1
|
Papadakos SP, Argyrou A, Lekakis V, Arvanitakis K, Kalisperati P, Stergiou IE, Konstantinidis I, Schizas D, Koufakis T, Germanidis G, Theocharis S. Metformin in Esophageal Carcinoma: Exploring Molecular Mechanisms and Therapeutic Insights. Int J Mol Sci 2024; 25:2978. [PMID: 38474224 DOI: 10.3390/ijms25052978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Esophageal cancer (EC) remains a formidable malignancy with limited treatment options and high mortality rates, necessitating the exploration of innovative therapeutic avenues. Through a systematic analysis of a multitude of studies, we synthesize the diverse findings related to metformin's influence on EC. This review comprehensively elucidates the intricate metabolic pathways and molecular mechanisms through which metformin may exert its anti-cancer effects. Key focus areas include its impact on insulin signaling, AMP-activated protein kinase (AMPK) activation, and the mTOR pathway, which collectively contribute to its role in mitigating esophageal cancer progression. This review critically examines the body of clinical and preclinical evidence surrounding the potential role of metformin, a widely prescribed anti-diabetic medication, in EC management. Our examination extends to the modulation of inflammation, oxidative stress and angiogenesis, revealing metformin's potential as a metabolic intervention in esophageal cancer pathogenesis. By consolidating epidemiological and clinical data, we assess the evidence that supports metformin's candidacy as an adjuvant therapy for esophageal cancer. By summarizing clinical and preclinical findings, our review aims to enhance our understanding of metformin's role in EC management, potentially improving patient care and outcomes.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Polyxeni Kalisperati
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| |
Collapse
|
2
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
3
|
Liu L, Liang Z, Ma S, Li L, Liu X. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 2023; 27:66. [PMID: 36799170 PMCID: PMC9926870 DOI: 10.3892/mmr.2023.12953] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
A series of physiological and pathological changes occur after radiotherapy and accidental exposure to ionizing radiation (IR). These changes cause serious damage to human tissues and can lead to death. Radioprotective countermeasures are radioprotective agents that prevent and reduce IR injury or have therapeutic effects. Based on a good understanding of radiobiology, a number of protective agents have achieved positive results in early clinical trials. The present review grouped known radioprotective agents according to biochemical categories and potential clinical use, and reviewed radiation countermeasures, i.e., radioprotectors, radiation mitigators and radiotherapeutic agents, with an emphasis on their current status and research progress. The aim of the present review is to facilitate the selection and application of suitable radioprotectors for clinicians and researchers, to prevent or reduce IR injury.
Collapse
Affiliation(s)
- Lianchang Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Department of Intervention, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhen Liang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Correspondence to: Professor Lan Li, School of Public Health and Management, Wenzhou Medical University, 1 North Zhongxin Road, Chashan, Wenzhou, Zhejiang 325035, P.R. China, E-mail:
| | - Xiaodong Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Professor Xiaodong Liu, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, 1163 Xinmin Road, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
4
|
Wang Z, Wang J, Zhao H, Zhao T, Chen Y, Jiang M, Zhang S, Wei Y, Zhang J, Zhou Y, Shi S, Fu Z, Yang Y, Zhang Y, Yang L, Que J, Liu K. Targeting the SOX2/PARP1 complex to intervene in the growth of esophageal squamous cell carcinoma. Biomed Pharmacother 2022; 153:113309. [PMID: 35738180 DOI: 10.1016/j.biopha.2022.113309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated SOX2 protein levels are closely correlated with the increased incidence of esophageal squamous cell carcinoma (ESCC). However, establishing effective target measures for ESCC treatments continue to be researched. It has been previously proposed that SOX2 represents a potential therapeutic target for ESCC. Here, we found that the enzyme Poly(ADP-Ribose) polymerase 1 (PARP1) enriched in ESCCs interact with SOX2. Inhibition of PARP1 with 3-aminobenzamide (3-ABA) or shRNA knockdown reduced the proliferation of ESCCs, accompanied by decreased protein levels of SOX2. RNA sequencing demonstrated that PARP1 inhibition affected multiple signaling pathways involved in cancer cell proliferation. Additionally, 3-ABA synergistically suppressed the growth of ESCC cells when combined with cisplatin, and metformin potentiated the suppressive effect of 3-ABA on ESCC cell growth. Together these findings suggest that targeting SOX2 binding partner PARP1 provides a possible avenue to treat patients with high levels of SOX2.
Collapse
Affiliation(s)
- Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Junkai Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- Department of Gastroenterology of The Children's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihui Zhang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian 350025, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, NY 14627, USA
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
5
|
Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules 2022; 12:357. [PMID: 35327549 PMCID: PMC8945547 DOI: 10.3390/biom12030357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Metformin is the most used drug for type 2 diabetes (T2DM). Its antitumor activity has been described by clinical studies showing reduced risk of cancer development in T2DM patients, as well as management of T2DM compared with those receiving other glucose-lowering drugs. Metformin has a plethora of molecular actions in cancer cells. This review focused on in vitro data on the action mechanisms of metformin on thyroid, prostate and head and neck cancer. AMPK activation regulating specific downstream targets is a constant antineoplastic activity in different types of cancer; however, AMPK-independent mechanisms are also relevant. In vitro evidence makes it clear that depending on the type of tumor, metformin has different actions; its effects may be modulated by different cell conditions (for instance, presence of HPV infection), or it may regulate tissue-specific factors, such as the Na+/I- symporter (NIS) and androgen receptors. The hallmarks of cancer are a set of functional features acquired by the cell during malignant development. In vitro studies show that metformin regulates almost all the hallmarks of cancer. Interestingly, metformin is one of these therapeutic agents with the potential to synergize with other chemotherapeutic agents, with low cost, low side effects and high positive consequences. Some questions are still challenging: Are metformin in vitro data able to translate from bench to bedside? Does metformin affect drug resistance? Can metformin be used as a generic anticancer drug for all types of tumors? Which are the specific actions of metformin on the peculiarities of each type of cancer? Several clinical trials are in progress or have been concluded for repurposing metformin as an anticancer drug. The continuous efforts in the field and future in vitro studies will be essential to corroborate clinical trials results and to elucidate the raised questions.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Rodrigo Esaki Tamura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
- Thyroid Molecular Sciences Laboratory, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| |
Collapse
|
6
|
Tajima H, Makino I, Gabata R, Okazaki M, Ohbatake Y, Shimbashi H, Nakanuma S, Saitoh H, Shimada M, Yamaguchi T, Okamoto K, Moriyama H, Kinoshita J, Nakamura K, Miyashita T, Ninomiya I, Fushida S, Ikeda H, Ohta T. A phase I study of preoperative (neoadjuvant) chemotherapy with gemcitabine plus nab-paclitaxel for resectable pancreatic cancer. Mol Clin Oncol 2021; 14:26. [PMID: 33414907 PMCID: PMC7783717 DOI: 10.3892/mco.2020.2188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) has become a standard treatment for borderline resectable pancreatic ductal adenocarcinoma (PDAC). The present study examined the maximum tolerated dose of NAC with gemcitabine plus nab-paclitaxel (GnP) in patients with resectable PDAC. Between 2015 and 2019, 39 patients with resectable PDAC were enrolled in the present study. GnP was administered for two 28-day cycles on days 1, 8 and 15. The planned doses for levels 1, 2 and 3 were 75, 100 and 125 mg/m2, respectively, for nab-paclitaxel and 600, 800 and 1,000 mg/m2, respectively, for gemcitabine. Dose-limiting toxicity (neutropenia, anemia, thrombocytopenia and/or liver injury) was observed in 44.4% of patients treated at dose level 1 (21 patients) and 60.0% of those treated at dose level 2 (18 patients). Therefore, the maximum tolerated dose was set as level 1. Six patients withdrew from protocol treatment because of non-hematologic adverse events (skin rash, pancreatitis and biliary tract infection). Among the 31 patients with pathologically confirmed PDAC, partial response, stable disease and disease progression were recorded in 4 (12.9%), 24 (77.4%) and 3 (9.7%) patients, respectively. NAC significantly reduced tumor size according to computed tomography, and CA19-9 levels and the 18F-fluorodeoxyglucose maximum standardized uptake value were decreased in positron emission tomography. No postoperative complications attributable to NAC were recognized. Among the 27 patients with PDAC who underwent resection, the pathological treatment effect was judged as grades Ia, Ib and II in 21 (77.8%), 4 (14.8%) and 2 (7.4%) patients, respectively. R0 resection was performed in 24 out of 27 patients (88.9%). Adjuvant chemotherapy with oral S-1 was administered to 21 out of 27 patients (77.8%). In conclusion, NAC with GnP was safe and feasible for resectable PDAC at dose level 1. In the future, verification of the long-term results of the present study will be necessary, and a phase II clinical trial is anticipated.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Isamu Makino
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Ryosuke Gabata
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Mitsuyoshi Okazaki
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Shimbashi
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinich Nakanuma
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroto Saitoh
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Mari Shimada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hideki Moriyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroko Ikeda
- Division of Pathology, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Hepato-Biliary-Pancreatic Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
7
|
He Y, Fan Z, He L, Zhang C, Ping F, Deng M, Liu S, Wang Y, Cheng B, Xia J. Metformin Combined with 4SC-202 Inhibited the Migration and Invasion of OSCC via STAT3/TWIST1. Onco Targets Ther 2020; 13:11019-11029. [PMID: 33149616 PMCID: PMC7605634 DOI: 10.2147/ott.s268851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC), the most common epithelial malignant neoplasm in the head and neck, characterizes with local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. Thus, it is necessary to develop a new effective therapeutic scheme for OSCC. Our previous results showed that metformin and 4SC-202 synergistically promoted the intrinsic apoptosis of OSCC in vitro and in vivo, but the effects on invasion and migration remained unclear. Methods Human OSCC cell lines HSC6 and CAL33 were cultured with metformin (16 mM) or/and 4SC-202 (0.4 μM) for 72 h. STAT3 inhibitor S31-201 was applied at concentration of 60 μM for 48 h. Wound-healing assays and transwell assays were used to determine the invasion and migration ability of OSCC. qRT-PCR and Western blot were performed to detect mRNA levels and protein levels. Results Metformin or/and 4SC-202 suppressed the migration and invasion of OSCC cells. Importantly, the expression of TWIST1 was suppressed by metformin and 4SC-202, while the invasion and migration inhibitory effects of metformin and 4SC-202 were countered by the overexpression of TWIST1. In addition, the phosphorylation level of STAT3 decreased after the administration of metformin or/and 4SC-202. Furthermore, inhibition of STAT3 by S31-201 suppressed the expression of TWIST1 and led to a decline in migration and invasion of OSCC, while overexpression of TWIST1 attenuated these effects. Conclusion Metformin and 4SC-202 suppressed the invasion and migration of OSCC through inhibition of STAT3/TWIST1, and this scheme can serve as a novel therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Yuan He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lihong He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fan Ping
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Miao Deng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Suyang Liu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanting Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Zhang KF, Wang J, Guo J, Huang YY, Huang TR. Metformin enhances radiosensitivity in hepatocellular carcinoma by inhibition of specificity protein 1 and epithelial-to-mesenchymal transition. J Cancer Res Ther 2020; 15:1603-1610. [PMID: 31939444 DOI: 10.4103/jcrt.jcrt_297_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective Radiotherapy becomes more and more important in hepatocellular carcinoma (HCC) due to the development of technology, especially in unresectable cases. Metformin has a synergistic benefit with radiotherapy in some cancers, but remains unclear in HCC. This study aims to investigate the effect of metformin on radiosensitivity of HCC cells and the roles of specificity protein 1 (Sp1) as a target of metformin. Methods The SMMC-7721 cell line was exposed to various doses of γ-ray irradiation (0, 2, 4, 6, and 8 Gy) and with or without different concentrations of metformin (0, 1, 5, 10, and 20 mM) to measure the radiosensitivity using MTT assay. Flow cytometry was used to determine cell cycle by propidium iodide (PI) staining and apoptosis by Hoechst 33342/PI staining and Annexin V-FITC/PI staining. Real-time polymerase chain reaction and Western blotting were performed to analyze the Sp1 mRNA and protein expressions of Sp1 and epithelial-to-mesenchymal transition (EMT) marker E-cadherin and Vimentin. The invasion capability was measured by the Boyden chamber assay. Results In SMMC-7721 cells exposed to irradiation, metformin reduced proliferation and survival cells at various concentrations (0, 1, 5, 10, and 20 mM) and induced cell cycle arrest, apoptosis, and inhibited invasion. In SMMC-7721 cells with irradiation, the mRNA and protein expressions of Sp1 were significantly decreased by metformin as well as a selective Sp1 inhibitor. Metformin attenuated transforming growth factor-β1 induced decrease of E-cadherin and increase of Vimentin proteins. Conclusion Metformin demonstrated enhanced radiosensitivity and inhibition of EMT in HCC cells. Sp1 might be a target of metformin in radiosensitization.
Collapse
Affiliation(s)
- Ke-Fen Zhang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi; Department of Pathology, Taishan Sanatorium, Taian, P.R. China
| | - Jun Wang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi; Department of Oncology, The Central Hospital of Taian, Taian, Shandong, P.R. China
| | - Jiao Guo
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| | - Yue-Ying Huang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| | - Tian-Ren Huang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| |
Collapse
|
9
|
Yu Y, Cao J, Wu W, Zhu Q, Tang Y, Zhu C, Dai J, Li Z, Wang J, Xue L, Zhen F, Liu J, Huang C, Zhao F, Zhou Y, Wen W, Pan X, Wei H, Zhu Y, He Y, Que J, Wang W, Luo J, Xu J, Chen L. Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis 2020; 40:1198-1208. [PMID: 31050728 DOI: 10.1093/carcin/bgz077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Copy number variations (CNVs) represent one of the most common genomic alterations. This study aimed to evaluate the roles of genes within highly aberrant genome regions in the prognosis of esophageal squamous cell cancer (ESCC). Exome sequencing data from 81 paired ESCC tissues were used to screen aberrant genomic regions. The associations between CNVs and gene expression were evaluated using gene expression data from the same individuals. Then, an RNA expression array profile from 119 ESCC samples was adopted for differential gene expression and prognostic analyses. Two independent ESCC cohorts with 315 subjects were further recruited to validate the prognostic value using immunohistochemistry tests. Finally, we explored the potential mechanism of our identified novel oncogene in ESCC. In total, 2003 genes with CNVs were observed, of which 76 genes showed recurrent CNVs in more than three samples. Among them, 32 genes were aberrantly expressed in ESCC tumor tissues and statistically correlated with CNVs. Strikingly, 4 (CTTN, SHANK2, INPPL1 and ANO1) of the 32 genes were significantly associated with the prognosis of ESCC patients. Patients with a positive expression of ANO1 had a poorer prognosis than ANO1 negative patients (overall survival rate: 42.91% versus 26.22% for ANO1-/+ samples, P < 0.001). Functionally, ANO1 promoted ESCC cell proliferation, migration and invasion by activating transforming growth factor-β pathway. Knockdown of ANO1 significantly inhibited tumor progression in vitro and in vivo. In conclusion, ANO1 is a novel oncogene in ESCC and may serve as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fuxi Zhen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haixing Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaozhou He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
He HH, Fu JH, Hao ZX, Wu HF, Zhong Q, Wang F, Liu HH, Gu XS, Wang B, Huang HD, Li ZY, He JX. Impact of metformin on survival outcome of esophageal squamous cell carcinomas patients undergoing surgical resection: a multicenter retrospective study. J Thorac Dis 2020; 12:830-838. [PMID: 32274150 PMCID: PMC7138989 DOI: 10.21037/jtd.2019.12.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Diabetes mellitus is a recognized risk factor for esophageal squamous cell carcinomas (ESCC), and metformin is a recognized protective factor for some gastrointestinal tumors. But knowledge is limited regarding the effect of metformin on survival outcome of ESCC patients with type 2 diabetes mellitus (T2DM). We assessed the impact of post-diagnosis metformin use on overall survival (OS) and disease-free survival (DFS) in ESCC with T2DM undergoing surgical resection. Methods A retrospective analysis was performed on 3,523 patients with ESCC who met the study conditions after surgical resection. Log-rank and Cox regression models were used to evaluate the relationship between metformin and T2DM and ESCC survival rate, and adjusted according to age, gender, BMI, smoking, drinking and staging, et al. Results Among included ESCC patients, 619 were associated with type 2 diabetes, while the remaining 2,904 were not associated with type 2 diabetes. The 5-year OS (28.43%) of patients with T2DM was significantly lower than that of patients without T2DM (32.75%), P=0.037. DFS in 5 years were 27.30% (with T2DM) and 31.75% (without T2DM) (P=0.030), respectively. Compared with patients without T2DM, patients with T2DM presented worse OS [adjusted risk ratio (HRadj) =1.19] and DFS (HRadj =1.17; P<0.001). Among the 619 patients with type 2 diabetes, 485 were treated with metformin and 134 were not treated with metformin. Patients treated with metformin had significantly improved OS [adjusted risk ratio (HRadj) =0.89; P=0.031) and DFS (HRadj =0.90; P=0.013). Conclusions T2DM was again associated with poorer survival in ESCC patients, and metformin may improve the prognosis of these patients.
Collapse
Affiliation(s)
- Huang-He He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jun-Hui Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China.,Department of Tumor Surgery, Shantou Central Hospital, Shantou 515000, China
| | - Zhe-Xue Hao
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - He-Fang Wu
- Department of Oncology, Zongyang People's Hospital, Tongling 246700, China
| | - Qiang Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Fan Wang
- General Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Hang-Hui Liu
- Department of Thoracic Surgery, Huizhou First People's Hospital, Huizhou 516000, China
| | - Xiang-Sen Gu
- Department of Thoracic Surgery, Jiangdu People's Hospital, Yangzhou 225200, China
| | - Bin Wang
- The rural medical cooperation bureau in Zongyang, Tongling 246700, China
| | - Hao-Da Huang
- Department of Thoracic Surgery, Jieyang People's Hospital, Jieyang 522000, China
| | - Zhuo-Yi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jian-Xing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| |
Collapse
|
11
|
Abstract
Radiotherapy remains one of the corner stones in the treatment of various malignancies and often leads to an improvement in overall survival. Nonetheless, pre-clinical evidence indicates that radiation can entail pro-metastatic effects via multiple pathways. Via direct actions on cancer cells and indirect actions on the tumor microenvironment, radiation has the potential to enhance epithelial-to-mesenchymal transition, invasion, migration, angiogenesis and metastasis. However, the data remains ambiguous and clinical observations that unequivocally prove these findings are lacking. In this review we discuss the pre-clinical and clinical data on the local and systemic effect of irradiation on the metastatic process with an emphasis on the molecular pathways involved.
Collapse
|
12
|
Sekino N, Kano M, Matsumoto Y, Sakata H, Akutsu Y, Hanari N, Murakami K, Toyozumi T, Takahashi M, Otsuka R, Yokoyama M, Shiraishi T, Okada K, Hoshino I, Iida K, Akimoto AK, Matsubara H. Antitumor effects of metformin are a result of inhibiting nuclear factor kappa B nuclear translocation in esophageal squamous cell carcinoma. Cancer Sci 2018; 109:1066-1074. [PMID: 29396886 PMCID: PMC5891201 DOI: 10.1111/cas.13523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an intractable digestive organ cancer that has proven difficult to treat despite multidisciplinary therapy, and a new treatment strategy is demanded. Metformin is used for type 2 diabetes mellitus and its antitumor effects have been reported recently. Metformin exerts antitumor effects in various respects, such as inhibiting inflammation, tumor growth and epithelial‐mesenchymal transition (EMT). However, few reports have described the efficacy of metformin on ESCC, and their findings have been controversial. We analyzed the antitumor effects of metformin and clarified its effects on anti‐inflammation, growth suppression and EMT inhibition. Activation of nuclear factor kappa B (NF‐κB), the major transcription factor induced by inflammation, was investigated by immunostaining. We found that localization of NF‐κB in the nucleus was reduced after metformin treatment. This suggests that metformin inhibited the activation of NF‐κB. Metformin inhibited tumor growth and induced apoptosis in ESCC cell lines. Associated with EMT, we examined cell motility by a wound healing assay and the epithelial marker E‐cadherin expression of various ESCC cell lines by western blotting. Metformin inhibited cell motility and induced E‐cadherin expression. In conclusion, metformin showed multiple antitumor effects such as growth suppression, invasion inhibition, and control of EMT by inhibiting NF‐κB localization on ESCC. Further exploration of the marker of treatment efficacy and combination therapy could result in the possibility for novel treatment to use metformin on ESCC.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Yokoyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Shiraishi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Okada
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keiko Iida
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Komatsu Akimoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Wang L, Zhao Y, Xiong Y, Wang W, Fei Y, Tan C, Liang Z. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway. Exp Cell Res 2018; 362:424-435. [DOI: 10.1016/j.yexcr.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
|
14
|
Wallesch M, Pachow D, Blücher C, Firsching R, Warnke JP, Braunsdorf WE, Kirches E, Mawrin C. Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. J Neurol Sci 2017; 380:112-121. [DOI: 10.1016/j.jns.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
15
|
Kast RE, Skuli N, Karpel-Massler G, Frosina G, Ryken T, Halatsch ME. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen. Oncotarget 2017; 8:60727-60749. [PMID: 28977822 PMCID: PMC5617382 DOI: 10.18632/oncotarget.18337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers’ lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma’s centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse, CRCT, Inserm/Université Toulouse III, Paul Sabatier, Hubert Curien, Toulouse, France
| | - Georg Karpel-Massler
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| | - Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genoa, Italy
| | - Timothy Ryken
- Department of Neurosurgery, University of Kansas, Lawrence, KS, USA
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|