: 10.18632/oncotarget.10959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/16/2016] [Indexed: 12/19/2022] Open
Abstract
High-risk human papillomavirus (HPV), especially HPV16, correlates with cancerogenesis of human esophageal squamous cell carcinoma (ESCC) and we have reported that HPV16 related with a poor prognosis of ESCC patients in China. We aim to investigate the potential role and mechanism of HPV16 in ESCC development and progress. Our following researches demonstrated that ESCC cells which were stably transfected by HPV16 E6-E7 lentiviral vector showed a remarkable cancer stem-like cells (CSCs) phenotype, such as: migration, invasion, spherogenesis, high expression of CSCs marker in ESCC---p75NTR, chemoresistance, radioresistance, anti-apoptosis ability in vitro and cancerogenesis in vivo. HPV16 E6-E7 induced PI3K/Akt signaling pathway activation and this affect could be effectively inhibited by LY294002, a specific PI3K inhibitor. It was also indicated that the inhibition of PI3K/Akt signaling pathway by PI3K and Akt siRNA reverse the effect which induced by HPV16 E6-E7 in ESCC cells. Taken together, the present study demonstrates that HPV16 E6-E7 promotes CSCs phenotype in ESCC cells through the activation of PI3K/Akt signaling pathway. Targeting the PI3K/Akt signaling pathway in HPV16 positive tissues is an available therapeutic for ESCC patients.
Collapse
Affiliation(s)
- Ruxing Xi
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Shupei Pan
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Xin Chen
- Department of Radiotherapy, People's Hospital of Shaanxi Province, Xi'an, Shaan Xi, 710068, P.R.China
| | - Beina Hui
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Li Zhang
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Shenbo Fu
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Xiaolong Li
- Department of Radiotherapy, The People's Liberation Army 323 Hospital, Xi'an, Shaan Xi, 710054, P.R.China
| | - Xuanwei Zhang
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Tuotuo Gong
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Jia Guo
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Xiaozhi Zhang
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| | - Shaomin Che
- Department of Radiotherapy, The First Hospital Affiliated of Xi'an Jiao Tong University, Xi'an, Shaan Xi, 710061, P.R.China
| |
Collapse
|
15
|
Kojima H, Okumura T, Yamaguchi T, Miwa T, Shimada Y, Nagata T. Enhanced cancer stem cell properties of a mitotically quiescent subpopulation of p75NTR-positive cells in esophageal squamous cell carcinoma. Int J Oncol 2017; 51:49-62. [PMID: 28534989 PMCID: PMC5467780 DOI: 10.3892/ijo.2017.4001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mitotically quiescent cancer stem cells (CSCs) possess higher malignant potential than other CSCs, indicating their higher contribution to therapeutic resistance than that of other CSCs. In esophageal squamous cell carcinoma (ESCC), p75 neurotrophin receptor (p75NTR) is expressed in a candidate CSC population showing high tumorigenicity and chemoresistance. In the present study, we isolated and characterized quiescent CSCs population in ESCC based on p75NTR expression and cell cycle status. Expression of p75NTR and Ki-67 in ESCC cell lines (KYSE cells) and surgically resected ESCC specimens was detected by performing immunocytochemical analysis. p75NTR-positive KYSE cells were fractionated into quiescent and proliferating cells by performing flow cytometry with a fluorescent DNA-staining dye to determine their CSC phenotype. Immunocytochemical analysis showed that 21.8 and 36.5% of the p75NTR-positive cells were Ki-67-negative (G0), which accounted for 11.4 and 15.7% of cells in KYSE-30 and KYSE-140 cell lines, respectively. Flow cytometric cell sorting showed that p75NTR-positive cells in the G0-G1 phase (p75NTR-positive/G0-1 cells) but not in the S-G2-M phase (p75NTR-positive/S-G2-M cells) showed strong expression of stem cell-related genes Nanog, BMI-1, and p63; high colony formation ability; high tumorigenicity in a mouse xenograft model; and strong chemoresistance against cisplatin because of the expression of drug resistance genes ABCG2 and ERCC1. Label-retention assay showed that 3.4% p75NTR-positive cells retained fluorescent cell-tracing dye, but p75NTR-negative cells did not. Immunohistochemical analysis of ESCC specimens showed p75NTR expression in 39 of 95 (41.1%) patients, with a median of 13.2% (range, 3.0-80.1%) p75NTR-positive/Ki-67-negative cells, which were found to be associated with poorly differentiated histology. Our results suggest that p75NTR-positive/G0-1 cells represent quiescent CSCs in ESCC and indicate that these cells can be used as targets to investigate molecular processes regulating CSC phenotype and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Kojima
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Takeshi Miwa
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Liu Q, Cui X, Yu X, Bian BSJ, Qian F, Hu XG, Ji CD, Yang L, Ren Y, Cui W, Zhang X, Zhang P, Wang JM, Cui YH, Bian XW. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer 2017; 16:81. [PMID: 28431580 PMCID: PMC5399850 DOI: 10.1186/s12943-017-0650-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is highly malignant with highly invasive and metastatic capabilities and poor prognosis. It is believed that the ESCC cancer stem-like cells (ECSLCs) are critical for tumorigenicity, invasion and metastasis of ESCC. However, the properties of ECSLCs vary with different markers used in isolation, so that new and more effective markers of ECSLCs need to be identified. This study aimed to estimate the potentiality of Cripto-1 (CR-1) as an ECSLC surface marker and investigate the clinical significance of CR-1 expression in ESCC. Methods ESCC cells with CR-1 high or CR-1low were obtained by flow cytometry then their self-renewal capability and tumorigenicity were compared by colony and limiting dilution sphere formation analysis in vitro and xenograft in nude mice in vivo, respectively. Knockdown of CR-1 expression in ESCC cells was conducted with short hairpin RNA. Cell migration and invasion were examined by scratch test and matrigel transwell assay, respectively. Metastatic capability of ESCC cells was assayed by a mouse tail vein metastasis model. The levels of CR-1 expression in cancerous and paired adjacent normal tissues were assessed by IHC and qRT-RCR. Results CR-1high subpopulation of ESCC cells isolated by FACS expressed high level of genes related to stemness and epithelial-mesenchymal transition (EMT), and possessed high capacities of self-renewal, tumorigenesis, invasion and metastasis. Suppression of CR-1 expression significantly reduced the expression of stemness- and EMT-related genes and the capabilities of self-renewal in vitro, tumorigenicity and metastasis in vivo in ESCC cells. In the clinical ESCC specimens, the expression levels of CR-1 in cancerous tissues were positively correlated to TNM stage, invasive depth, and lymph node metastasis. Cox regression analysis indicated that CR-1 was an independent indicator of prognosis. The expression of CR-1 was found overlapping with aldehyde dehydrogenase 1A1 (ALDH1A1), an intracellular marker for ESCLCs, in ESCC cell lines and specimens. Conclusions CR-1 is a functional and cell surface ECSLC marker, and an independent prognostic indicator as well as a potential therapeutic target for ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0650-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.,Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Yu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bai-Shi-Jiao Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Gang Hu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Cheng-Dong Ji
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lang Yang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong Ren
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Clinical Relevance of a Candidate Stem Cell Marker, p75 Neurotrophin Receptor (p75NTR) Expression in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:247-254. [PMID: 28560678 DOI: 10.1007/978-3-319-55947-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in its diagnosis and multimodal therapies, the prognosis of esophageal squamous cell carcinoma (ESCC) patients remains poor, because of high incidences of metastasis . Recent reports suggested that circulating tumor stem cells (CTSCs), rather than circulating tumor cells (CTCs), were more accurate diagnostic marker for metastasis, because tumor stem cells or cancer stem cells (CSCs) are more responsible for metastasis through processes such as epithelial mesenchymal transition (EMT) and tumor initiation. A neurotrophin receptor p75 (p75NTR) is expressed in a candidate CSC s in ESCC, which possess enhanced tumorigenicity along with strong expression of EMT-related genes. Our recent report using two-color flow cytometry demonstrated that CTC counts based on a combined expression of epithelial cell adhesion molecule (EpCAM) and p75NTR was significantly higher in peripheral blood samples of ESCC patients than healthy controls. In addition, EpCAM + p75NTR+, but not EpCAM + p75NTR- CTC counts, correlated with clinically diagnosed distant metastasis and pathological venous invasion in surgically resected primary ESCC tumors. Malignant cytology of the isolated EpCAM + p75NTR+ cells was microscopically confirmed as well. These results demonstrated that EpCAM + p75NTR+ CTC count was a more accurate diagnostic marker than EpCAM+ CTC count, suggesting the highly metastatic potential of CTCs with p75NTR expression.Investigation using the isolated EpCAM + p75NTR+ CTCs to assess their stem cell properties may shed light on their roles in tumor metastasis in ESCC.Further investigations based on large-scale prospective studies with long term follow up may provide us with evidences for its clinical use.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
18
|
Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Flow Cytometric Detection of Circulating Tumor Cells Using a Candidate Stem Cell Marker, p75 Neurotrophin Receptor (p75NTR). Methods Mol Biol 2017; 1634:211-217. [PMID: 28819854 DOI: 10.1007/978-1-4939-7144-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The most widely studied detection for circulating tumor cells (CTCs) in peripheral blood of cancer patients has been based on immunomagnetic enrichment using antibodies against epithelial cell adhesion molecule (EpCAM), which is overexpressed in epithelial cells. A neurotrophin receptor p75 (p75NTR) is expressed in a candidate stem cell fraction in esophageal squamous cell carcinoma (ESCC), which shows significantly higher colony formation, enhanced tumor formation in mice, along with strong expression of epithelial mesenchymal transition-related genes. Here, we describe a method to detect CTCs in ESCC based on the combined expression of EpCAM and p75NTR using flow cytometry, demonstrating the feasibility of expression analysis of multiple cell surface markers in viable cells.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Detection of circulating tumor cells by p75NTR expression in patients with esophageal cancer. World J Surg Oncol 2016; 14:40. [PMID: 26897248 PMCID: PMC4761417 DOI: 10.1186/s12957-016-0793-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background The p75 neurotrophin receptor (p75NTR) is a cancer stem cell (CSC) marker in esophageal squamous cell carcinoma (ESCC). This study aimed to assess the use of p75NTR in detecting circulating tumor cells (CTCs) in ESCC. Methods Peripheral blood mononuclear cell expression of epithelial cell adhesion molecule (EpCAM) and p75NTR was detected in 23 ESCC patients (13 received chemo- or chemoradiotherapy and 10 received curative surgery) and 10 healthy controls by flow cytometry. Results EpCAM + p75NTR+ cell counts (average ± SD) were significantly higher in patients (n = 23, 16.0 ± 18.3) compared to controls (n = 10, 0.4 ± 0.9, p = 0.013). The sensitivity and specificity to differentiate ESCC patients from controls were 78.3 and 100 % (cut-off value 4.0), respectively. EpCAM + p75NTR+, but not EpCAM + p75NTR− cell counts, correlated with clinically diagnosed distant metastasis (n = 13, p = 0.006) and pathological venous invasion in resected primary tumors (n = 10, p = 0.016). Malignant cytology was microscopically confirmed in isolated EpCAM + p75NTR+ cells with immunocytochemical double staining. Conclusions p75NTR is suggested to be a useful marker for clinically significant CTCs, which exhibit highly metastatic features in ESCC.
Collapse
|