1
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Tsai KY, Wei PL, Lee CC, Makondi PT, Chen HA, Chang YY, Liu DZ, Huang CY, Chang YJ. 2,3,5,4'-Tetrahydroxystilbene (TG1), a Novel Compound Derived from 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), Inhibits Colorectal Cancer Progression by Inducing Ferroptosis, Apoptosis, and Autophagy. Biomedicines 2023; 11:1798. [PMID: 37509438 PMCID: PMC10376355 DOI: 10.3390/biomedicines11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the deadliest cancers worldwide and long-term survival is not guaranteed in metastatic disease despite current multidisciplinary therapies. A new compound 2,3,5,4'-Tetrahydroxystilbene (TG1), derived from THSG (2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside), has been developed, and its anticancer ability against CRC is verified in this study. METHODS HCT116, HT-29, and DLD-1 were treated with TG1 and the IC50 was measured using a sulforhodamine B assay. A Xenograft mouse model was used to monitor tumor growth. Apoptosis and autophagy, induced by TG1 in CRC cells, were examined. RNA-sequencing analysis of CRC cells treated with TG1 was performed to discover underlying pathways and mechanisms. RESULTS The results demonstrated that treatment with TG1 inhibited CRC proliferation in vitro and in vivo and induced apoptotic cell death, which was confirmed by Annexin V-FITC/PI staining and Western blotting. Additionally, TG1 treatment increased the level of autophagy in cells. RNA-sequencing and GSEA analyses revealed that TG1 was associated with MYC and the induction of ferroptosis. Furthermore, the ferroptosis inhibitor Bardoxolone abrogated the cytotoxic effect of TG1 in CRC cells, indicating that ferroptosis played a crucial role in TG1-induced cytotoxicity. CONCLUSIONS These findings suggest that TG1 might be a potential and potent compound for clinical use in the treatment of CRC by inhibiting proliferation and inducing ferroptosis through the MYC pathway.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Yao-Yuan Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Medical and Pharmaceutical Industry Technology and Development Center, New Taipei 24888, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
3
|
Dietary Flavonoids Alleviate Inflammation and Vascular Endothelial Barrier Dysfunction Induced by Advanced Glycation End Products In Vitro. Nutrients 2022; 14:nu14051026. [PMID: 35268006 PMCID: PMC8912803 DOI: 10.3390/nu14051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to compare the protective effects of three dietary flavonoids (apigenin-7-O-glucoside (A7G), isorhamnetin-3-O-rutinoside (I3R), and cyanidin-3-O-glucoside (C3G)) on advanced glycation end products (AGEs)-induced inflammation and vascular endothelial dysfunction. Furthermore, the potential mechanisms of varied effects of those three dietary flavonoids were analyzed by molecular docking analysis. Results showed that C3G (40 μM) achieved the best inhibition on inflammatory cytokines (TNF-α, IL-1β, and IL-6) in AGEs-induced RAW264.7 cells, followed by I3R, and A7G was the weakest. The molecular docking results also showed that C3G exhibited the closest binding with the receptor for AGE. However, I3R (40 μM) demonstrated the best effect in improving endothelial dysfunction in AGEs-induced EA.hy926 cells, followed by C3G, and A7G was the weakest, as evidenced by the molecular docking results of flavonoids with profilin-1. This work may provide knowledge and helpful suggestions regarding the benefits of dietary flavonoids in diabetic vascular complications.
Collapse
|
4
|
Wang YJ, Lin PY, Hsieh SL, Kirankumar R, Lin HY, Li JH, Chen YT, Wu HM, Hsieh S. Utilizing Edible Agar as a Carrier for Dual Functional Doxorubicin-Fe 3O 4 Nanotherapy Drugs. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1824. [PMID: 33917109 PMCID: PMC8067861 DOI: 10.3390/ma14081824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to use agar as a multifunctional encapsulating material to allow drug and ferromagnetism to be jointly delivered in one nanoparticle. We successfully encapsulated both Fe3O4 and doxorubicin (DOX) with agar as the drug carrier to obtain DOX-Fe3O4@agar. The iron oxide nanoparticles encapsulated in the carrier maintained good saturation of magnetization (41.9 emu/g) and had superparamagnetism. The heating capacity test showed that the specific absorption rate (SAR) value was 18.9 ± 0.5 W/g, indicating that the ferromagnetic nanoparticles encapsulated in the gel still maintained good heating capacity. Moreover, the magnetocaloric temperature could reach 43 °C in a short period of five minutes. In addition, DOX-Fe3O4@agar reached a maximum release rate of 85% ± 3% in 56 min under a neutral pH 7.0 to simulate the intestinal environment. We found using fluorescent microscopy that DOX entered HT-29 human colon cancer cells and reduced cell viability by 66%. When hyperthermia was induced with an auxiliary external magnetic field, cancer cells could be further killed, with a viability of only 15.4%. These results show that agar is an efficient multiple-drug carrier, and allows controlled drug release. Thus, this synergic treatment has potential application value for biopharmaceutical carrier materials.
Collapse
Affiliation(s)
- Yu-Jyuan Wang
- Department of Nursing, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan; (S.-L.H.); (J.-H.L.)
| | - Rajendranath Kirankumar
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Hsin-Yi Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Jia-Huei Li
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan; (S.-L.H.); (J.-H.L.)
| | - Ya-Ting Chen
- College of Hydrosphere Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan;
| | - Hao-Ming Wu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Zhang Y, Jiang M, Cui BW, Jin CH, Wu YL, Shang Y, Yang HX, Wu M, Liu J, Qiao CY, Zhan ZY, Ye H, Zheng GH, Jin Q, Lian LH, Nan JX. P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: A new strategy towards macrophage-hepatocyte crosstalk. Br J Pharmacol 2020; 177:2793-2811. [PMID: 32022249 DOI: 10.1111/bph.15007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulating macrophage-hepatocyte crosstalk through P2X7 receptors has led to new pharmacological strategies to reverse alcoholic hepatosteatosis. We investigated how tetrahydroxystilbene glucoside (2354glu), isolated from Polygonum multiflorum, modulates macrophage-hepatocyte crosstalk during alcoholic hepatosteatosis. EXPERIMENTAL APPROACH A model of alcoholic hepatosteatosis was established by giving ethanol intragastrically to C57BL/6 mice. HepG2 cells were incubated in conditioned medium from LPS+ATP-activated THP-1 human macrophages with silenced or overexpressed P2X7 receptors. THP-1 macrophages or mouse peritoneal macrophages were pretreated with 2354glu for 1 hr prior to LPS+ATP stimulation. Western blots, RT-PCR and immunohistochemical analysis were used, along with over-expression and silencing of P2X7 receptors. KEY RESULTS Knockdown or overexpression of P2X7 receptors in THP-1 macrophages affected release of mature IL-1β and, subsequently, modulated lipid metabolism in HepG2 cells via the LKB-AMPK pathway. 2354glu ameliorated alcoholic hepatosteatosis in mice by regulating LKB1-AMPK-SREBP1 pathway and its target genes. Suppression of P2X7 receptor activation by 2354glu inhibited IL-1β release and reduced macrophage and neutrophil infiltration. In macrophages stimulated with LPS+ATP, expression of P2X7 receptors, caspase-1 and NF-κB, release of IL-1β, calcium influx and PI uptake were reduced by 2354glu. SIRT1-LKB1-AMPK-SREBP1 axis-mediated lipid accumulation in HepG2 cells was reduced when they were cultured with conditioned media from LPS+ATP-activated THP-1 macrophages pretreated with 2354glu. CONCLUSION AND IMPLICATIONS Modulation of P2X7 receptors in macrophages regulated lipid accumulation in hepatocytes during alcoholic hepatosteatosis. 2354glu might be a promising candidate that targets P2X7 receptors in macrophages interacting with hepatocytes during alcoholic hepatosteatosis.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Min Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ben-Wen Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Cheng Hua Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Shang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong-Xu Yang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jian Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Chun-Ying Qiao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zi-Ying Zhan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Huan Ye
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Guang-Hao Zheng
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Quan Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Yanbian University Hospital, Yanji, China
| |
Collapse
|
6
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|
7
|
Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene 2019; 726:144132. [PMID: 31669643 DOI: 10.1016/j.gene.2019.144132] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The NF-κB signaling pathway is a key regulator of CRC cell proliferation, apoptosis, angiogenesis, inflammation, metastasis, and drug resistance. Over-activation of the NF-κB pathway is a feature of colorectal cancer (CRC). While new combinatorial treatments have improved overall patient outcome; quality of life, cost of care, and patient survival rate have seen little improvement. Suppression of the NF-κB signaling pathway using biological or specific pharmacological inhibitors is a potential therapeutic approach in the treatment of colon cancer. This review summarizes the regulatory role of NF-κB signaling pathway in the pathogenesis of CRC for a better understanding and hence a better management of the disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Hsieh SL, Hsieh S, Lai PY, Wang JJ, Li CC, Wu CC. Carnosine Suppresses Human Colorectal Cell Migration and Intravasation by Regulating EMT and MMP Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:477-494. [PMID: 30909731 DOI: 10.1142/s0192415x19500241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carnosine is an endogenous dipeptide found in the vertebrate skeletal muscles that is usually obtained through the diet. To investigate the mechanism by which carnosine regulates the migration and intravasation of human colorectal cancer (CRC) cells, we used cultured HCT-116 cells as an experimental model in this study. We examined HCT-116 cell migratory and intravasive abilities and expression of epithelial-mesenchymal transition (EMT)-associated molecules and matrix metalloproteinases (MMPs) after carnosine treatment. The results showed that both migration and invasion were inhibited in cells treated with carnosine. We found significant decreases in Twist-1 protein levels and increases in E-cadherin protein levels in HCT-116 cells after carnosine exposure. Although plasminogen activator (uPA) and MMP-9 mRNA and protein levels were decreased, TIMP-1 mRNA and protein levels were increased. Furthermore, the cytosolic levels of phosphorylated I κ B (p-I κ B) and NF- κ B DNA-binding activity were reduced after carnosine treatment. These results indicate that carnosine inhibits the migration and intravasation of human CRC cells. The regulatory mechanism may occur by suppressing NF- κ B activity and modulating MMP and EMT-related gene expression in HCT-116 cells.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - ShuChen Hsieh
- † Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Po-Yu Lai
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Chun Li
- § Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
9
|
1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone [SE1] Inhibits MMP-9 Expression by Regulating NF-κB and MAPKs Signaling Pathways in HT1080 Human Fibrosarcoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5639486. [PMID: 30519264 PMCID: PMC6241244 DOI: 10.1155/2018/5639486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Hippocampus is a traditional medicine in China, which can be used for treating tumors, aging, fatigue, thrombosis, inflammation, hypertension, prostatic hyperplasia, and other diseases. 1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone [SE1] from seahorse (Hippocampus kuda Bleeler) has been shown to suppress proinflammatory responses. In the present study, SE1 potently inhibited gelatin digestion by MMP-9 induced by phorbol 12-myristate 13-acetate (PMA) and migration of human fibrosarcoma HT1080 cells in dose-dependent manner. Moreover, western blot analysis and immunofluorescence analysis have been studied on MAPKs (ERK1/2, p38 kinase and JNK) and NF-κB (p65 and IκB), which refer to the clear molecular mechanism. The results indicated that SE1 significantly suppressed the phosphorylation of mitogen-activated protein kinases (MAPK: p38 kinase and JNK) and NF-κB. Finally, molecular docking result showed SE1 interacts with TYR245 and HIS226 of MMP-9 by hydrogen bond and Pi-Pi bond to suppress MMP-9 activity. This data suggested that the SE1 may possess therapeutic and preventive potential for the treatment of MMP-9 related disorders.
Collapse
|
10
|
Shen J, Zhang Y, Shen H, Pan H, Xu L, Yuan L, Ding Z. The synergistic effect of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside combined with Adriamycin on MCF-7 breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4083-4094. [PMID: 30555223 PMCID: PMC6278706 DOI: 10.2147/dddt.s186028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective Breast cancer has been reported to be a serious disease and a threat to women's health. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) is a bioactive natural compound originating from Polygonum multiflorum Thunb., which has been shown to possess anti-inflammatory and antitumor properties. Adriamycin (ADM) is a chemotherapy agent used in tumor therapy that is limited by its side effects. However, little is known about the synergistic effect of THSG combined with ADM on breast cancer. This study seeks to investigate the effects of the combination of THSG plus ADM on MCF-7 breast cancer cells and to test the mechanisms involved. Materials and methods MTT assay was detected to determine cell viability. Furthermore, cell apoptosis was tested by flow cytometry and TUNEL assay. In addition, protein expression was measured by Western blot analysis. Results The individual treatment of THSG and ADM induced cell injury. Moreover, cotreatment further increased it, which the effect may be associated with the elevation of the apoptotic-related protein expression such as Bax/Bcl-2 and cleaved caspase-3/caspase-3. Lastly, our results also show the reduction of vascular endothelial growth factor/phosphatidylinositol 3-kinase/Akt protein expression in the individual or synergistic treatment. Conclusion Taken together, cotreatment of THSG and ADM may exert a synergistic reduction of cell injury via the inhibition of vascular endothelial growth factor/phosphatidylinositol 3-kinase/Akt pathway. Thus, THSG might possess potent anti-breast cancer effect with ADM.
Collapse
Affiliation(s)
- Jianfen Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China,
| | - Hui Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hua Pan
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Linna Yuan
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhiying Ding
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
11
|
Li W, Sun R, Zhou S, Ma J, Xie Y, Xu B, Long H, Luo K, Fang K. 2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside inhibits septic serum‑induced inflammatory injury via interfering with the ROS‑MAPK‑NF‑κB signaling pathway in pulmonary aortic endothelial cells. Int J Mol Med 2017; 41:1643-1650. [PMID: 29286092 DOI: 10.3892/ijmm.2017.3329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is characterized by injury to the microvasculature and the microvascular endothelial cells, leading to barrier dysfunction. However, the specific role of injury in septic endothelial barrier dysfunction remains to be elucidated. In the present study, it was hypothesized that endothelial cell inflammatory injury is likely required for barrier dysfunction under septic conditions in vitro. 2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside (TSG), a compound extracted from Chinese herbs, is able to inhibit the inflammatory injury of septic‑serum in endothelial cells. In the present study, cell viability was assayed by CCK‑8 method; mRNA and protein expression was identified by RT‑qPCR, western blot or Elisa, respectively and the production of reactive oxygen species was observed by a fluorescence microscope. The present study indicated that septic serum significantly decreased the cell viability of pulmonary aortic endothelial cells (PAECs) following co‑cultivation for 6 h, which occurred in a time‑dependent manner. TSG notably increased the viability of PAECs in a time‑ and concentration‑dependent manner. Further investigations revealed that septic serum increased the secretion of interleukin (IL)‑1β, IL‑6 and C‑reactive protein in PAECs, whereas pretreatment with TSG significantly decreased the secretion of these inflammatory factors. These data indicated that septic serum increased inflammatory injury to the PAECs, and TSG decreased this injury via the reactive oxygen species‑mitogen‑activated protein kinase‑nuclear factor‑κB signaling pathway.
Collapse
Affiliation(s)
- Wenqiang Li
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ruifang Sun
- Department of Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Sumei Zhou
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jinluan Ma
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yingguang Xie
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bingcan Xu
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Huibao Long
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Keqin Luo
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kuaifa Fang
- Emergency of ICU, Huiyang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
12
|
Chemopreventive Potential of 2,3,5,4'-Tetrahydroxystilbene-2-O- β-D-glucoside on the Formation of Aberrant Crypt Foci in Azoxymethane-Induced Colorectal Cancer in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3634915. [PMID: 29238715 PMCID: PMC5697369 DOI: 10.1155/2017/3634915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023]
Abstract
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) has been shown to have antioxidative and anti-inflammatory effects. Oxidative and inflammatory reactions are related to the development of colorectal carcinoma (CRC). In the present study, we characterized the preventive activities of THSG on colon carcinogenesis using the azoxymethane- (AOM-) mediated rat colon carcinogenesis model. F344 male rats were randomly divided into 5 groups (untreated and AOM model rats treated with or without THSG at 30, 150, or 250 mg/kg) after which the numbers of aberrant crypt foci (ACF) were assessed in the colon tissues of all rats. The expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), matrix metalloproteinase proteins (MMPs), and carcinoembryonic antigen (CEA) were measured as effective early predictors of CRC using western blot analysis. Treatment with THSG (150 or 250 mg/kg) induced a 50% reduction in total colonic ACF formation (P < 0.05). Furthermore, our results revealed a downregulation of CEA and NF-κB protein levels in the reduced number of ACF elicited by treatment with THSG, whereas levels of COX-2 and MMPs proteins were not changed. Collectively, THSG may be a promising natural lead compound or drug candidate for treating early phases of CRC.
Collapse
|
13
|
Jiao C, Gao F, Ou L, Yu J, Li M, Wei P, Miao F. Tetrahydroxy stilbene glycoside (TSG) antagonizes Aβ-induced hippocampal neuron injury by suppressing mitochondrial dysfunction via Nrf2-dependent HO-1 pathway. Biomed Pharmacother 2017; 96:222-228. [PMID: 28987946 DOI: 10.1016/j.biopha.2017.09.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022] Open
Abstract
Amyloid-beta peptide (Aβ) ranks as a pivotal cause of Alzheimer's disease (AD), a common devastating dementia form in elderly. Recent research corroborated the beneficial roles of tetrahydroxystilbene glucoside (TSG) in alleviating the learning and memory of AD model and aged mice. Unfortunately, the underlying mechanism remains poorly elucidated. Here, treatment with non-toxic TSG dose-dependently antagonized Aβ-induced cytotoxic death in hippocampal neuronal cells by increasing cell viability and decreasing cell apoptosis. Furthermore, TSG also alleviated cell oxidative stress injury in response to Aβ by attenuating lactate dehydrogenase (LDH) release, ROS levels and MDA leakage. Importantly, TSG administration abrogated Aβ-triggered loss of mitochondrial membrane potential (Δym), release of cytochrome c from mitochondrial to cytosol, increase in caspase-3 activity and pro-apoptotic protein Bax, and decrease in Bcl-2 protein, indicating that TSG could rescue mitochondrial dysfunctions of neuron cells under adverse Aβ condition. Subsequently, TSG induced the activation of Nrf2-HO-1 pathway. Importantly, blocking this pathway by si-Nrf2 transfection or HO-1 antagonist ZnPP notably muted the cytoprotective effects of TSG on neuronal cell cytotoxic injury upon Aβ stimulation. Together, this research substantiated a new mechanism that TSG protectively antagonized Aβ-induced hippocampal neuronal cell damage by restoring mitochondrial function via Nrf2-HO-1 pathway, implying a promising candidate against neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Chenli Jiao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Jinhua Yu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Feng Miao
- Department of Encephalopathy, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, PR China.
| |
Collapse
|